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Abstract

This article describes technologies and strategies proposed for the development of prosthetic de-
vices which would be directly interfaced to the nervous system. A chronic neural interface device
is under development which should permit the establishment of permanent bidirectional commu-
nication with peripheral nerves in a human limb. An Artificial Neural Network would be used
to interpret the neural signals and drive a prosthetic limb in the case of an amputation. For
nerve repair in an intact limb, the neural network would be used to reroute misdirected signals
into appropriate neural channels. Design considerations for the neural interfaces and supporting
circuitry are discussed along with information processing strategies. It is intended that a fully
integrated prosthetic device should be capable of adapting to the individual needs of the patient
to provide a natural user interface.

1 Introduction
Thbs article describes an ongoing project which is concerned with the development of neural inter-
faces to the human nervous system. Silicon based interfaces, perforated by arrays of via holes, are
implanted between re-apposed ends of deliberately severed peripheral nerve fascicles. Regenerating
axons grow through the holes and become physically isolated and spatially fixed with respect to
the microelectrodes adjacent to each via hole. This should allow for permanent access to neural
signals at or near the level of individual axons. An artificial neural network can then be used to
interpret and process the information contained in the neural signals. To our knowledge, this is the
first attempt to directly link biological neural networks to artificial neural networks. The artificial

neural network, controlled by the central nervous system (CNS), would form a natural extension
to the peripheral nervous system.

This article begins with a description of the silicon based neural interface itself, which is being
developed by two of the authors (Kovacs & Rosen). The emphasis of this paper, however, is on
the systems level considerations in debiguing a complete prosthesis and the role of neural networks
in adapting the prosthesis to meet the individual needs of a patient. Two applications will be

discussed. The first, is concerned with the use of interfaces to redirect neural activity in an intact
arm so as to aid in the recovery of a severe nerve injury. The second deals with full limb prosthesis in
the case of an ami)utation. A more comprehensive paper which addresses such issues as fabrication
techniques, power dissipation, and biological feasibility, can be found in [1].

2 The Stantbrd/VA Neural Interface
This group has been working on a direct neural interface for peripheral nerves for several years under
Veterans Administration funding '. The goal of this work is to develop, largely by modification
of cxsting commercial technologies, a microelectronic neural interface which will permit direct,
chronic coinection of electronic circuitry to the human nervous systern.

'Veteran's Adminiktratiori Reha.bilitation Research anl Development (HItMA&l)) Merit Beview Urant 13003
lentz/ltosen "Towards Better Methods of Nerve Repair and Evaluation"

It - 3



In order to achieve this goal, a microelectronic neural interface capable of repeatably sensing and
stimulating action potentials in small groups or individual axons of peripheral nerves is under devel-
opment. While a number of investigators have experimented with implantable nerve-regeneration
type recording devices using semiconductor materials [2, 3, 4, 5, 6, 7, 8], this group would be the

first to attempt chronic access at resolutions approaching individual axons, in addition to the use

of active electronics in the implant itself.

Nm

Figure 1: Drawing showing re-apposed ends of a peripheral nerve held agains•t a microelectron~ic neu.ral
interface in a surgical coupler. Regenerated axons through the via holes in the silicon (not to scale) are
shown in the cut-away view. (Reprinted with permission from [13].)=

The current device, consisting of a silicon chip perforated by an array of via holes, will be held -
between the re-apposed ends of a deliberately severed peripheral nerve fascicle in a limb stump •
utilizing a surgical coupler (as shown in Figure 1). It has been shown experimentally [9] that---
for 8 to 12 Itm via holes, individual regenerating axons will grow through the holes and become •

physically isolated and spatially fixed with respect to microelectrodes adjacent to each via holes.
This arrangement will thus form a stable interface between tt~e microelectronic circuitry on the [

neural interface device anid the axons.
The present approach is to provide an individual neural interface for each fascicle of a major

nerve. The design of monolascicular interfaces requires the use of approximately a I rm 2 surface

area for the microelectrode array corresponding to each fascicle. The mnicroelectrodes will be
arranged in a two-dimensional grid at densities approaching those of the axons in peripheral nerves
(1-2,000 axons per mm2) to maximize access to the information present. The intimate contact of the
microelectrodes with the axons should provide for good signal selectivity between microelectrodes,

Details on the development of specialized mnicroclcctrodes, surgical couplers, and fabrication
processes, along with other technical and biological considerations can be found iii earlier papers
(see Kovacs et al [11, 12, 13, 14, 15]). It should be noted, that care was taken to utilize only
processing techniques which are compatible with commercial CMOS fabrication so that the final
arrays can be produced in a timely and inexpenqivoc manner.

2.1 Preliminiary In-Vivo Stutdies

A section of a blank neural interface (without inicroelectrodes or active microelectronic circuits)
fabricated using a plasma etching technique [16] is shown in Figure 2. The blank neural interfaces
were miounted in polycarbonate or resorbable GTIVIC (Glycolide Trimetitylene Carbonate) surgical
couplers and( interposed between the surgically severed end's of rat and inonkey nerves.
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Figure 2: SEM (scanning electon micrograph) view of a section of a plasma etched blank neural
interface (no microelectrodes). These via holes are approximately 12 jim in diameter.

.0 . . ....

".,. ..

Figure 3: SEM view of monkey axons which have regenerated through via holes in a preliminary version
(without microelectrodes) of the neural interface. (magnification = 1060X) Reprinted with permission
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Using functional, electrophysiological and histological techniques, it was demonstrated that
viable axons had regenerated through the via holes (see Figure 3).

2.2 Current Status of Neural Interface Research

Further work on the neural interface has been carried out, with the goal o: incorporating the ele-
ments required to form a functional interface [11]. Passive neural interfaces (with microelectrodes
but without active microelectronic circuitry) have been fabricated and implanted in the peroneal
nerves of Sprague-Dawley rats [1.7]. Preliminary studies indicate that both recording and stimu-
lating with the neural interface is possible [11]. Current work is focused on determining the degree
of selectivity for each microelectrode site. As well, active neural interface prototypes have been
fabricated which incorporate microelectronic circuitry to permit time-multiplexing of the neural
signals in order to reduce the number of connections to and from the neural interface [13].

3 Nerve Repair
One of the originally envisioned applications for the neural interface deals with nerve repair in
an injured arm. In a severe arm injury, it is often possible to surgically reattach main nerve
bundles at the fascicle level. However, as individual axons regenerate a sort of scrambling occurs
when the axoc-s grow back to the "wrong" locations. The result is a severe functional limitation
in an otherwise intact hand [21]. While therapy may result in increased usage, the process is
time consuming and never complete. The use of neural interfaces, however, should allow one to
electronically intercept misdirected efferent (motor) and afferent (sensory) neuval impulses and
reroute them into appropriate channels, thus "descrambling" the signals and providing increased
recovery after a severe nerve injury. In order to block the original signals, two neural interfaces
for each fascicle will be required (see Figure 4). Since fascicles contain both afferent and efferent
signals each interface must be capable of either recording "incoming" signals or initiating "outgoing"
signals.

Afferent E cffeSent
Signals -Signals

Fascicle

Neural Interfaces

Figure 4i: Diagram illustrating two neural interfaces being used for nerve repair. Two interfaces are
used to reroute misdirected neural signals. The original signals are blocked between the two interfaces.

In order to learn the proper mapping from input inicroclectrode to output IjIicrole(ctro(le, the use
of a "neural network" is. proposed. T'Jhe network must be bidirectional to acconmmodate both efferent
ard aIlerent signals. IFurthermore, both the input and output of the network must correspond to
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the firing rates of axons. The difficulty with this problem is that there is no way to gain access to
a desired response for the output of the network as would be required to train a traditional neural
network. There is only a desired response for the hand as a whole, not for individual axon signals. In
,),der to overcome these problems, a new algorithm, based on a variety of neural network techniques
has been developed which appears to solve the mapping problem for a one-to-one descrambling.

The problem of rerouting axons is analogous to the classical linear assignment problem. We
wish to assign N input axons to N output axons (N people to N tasks). The assignment can be
made based on a cost matrix, C, whose coefficients, cij, give the cost, or gain in performance, of
assigning input axon i to the output j. As will be shown, C corresponds to learned information,
with the coefficients being somewhat analogous to the synaptic weights in a neural network. To
formulate the assignment it is also necessary to define an assignment matrix, T. The coefficient
ti,j = 1 if input axon i is actually assigned to output j, else tij = 0. T is a sparse matrix since
there is a single 1 in each row and each column. An optimal assignment is made by mininmizing the
cost function

N N

J(C,T) = ei~jt, (1)
i---=1 j=l

subject to the constraints

NSti~j = I 2

i= 1
N

Stj = 1 (3)

tij E {O, 1}Vi,j (4)

There are many classical linear programming algorithms to solve this problem. However, C
may also be used directly to determine the weights for a llopfield network [18] which may then
be used as an efficient method to find a "good" solution. What makes the assignment problem
difficult is that we are never given the cost matrix. Initially there is no knowledge of how individual
o'o:i• ,re to be assigned. This is similar to a case of the travelibty suh,,atu proble, il WiliCL the
dist.,,:e, between the cities, the C matrix, is initially unknown. Only the total path length after
a Jcial Journey to the cities is known. From this, the salesman is expected to learn the best path.
I eaiaing is reflected in the proper formulation of a cost matrix.

First define the following parameters: Let E be the average error in the hand's performance
ovei the trtining period. Let Ek be the instantaneous error for a given volitional command, Then
k = Ehk - E is a semi-quantitative measure of how well the hand performs for a given command

re!4tlve to past performance. Basically, Ek, can be thought of as a subjective measure of how well
the. hand i6 currently performing. Also define xi as the average impulse frequency or firing rate
,Aoný. input axon i during the course of the current command.

I,> ri•e for adapting the elements of the cost matrix can now be defined as follows:

(cij)k+l = (ci,j)k + (Aci,j)k (5)

(Aeij)k = 1EkXitj (6)

The form of this learning algoritlhin is similar in nature t.o the LMS algoridtl m which is used in
almost all neural networks. Individual cost coeflicients are adapted in proportion to the strength
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Figure 5: Learning curve for axon descrambling simulation.

of the input; the greater the input the greater its contribution to the total output error. Unlike
LMS, which adapts each output neuron with respect to an individual error, all coefficient are
changed in proportion to the total error. This is necessary since the desired output for each axon
is unavailable. In summary, we adapt the individual cost coefficients associated with the current
assignment in proportion to the total output error and the input strength at each axon. In this
way, the cost matrix is adapted to reflect the overall performance of the current assignment. The
complete sequence of training would proceed as follows:

1. Start with a random cost matrix.

2. Use a HIopfield Net to form an initial assignment rmtatrix.

3. Based on the assignment matrix electronically reroute the axon signals.

4. Have the patient give his hand a command (i.e. make a fist).

5. Based on the error adapt the coefficients of the cost matrix.

6. Based on the new cost matrix use the llopfield Net to find the new assignment matrix.

7. Go to step 3.

This procedure would continue until a suitable level of performance is achieved. This algorithm
is intuitively motivated. A proof of convergence is unknown and possibly intractable considering
the qualtitative nature of the error used for adaptation. While it will be years before the algorithm
can be fully tested on human patients, a leai .ting curve for a computer simulation with 25 axons is
shown in Figure 5, The simulation assumed a worst case situation in which all axon signals were
taken to be uncorrelated. For 25 axons there are approximately 1.551 x 1025 possible reroutings.
A complete descranibling was achieved in under 900 attempts.
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4 Limb Prosthesis

In an amputation, rerouting neural activity as explained above will be of l:ttle use to the patient.
In this case, the interfaces can be used to establish direct communication to a limb prosthesis (i.e.
a mechanical hand) 2

Interfaces which could presently be applied chronically in a limb prosthesis application can not
provide access to anything but gross averages of neural activity. Current techniques utilize mechani-
cal command signals from unaffected tissues (e.g. shoulder movement) or electromyographic (EMG)
signals from isometric contraction of muscles to control prosthesis movements. Problems commonly
cited with respect to myoelectric prostheses include lack of reliability of the EMG electrodes (e.g.
susceptibility to faulty operation in the presence of perspiration), the need to concentrate con-
stantly on the muscles used to maintain a grip, and the lack of any shear (slippage) force feedback
[19, 20]. As well, inconsistent placement of the electrodes can make the requisite signal processing
extremely difficult [20]. In fact, old-fashioned, purely mechanical "claw" devices, which provide
rudimentary proprioceptive feedback via their shoulder harnesses (Bowden cables), are preferred
by many patients over more modern rnyoelectric prostheses [19]. The problems with these systems
are all a result of limitations in the available interfaces between the patient and the prosthesis.

An ideal interface should allow for use of the limb via both the normal efferent (motor) and
afferent (sensory) neural channels. Furthermore, since the ensemble behavior of the axons in pe-
ripheral nerves is what allows, for example, the fine motor control of the hand, it is clear that a
successful interface must provide simultaneous access to the information carried in small groups or
ultimately individual axons. All these requirements should be met with the current neural interface
under development.

4.1 System Overview

The nature of the signals utilized by the peripheral nervous system to control various hand motions
are both complicated and case specific. Thus, in order to utilize the thousands of signals available
from the interfaces, it will be necessary to have an adaptive system capable of both utilizing the
information content available in the signals and learning how the signals can be used to control
an existing and fixed mechanical nrosthesis. Thesp rewuirements will he met through thbe usie of

artificial neural networks. Thus the majority of the burden involved in training will be placed on
the prosthetic device themselves, rather than the patient.

A block diagram of a complete prosthesis system is shown in Figure 6, followed by an artist's
conception of such a system shown in Figure 7. For efferent signals, following the neural interfaces
and prior to the neural network, it would be necessary to perform some feature extraction to
reduce the overall data rate of the system. This is performed in several stages. Initial feature
extraction would consist of demodulating the neural signals fromn each microelectrode site on the
neural interface into numerical representations of their effective axonal firing rates. Within the
stump, these demodulated signals would be multiplexed into a common signal and then transmitted
to the external prosthesis hardware via a telemetry system 3. Following this, an adaptive feature
extractor would be utilized to cluster signals into functionally similar groups and then form an
average demodulated signal for each feature signal. This additional data reduction is necessary to
reduce the complexity of further processing. Finally, downstream from the feature extractor, ani

2For the remainder of this discussion a "prosthesis" will refer to a full artificial limb prosthesis
3Suitable telemetry systems for bidirectional transmission of data ie. this application appear to be achievable with

present technologies. For example, the simultaneous transmission of data and power via high-frequency electromag-
netic coils has been demonstrated in prosthetic applications [10]
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Figure 6: Block diagram of a directly interfaced prosthesis syst!m. Signals to and from the neural
interface for each fascicle are routed by I/0 controllers which either demodulate or stimulate as appro-
priate for each microeiectrode site. The data for each fascicle flows through a global multiplexer prior
to the implanted transceiver. (Each transceiver is depicted as separate transmit (TX) and receive (RX)
blocks.) Broken areas denote transcutaneous tiansmission of information. For the efferent channel,
demodulated neural signals are processed by a feature extractor, followed by a neural network used to
control the robotic limb. Information from transducers in the robotic limb is mapped onto the afferent
channel by a neural network sensory mapper to provide feedback.

Figure 7: Artist's conception of a directly interfaced below-the-elbow limb prosthesis.
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adaptive neural network in the prosthesis would carry out the interpretation of the neural command
signals and the control of the mechanical systems of the prosthesis.

For afferent information, signals would be processed in a similar manner, but in a reverse
direction. Signals from transducers in the prosthesis would be mapped onto the appropriate sensory
channels using a second adaptive network. The outputs of the adaptive network would consist of
numerical representations of the desired stimulation rates at the microelectrodes. Signals from
this network would then be multiplexed into a common signal and transmitted into the stump.
This information would be demultiplexed and routed to the appropriate microelectrode sites to
determine their stimulation rates.

4.2 Training Methodology

The following technique could be used to establish a basic set of neural command patterns with
which to train the control of the prosthesis and to simultaneously sort axons into afferent or efferent
groups. The patient would be asked to mimic, with his or her "phantom" hand, a predefined set
of motions which could be presented using a computer-generated representation of a hand. Several
records of the neural firing patterns (demodulated as explained below) corresponding to each motion
would be stored for later use in "off-line" training of the feature extractor and neural network control
system. It may also be useful to have the patient carry out a set of hand motions with a normal
hand (if present) using a device such as the "data glove" 4 to directly measure the joint angles and
positions in the state space of the hand. This would allow some of the motions to be defined by
the patient to better suit his or her individual needs. In order to separate afferent from efferent
axons, the axonal signals which showed no consistent electrical activity during these tests would
be classified as afferent. The individual microelectrode sites corresponding to them could then be
defined as sites for stimulation if the prosthesis is to be equipped with sensory input transducers.
The process for incorporating sensory capability in the prosthesis will require a separate procedure.
While the characteristics of the transducers on the prosthesis itself will be known, sorting out the
different classes of afferent fibers (tactile sense, proprioception, pain and temperature sense) is likely
to be a much more arduous task. The major difficulty would be that the user, when presented with
various stimuli would somehow have to report his or her perceptions to the sorting algorithm. A
proposed method for training sensory information into the prosthesis which also utilizes a neural
network will be presented in a later section.

5 Feature Extraction
5.1 Initial Data Reduction: Demodulation

Since the information contained in the peripheral nervous system is encoded using pulse-frequency
modulation and recruitment 5, only the presence and rate of occurrence of individual action poten-
tials would need be detected in efferent signals. Axon firing rates for normal levels of excitation fall
within the range of 5 - 100 action potentials per second [26] with a conservative upper limit of 500
1iz. If each microelectrode site was equipped with a simple circuit for registering the occurrence
of an action potential signal (threshold detection) between sampling intervals, it could be assumed
that scanning the array at 500 lIz would provide all of the necessary information. This is in con-
trast to the sampled recording of action potential waveforms, which have frequency components
extending out to approximately 10 KlIz and hence require a higher sampling rate.

4The data glove is a device worn on the human hand and is used for measuring joint angles [25].
sRecruitment refers to increasing the number of active motor units.
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Figure 8: Graph showing the decrease in net data bandwidth with increasing number of encoding bits
used to store the frequency of action potentials at a given microelectrode site.

In considering efferent data reduction, one can observe that the action potential frequency
may be relatively high for each axon, while the rate of change of this frequency with changing
commands for desired motions will generally be much lower. These commands (symbols) have a
low data rate due to the relatively long mechanical time constants of the musculoskeletal system.
6 If one attempts to perform a repetitive simple hand motion, such as tapping the index finger
against a tabletop as rapidly as possible, the maximum rate is a few Hertz. Thus the number of
action potentials over a given sampling interval could be converted to a numerical or demodulated
representation of the average firing rate without undue loss of information. The output data rate
for each microelectrode site would then be the product of the number of data bits used to specify
the firing rate and the reciprocal of the sampling interval. Mathematically, this is expressed as,

DRdemnod = N 2 w(7)

where DRdemod is the demodulated data rate, N is the number of bits used to specify the firing
rate of the demodulated signals, and DRaW is the raw data rate. A plot of this function is shown
in Figure 8. The cost of adding encoding bits is both one of increased power dissipation and of
increased real estate usage on the integrated circuit. The benefit in terms of reduced bandwidth is
clear.

In order to estimate the total efferent bandwidth for the system. one first needs to consider the
total number of axonal signal sources. Referring to the iintraueural (fascicle) maps of Sunderland
[22, 23]. it can be seen that the radial nerve is divided into 8-10 fascicles near the elbow. The
ulnar nerve is divided into approximately 13 fascicles, and the median nerve into approximately
14, at this level. Thus roughly forty monofascicular neural interfaces would be required, for a total
of 40,000 microelectrode signals. Assuming that half o6 these are efferent, with each site being
sampled at 500 Iz, and a 5-bit symbol sample rate of 16 Iz, the system data rate would be only
1.6 Mbits/s (versus the raw signal data rate of 10.2 Mbit/s). For a slower-responding prosthesis

6 And perhaps by bandwidth limits of the cerebrum and cerebellum which evolved concurrently and presumably

without needless excess speed.
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with an 8-bit encoding and a 2 ttz symbol sample rate, the system data rate would be only 320
Kbits/s (roughly a 60-fold reduction).

The demodulation of the action potential stream, from each microelectrode site, into its re-
spective numerical signal strength could be accomplished by several methods. One such method
would use what amounts to frequency counters for each axon. Either digital counters or analog
charge-integrators could be utilized for this purpose. The digital counters would simply count ac-
tion potentials over a given sampling period (each would require a comparator or the multiplexed
output of a shared fast comparator for its clock). Each counter would be interrogated and then
reset for the next sampling period. Another method, suggested by Franz [19], consists of the se-
quential storage of bits corresponding to the individual action potentials as time sequences for each
ruicroelectrode site ~'. Encoding logic could quickly scan the time histories for each site and output
the desired numerically encoded rate value.

In a two-way neural interface, afferent information would be conveyed to the PNS as low-data-
rate commands to stimulation circuitry located in the neural interface. This information would
be encoded by a sensory mapper which would map signals from transducers in the prosthesis into
pulse-frequency modulated signals for stimulation.

To minimize the problem of power dissipation into the neural tissue, the inclusion of the de-
modulation and telemetry functions in the circuitry of the neural interfaces would be avoided.
The demodulators would be implemented in separate, synchronized companion chips, located in
less thermally sensitive areas. The outputs from the microelectrode sites' demodulators would be
scanned sequentially at the appropriate sampling intervals and routed to the telemetry ciicuits.
Relatively high-power circuits could be located in such areas as alongside blood vessels or attached
to bone. The implanted telemetry circuits could also be affixed to bone in order to facilitate heat
dissipation if necessary.

5.2 Efferent Signal Clustering

In the normal neuromuscular system, thousands of functionally similar axons innervate a single
group of muscle fibers to regulate its overall contraction. While individual bignals could be applied
directly as input to the neural network, this would be an unnecessary complication. From an
engineering standpoint, we are interested only in the total muscular force level. It should thus be
possible to perform massive data reduction by clustering the individual microelectrode site signals
into functionally similar groups. The average firing rate within each cluster can then be used as
a single representative signal for that cluster. The average of the demodulated signals from each
cluster will henceforth be referred to as a feature extracted signal.

Ideally we would want only one feature extracted signal corresponding to each muscle in the
hand. However, it will probably be necessary to have several feature extracted signals for each
muscle to account for such factors as motor neuron size and recruitment order. This corresponds to
simply grouping the individual axons into finer clusters. The number of necessary feature extracted
signals will ultimately be determined by both the physiology of the human hand and the dexterity
capabilities of the prosthesis mechanism to be used. This data reduction subsystem is shown in
Figure 6 in relation to the overall prosthetic system. It is estimated that this subsystem will enable
a reduction in data by roughly two orders of magnitude.

The time histories of the axon firing rates, recorded from the patient as previously described,

'The memory required per neural interface, based on the above estimates, is less that, that of the now obsolete 6,4
K-bit dynamic RAM memory. Thus, for al; forty fascicles a 2 NI-bit RAM would be sufficient. (For 1,024 sites per
neural interface and a 10 ltz sampling rate of the microelectrode time sequences, 64 storage locations per site would
be adequate with a 500 Hz maximum action potential rate,)

I1 - 13



will comprise a set of training vectors for the clustering algorithm. The dimension of the input
vectors is extremely large corresponding to the sampling period and interval over which the time
histories are recorded. The number of signals corresponds to the number of efferent microelectrode
sites. The goal is to cluster the sites into groups which are highly correlated. This clustering can
be performed in many ways, using a traditional approach such as the Linde-Buzo-Gray (LBG)
algorithm [27] used in vector quantization, or a neural network approach such as Kohonen's self
organizing feature maps [28].

After training, the microelectrode signals will be clustered into groups which have similar time
histories. Thus the axons should be functionally grouped according the various muscles that they
originally controlled. It is important to note that the adaptive process by which the clusters are
determined is performed only once and off-line, using a computer. Once the appropriate cluster
for each axon site is identified, the information is used to program the actual feature extraction
subsystem. The programmed subsystem merely needs to average the firing rates from each axon site
within each known cluster during normal operation. This average firing rate for the cluster forms
the feature extracted signal which can then be used as input to the next stage of the prosthetic
system, the neural network.

A possible hardware implementation for the feature extractor would entail the use of digital logic
to compute the feature extracted signals. Each microelectrode site would be assigned a numerical
mapping address corresponding to the cluster into which it had been classified. As the demodulated
outputs from the microelectrode arrays are scanned by the feature extractor circuitry, the mapping
addresses could act as pointers to summing registers into which each demodulated output would
be added. These cluster sums, normalized by the number of microelectrode signals within each
cluster, would represent the feature extracted signals at the end of each scan through the array.
With such an implementation, the off-line adaptation of the feature extractor would merely produce
a look-up-table of mapping addresses. These mapping addresses could then be downloaded into a
non-volatile memory structure within the feature extractor to enable its operation.

More sophisticated feature extraction methods have also been considered but appear to be
impractical. In EMG analysis, for example, signals are often modeled as ARMA (auto-regressive
moving-average) processes [29]. One then uses a Bayesian classifier based on the parameters of the
ARMA model to map neural commands onto a limited number of control sequences. Unfortunately
this method is usually limited to on/off control with the intensity (force or velocity) being regulated
by signal power. Also, extracting the ARMA parameters cannot be done on-line. A short time
window of data must be stored and then processed. This results in unavoidable time delays.
Furthermore, an EMG measures muscular activity which is based on an ensemble of neural activity.
It is thus naturally amenable to stochastic analysis. Since we are working at a higher resolution
than EMG signals, we would require a more sophisticated stochastic model for feature extraction.
However, stochastic models are not a feasible option when considering the number of microelectrode
sites involved. In addition, they do nothing to reduce the total number of distinct signals in the
system.

6 Efferent Neural Network Interface
In the prosthetic system, the neural network would act as the bridge between the neural signals
and the actual robotic hand. It can be considered as the intelligent interface between man and
machine, Its function is to interpret the microelectrode signals and drive the robotic hiand so as to
make the use of the prosthesis transparent to the patient, To the patient, controlling the prosthesis
should stein the same as controlling the original hand.

The training of the neural network will be done complctely off-line using computer models of
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Figure 9: Block diagram of a proposed neural network based prosthesis controller.

the neural network and signal recordings made while the patient mimics desired hand movements.
The patient's hand motions are sensed using a data glove whose outputs are used to form a desired
response for the neural network. Once the neural network computer model is trained, the values of
the synaptic weights can be downloaded to the actual neural network hardware. The customization
of the prosthetic system for the individual patient should then be complete. However, additional
training cycles may be necessary to emphasize certain motions to achieve flue motor control.

Prior to describing in detail the design of the neural network, it is necessary to briefly discuss how
the CNS uses axons to control a limb. Simplistically, agonist and anta.gonist muscle contractions
determine tendon tensions resulting in joint torques which ultimately determine limb position.
Muscular activity is, of course, directly related to neural activity. The multiple axons associated
with a single muscle regulate its contraction. A muscle is typically modeled as a simple second order
dynamic system. A static hand and arm position corresponds to an equilibrium point in both neural
and muscular activity. During the course of a movement the CNS specifies a virtual trajectory [30].
A point along the virtual trajectory corresponds to what the limb position would be, givea that
the current neural activity specifies an equilibrium point. The virtual and true trajectories are
related through the inherent inertial and viscoelastic properties of the limb and muscles. (In other
words, the virtual trajectory is the control input to a dynamic system, the output of which is the
actual trajectory.) The underlying principle which dictates the necessary virtual trajectory control
is believed to be a simple smoothness constraint on the limb trajectory [30].

It is thus clear what the neural network must accomplish. The network is provided with a
set of neural recordings (the feature extracted signals) which contain information about the virtual
trajectory, and the corresponding desired true trajectory (taken from data glove measurements). In
order to control the robotic hand, the neural network must be capable of extracting and internally
learning the original hand dynamics. In addition, it must be capable of compensating for the fixed
dynamics of the robotic hand as it learns the proper control of the prosthesis. With the above in
mind, we now propose two methods of implementing the neural control system.

6.1 Neural Control System

The first system shown in Figure 9 is attractive in its simplicity. A single feedforward layered
neural network is used to both interpret the feature extracted signals and drive the robotic hand
(RIIi). The output of the neural network corresponds to input levels for the various actuators
which directly control torques or tensions in the mechanical hand. Training can be accomplished
using a variation of the backpropagation through time algorithm [31]. This is a noum-lincar control

II - 15



Robotic Hand

Random Error
inputs

Ne al• Network
mulator

Figure 10: Block diagram of a neural network as configured for non-linear system identification to form
an emulator for the rcbotic hand.

problem similar to the Truck-Backer-Upper problem 8 with some important differences. First of
all, the inputs to the system arc not simple command step functions, but complicated neural inputs
which contain virtual traiectoiy information. IL fact, it is somewhat misleading to think of the
neural network as a controller. The CNS is the actual controller. The neural network is more of
a dynamic precompensator to the mechanical system which insures the CNS control signals ýare
properly interpreted. Furthermore, during training a desired response is available throughout the
entire trajectory. This is in contrast to many control problems which only specify an end point.
Thus, to properly adapt the network, it is necessary to use both the instantaneous trajectory error
and prior gradients accumulated while brackpropagating through the system from previous time
steps.

This tcaining algorithm also requires a model of the robotic hand. This is necessary since the
known desired response occurs at the output of the mechanical hand and not ai tile output of
the neural network. In order to formulate the appropriate desired response for the output of the
network, one needs the Jacobian transformation which relates small changes in the neural network
output to small changes in the mechanical hand output.

In general, detailed modeling (e.g. coriolis, centrifugal, and mass matrix terms) for existing
robotic systems are not readily available. As an alternative, one can form a neural network emulator
of the RH. Using a neural network in a non-linear system identification mode is illustrated in
Figure 10. One can then use backpropagation through the emulator to form the necessary desired
response for the neural network.

6.2 Neural Interpreter System

As an alternative to the above approach, which requires the modeling of the RH, a second system is
proposed which involves decoupling of the interpretation of axon signals from the low level control
of the RIh (see Figure 11). This allows one design of the neural network interpreter virtually
independent of all robotic hand modeling considerations.

Existing robotic hands normally utilize low level control systems (LICS). The LLCS for the
Utah/MIT Hand [33] includes 16 variable-loop-gin position servos to operate the finger joints

'The Truck- Backer- Upprr problem is a non-lincar control problem in which a neural network is trained to back a
truck up to a loading dock [32].
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Figure 11: Block diagram of the multi-levei scheme for the neural network prosthesis controller.

and 32 variable-loop-gain tension servos. For example, as input to the LILCS one car specify
independently a specific joint angle. The LLCS is designed to insure that the desired angle is
achieved.

Achieving higher level control of the RH using a LLCS can be accomplished via teleoperation
(i.e. a human operator using a data glove). A simple linear transformation can be used to map
anthropomorphic joint angles from the data glove to robotic joint angles for input to the LLCS.
This transforxnation (referred to as the anthropomorphic/robotic or A/R transformation) is easily
found by performing a least-squares fit over a predefined set of anthropomorphic hand poses with
the desired robotic hand poses 9 [34].

Returning to the prosthetic system of Figure 11, it would now be necessary for the neural
network to act only as an interpretcr whose outputs correspond to the joint states of the anthro-
pomorphic hand. Since tha desired hand states that must be recorded for training the prosthesis
may be taken directly from a data glove, there is now a one-to-one correspondence between the
measurements taken and the desired output of the neural network. The neural network can then
be adapted using backpropagation without the need fur a model of the RI1 to be controlled. Note,
backpropagation through time is still required due to the state feedback from the output of the
veurai network. Once trained, the outpout of the neural network feeds into the A/R transformation
which produces inputs for the LLCS that ultimately drives the RH.

Thus it would be possible to initially train the prosthetic system without any need for an
actual robotic hand and/or model. It is important to note, however, that the neural network must
be trained on trajectory information so as to be able to extract the original hand dynamics. If
one merely trains static mappings from neural activity into desired joint angles then one is in
essence training the network to learn equilibrium points. In this case, during actual trajectory
formation, the network's output will correspond to the virtual trajectory rather than the actual
desired trajectory. This could, in fact, be desirable if the composite LLCS and R1H dynamic
system could be made to correspond to actual human hand dynamics. In this case the virtual
neural trajectory formed bythe CNS would be transformed into a virtual joint trajectory by the
neural network which would then be transformed into the actual trajectory by the LLCS and R.I.
Unfortunately, it would be incorrect to assume that the mechanical prosthesis could be designed
to match the dynamic properties of a human himb.

Initially, it is nmore reasonable to assume that the dynamics of the LLCS and lIt are fast enough
9 A transformation which includes both joint angle and joint stiffnkess will probably be desirable. This will require

further res-:irch in order to implement.
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to be ignored. In this case, without appreciable mechanical tim constants, the neural network
output must be made to correspond to the actual trajectory. This "suiting inability to adaptively
specify the overall dynamic characteristics, including robotic dynamics, is a minor drawback to this
scheme. The patient's own ability to compensate for a "mismatch" in dynamics will need to be
studied. However, it is evident that a person can easily compensate for fluctuations in dynamics in
the natural hand as demonstrated by the ease with which we can manipulate objects.

It may appear from Figure 11 that control of the prosthesis is essentially being performed in an
open loop fashion. Feedback does occur, however, both visually and through the afferent pathways.
Even in the natural hand no feedback occurs internal to the hand itself.

7 Afferent Neural Network Sensory Mapper
The mapping of signals from transducers in the prosthesis onto the afferent neural channels would
be controlled by a neural network based sensory mapper. The prosthesis could readily be equipped
with transducers for tactile sensation, force, joint angle, temperature, and other sensory modalities.
Utilizing such transducers would require the assignment of their output signals to neural pathways
of the appropriate sensory modalities and perceived locations on the prosthesis.

The input to the neural network corresponds to the transducer outputs whose characteristics
will be known. Forming the desired response for the network, however, will require the knowledge
of the sensory modality with which each afferent microelectrode site is associated. The process
of sorting out the various sensory modalities will likely prove to be a more difficult task than

the utilization of the efferent information. Fortunately, the biological organization of the PNS is
such that the fascicles are somewhat distinct in terms of dermatomes, muscles, tendons and joints
innervated. Utilizing fascicle function maps such as those of Sunderland [22, 23] and Jabaley, et al
[24], the fascicles could at least be tentatively identified and this information utilized to speed their
initial classifications (or to coordinate the global functions of simple prostheses) using techniques
described below. Thus the gross somatotopic location of each neural interface would likely be known
as the nerve and perhaps the fascicle into which each interface were implanted would be known at
the time of surgery. A proposed method for determining the modality and perceived location of
each afferent microelectrode site involves a process of systematic stimulation as outlined below.

InitiaJly the perceived locations of the entire group of afferent sites on each neural interface
would be verified by their stimulation en masse. The patient would report the location at which
the sensation appears. At this point, low-resolution areas of perceived sensation, or fascicular
dermatomes, would be known and may well prove adequate for initial prostheses. The subdivision
of each fascicular dermatome into higher-resolution regions and perhaps distinct sensory modalities
could subsequently be attempted.

Stimulation of small groups of microelectrode sites, in numbers chosen such that they are at
or slightly above the perceptual threshold, should allow the patient to indicate more precisely the
locations of the perceived stimuli. While it is presently unknown if distinct modalities could be
resolved in this fashion, future experimentation will undoubtedly yield a better understanding of
how this could be acconirplished. Currently one ca1n only speculate about what the patient would
actually perceive under stimulation. Tlie only reports of such work known at this time [35, 36],
indicate that only "tingling sensations" were described under gross stimulation of nerves.

Regardless of the ultiimate resolution at which stimuli could be de(lvered to the patient, at neural
network sensory mapper would be required to correctly (Iistribute sign~als from the tranusdlucers on
the prosthesis to the nournl ihterfaces. Tile ieurad network inputs would be the tratnsd Icur signals
anud the outputs would be nunnerical values represeni Ug the stimulus intensity required at each

ji croclectrode site. These miniumerical outputs would 1,,, trasminitt ed transcutaneorusly, a.s shown
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in Figure 6, and converted to pulse-frequency modulated streams of stimulus current pulses by
implanted circuitry.

In order to train the neural network sensory mapper, one could use the stimulation intensities
at each microelectrode site associated with perceived sensory locations and modalities (determined
as described above) for the training set of desired outputs. The corresponding inputs would be
derived from the known characteristics of the transducers used. Given this training set, the feed-
forward neural network could be trained to form an appropriate mapping from transducers to the
microelectrode sites. Initial training could be done off-line, with fine tuning carried out with the
interaction of the patient.

8 Additional Applications for Nevmal Network Interfaces
Additional uses for the neural interfaces and processing circuitry would be abundant. Once the
prosthesis interface is established, the processing circuitry could be trained for alternative devices
which could be connected to the patient. Thus the neural interface and associated circuits would
constitute an extremely versatile man/machihe interface.

Control of mechanical devices could be accomplished without the mechanical lag of the hand.
For example, the control surfaces of an aircraft could be directly mapped to hand motions. Sensory
ranges could be compressed or expanded to suit many applications. Microscopic manipulations,
such as those of microsurgery, could be mapped into perceived macroscopic motions. New sense
modalities could also be introduced. For example, radiation could be sensed using the appropriate
transducers and mapped into tempcrature sensations. It should be noted that since information is
bidirectionally transmitted into and out of the neural interfaces in a form suitable for telemetry,
remote operation would also be inherently possible in these and other applications.

In addition, these devices will allow for a great deal of basic science research which should
answer fundamental questions regarding the nature of neural information conveyed by the PNS.

9 Conclusion
This article has presented an overview of the neural interface technology under development by
this group. Also presented was the use of such interfaces in nerve repair as well as proposed
implementations for direct neural network interfaced hand prostheses. Naturally, other types of
limb prostheses could eventually be realized using similar approaches. In order to achieve the goal
of realistic and cost-effective devices, an active effort is being made to avoid the use of expensive
and esoteric materials and fabrication processes.

The effort to realize such a prosthesis is a long-term, multidisciplinary project. It is expected
that it will be on the order of a decade before clinically useful devices can be produced. In the
meantime, it is hoped that some of the technologies developed in the course of the overall project
will find uses in rehabilitation and basic science research.
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Special Lectures on
Self-Organizing Neural Architectures



Time-the Essential Dimension

Carver Mead

The architectures of animal nervous systems are shaped by evolution and carried in
the genetic code. The essential quality of such an architecture is that it must learn from
the environment in which the animal lives. The single common element of learning is the
time coincidence in the arrival of nerve impulses. The arrival of one impulse or burst
of impulses closely followed by another is taken by the nervous system as evidence for a
cause-and-effect relationship between the two. This paradigm has proven effective because
much of the animal's world experience consists of temporally coherent phenomenon. All
laws of physics can be phrased in terms of the expected evolution of objects in the world
through time. These physical laws are the source of coherence in sensory input, which
drives the fine-grained organization of the developing nervous system, Marr and others
have emphasized the constraints that the laws of physics exert on what sensory input is
possible. More recently it is becoming clear that these same laws of physics constrain
the possible architectures of the brain itself. Highly effective computing structures result
when the representation within the nervous system takes advantage of these physical laws
to mirror the behavior of the physical world.
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Self-Organizing Neural Architectures for Motion Perception,
Adaptive Sensory-Motor Control, and Associative Mapping

Stephen Grossberg
Center for Adaptive Systems, Boston University

111 Cummington Street, Boston, MA 02215

1. Introduction
This lecture will describe recent results that are based upon two lines of previous

research: the Grossberg and Rudd (1989) Motion OC Filter, which has been used to
explain and predict data concerning short-range and long-range apparent motion; and the
Bullock and Grossberg (1988a, 1988b) Vector-Integration-To Endpoint, or VITE, neural
command circ-'7.', which has been used to explain and predict data concerning arm and
speech articulator trajectories and self-organization of associative maps.

2. Experimental Evidence for a Motion OC Filter
Part I of the lecture will describe analyses by Grossberg and Rudd of additional prop-

erties of apparent motion that lend further support to the M-tion OC Filter. These
properties include a unified explanation of Korte's Laws (Korte, 1915), delta (or reverse)
motion (Kolers, 1972), visual inertia (Anstis and Ramachandran, 1987), and competitive
selection of motion pathways (Burt and Sperling, 1981).

3. CC Loon: Cooneration and Resonance During Fniervent Segmentation
Properties of coherent motion segmentation may be derived by attaching the Motion

OC Filter to a couperative-competitive feedback loop called the CC Loop. Grossberg
and Mingolla (1985a, 1985b) have suggested that the CC Loop plays a key role during
static form perception. Their predictions have recently received additional support from
neurophysiological experiments demonstrating cooperative sharpening of receptive fields by
cortical interactions (Peterhans and von der Heydt, 1989) and cortical resonance during
cooperative linking of oriented receptive fields (Eckhorn et at, 1988; Gray et at, 1989).
Here CC Loop circuits are suggested to also play a basic role in motion segmentation,
notably in motion capture by real and illusory boundaries of global surface properties
(Ramachandran, 1985, 1986).

Th' Motion OC Filter and CC Loop comprise a Motion Boundary Contour System
(BCS). This system generates motion segmentations that are insensitive to direction-of-
contrast but sensitive to direction-of-motion. The BCS for static form perception generates
segmentations that are insensitive to direction-of-contrast and insensitive to direction-of-
motion. Why are both systems needed? Why not just use a Motion BCS?

4.. The Synunetric Unfolding of Cortical Opponent Processes
A further analysis suggest why cortical systems for the analysis of both static form and

moving form exist (Grossberg, 1989). These parallel systems compute all possible ways
of symmetrically gating opponent pairs of sustained cells with transient cells to generate
output signalsE that are insensitive to direction-of-contrast. The result is a symmetric Four
Fold Way (I-igitre 1? that constrains the development of visual cortex. Opponent cell pairs
in the static OC filter define complex/orientation/on-cells and complex/orieiitation/off-
cells. Opponent cell pairs in the Motion OC Filter define complex/direction cells. Using
this scherme, opponent cell pairs in the static BCS define orientations that differ by 90' as
opposites, and in the motion BCS define directions that differ by 1800 as opposites. When
these opponent cell pairs are embedded into gated dipole opponent processes (Grossberg,
1.982, 1988), their antagonistic rebounds clarify data about negative afterimages of Moir6

This research was supported in part by the Air Force Office of Scientific Research (F49620-87-C-0018),
the Army Research Officc (DAAL-03-88-K-0088), and the National Science Foundation (IRI-57-16960).
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Figure 1. Four.fold symmetry of orientation cells and direction cells: Oriented sustained cells that are
sensitive to direction-of-contrast are gated by transient on-cells and off-cells before being combined into
opponent pairs of orientation cells and direction cells whose output signals are independent of direction-of-
contrast.

patterns (MacKay, 1957), the waterfall illusion (Sekuler, 1975), adaptation of the short-
range motion system (Anstis and Mather, 1985), and the existence of opponent direction
hypercolumns in MT (Albright, Desimone, and Gross, 1984).

5. Preattentive Resonance and Reset
Another consequence is rapid reset of resonating segmentations. The CC Loop is

capable of nonlinear resonance due to its positive feedback loops. Such resonant feedback
generates a sharp and stable segmentation of a scene. It could also cause a perseverative
neural trace that could prevent rapid adjustment to changing scenes. Opponent cell pairs
capable of antagonistic rebound in response to input offset can rapidly reset a resonating
segmentation and prepare it to form the next segmentation with minimal bias. Coexistence
of persistent resonance and rapid reset is hereby achieved using preattentive mechanisms,
rather than the attentive mechanisms of Adaptive Resonance Theory.

6. A Self-Organizing VITE Circuit
Part II of the lecture will derive architectures for self-organization of sensory-motor

coordination. The Bullock and Grossberg (1988a) VITE model generates synchronous,
variable-speed trajectories of a multi-jointed limb in response to a target position command
(TPC) and a GO signal, or a sequence thereof. Several components of this circuit are in
close accord with recent neurophysiological data: TPCs with parietal cortex (HyvErinen,
1982; Lynch, 1980), the GO signal with globus pallidus (Horak and Anderson, 198 4 a,
1984b), and the difference vector (DV) with motor cortex (Georgopoulos, Kettner, and
Schwartz, 1988; Georgopoulos, Schwartz, and Kettner, 1986). See Bullock and Grossberg
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F~igure 2. An AVITE circuit: The left column schematizes an endogenous generator of randomn training
vectors composed of gated dipoles. The On channels (+ superscript) generate random unbiased. training

vectors, while the Off channels (-) activate the pauser gate.The right column shows how the endogenous
generator influences VIrE learning. The endogenous generator inputs random vectors to the Present Position
Command (PPC), where they are integrated until the pauser gate is activated. Inputs to the On channels
of the generator then terminate, the Now Print (NP) channel is inhibited, and the PPC is copied into the
TPC. Then learning in the TPC--*DV pathway zeroes the DV and thereby adaptively calibrates TPC--*DV
signals to be computed in the same coordinates as PPC--DV signals. When the On channel transmitter
gates recover, the cycle begins again.

(1988a, 1988b, 1989) and Grossberg and Kuperstein (1989) for further discussion. Bullock
and Grossberg (1988b) have also outlined how the VITE circuit TPC may be activated
during eye-hand coordination via an intermodal associative map by TPCs of the eye-head
system. These results have recently been extended to show how VITE parameters are
adaptively self-calibrated and how intermodal associative maps are learned through a self-
organizing process.

7. The Role of Circular Reactions in Sensory-Motor Sen-urganzaLion

These analyses clarify how a child, or infant robot, can learn to reach for objects that
it sees. Piaget (1963) has provided basic insights with his concept of a circular reaction.
When an infant makes internally generated movements of his hand, the eyes automatically
follow this motion. As he fixates the hand at a variety of positions, a transformation is
learned between the eye-head system and the hand-arm system. As learning progresses,
the reverse transformation is also learned, eventually enabling the child to touch what
he sees. Thus the circular reaction is based upon endogenously generated actions whose
commands are correlated with sensory feedback by means of an associative transform.

Grossberg and Kuperstein (1986, 1989) showed how eye movements in response to
visual inputs could correct their parameters based upon visual error signals. Gaudiano
and Grossberg (1990a, 1990b) have shown how the arm movement system can, without
an external teacher, endogenously generate movements whose consequences are used to
adaptively self-tune internal parameters of the arm's VITE circuit and to generate the
data that are used to learn an intermodal associative transformation. Kuperstein (1988)
has also utilized circular reactions to learn an eye-hand transformation. His model also
builds upon Grossberg and Kuperstein (1986), but the circuits described herein differ from
his.

The adaptive VITE circuit, also called an AVITE circuit, is schematized in Figure
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2. It includes a self-regulating generator of random training vectors that can be used
to learn sensory-motor or motor-motor transformations during a circular reaction. The
generator is biphahic: The generation of each vector induces a complementary quiescent
phase during which learning occurs. Then a new vector is generated and the cycle repeats
itself. This biphasic behavior is controlled by a specialized gated dipole circuit (Figure 2).
The remainder of the AVITE circuit design shows how adaptive parameter learning and
random vector search can be combined into a fully self-organizing system. The result is
a specialized type of adaptive vector encoder (Grossberg, 1988) whereby an autonomous
agent may relearn its operating parameters while in the field. How intermodal associative
maps self-organize between AVITE TPCs and other internal representations will also be
discussed.
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ART 3 HIERARCHICAL SEARCH: CHEMICAL TRANSMITTERS IN
SELF-ORGANIZING PATTERN RECOGNITION ARCHITECTURES

Gall A. Carpenter and Stephen Grossberg
Center for Adaptive Systems, Boston University

111 Cummington Street. Boston, .MA 02215

1. Introduction
A model to implement parallel search of compressed or distributed pattern recognition

codes in a neural network hierarchy is described. The search process functions well with
either fast learning or slow learning, and can robustly cope with sequences of asynchronous
input patterns in real-time. The search process emerges when computational properties
of the chemical synapse, such as transmitter accumulation, release, inactivation, and mod-
ulation, are embedded within an Adaptive Resonance Theory architecture called ART 3.
Formal analogs of ions such as Na+ and Ca 2+ control nonlinear feedback interactions that
enable presynaptic transmitter dynamics to model the postsynaptic short term memory rep-
resentation of a pattern recognition code. Reinforcement feedback cap. modulate the search
process by altering the ART 3 vigilance parameter or directly engaging the search mecha-
nism. The search process is a form of hypothesis testing capable of discovering appropriate
representations of a nonstationary input environment.

2. Equations for Transmitter Production, Release, and Inactivation
The search mechanism works well if it possesses a few basic properties. These properties

can be realized using one of several closely rclated sets of equations, with corresponding
differences in biophysical interpretation. An illustrative system of simplified equations is
described below. Equations (1)-(3) govern the dynamics of the variables zij ui, 'i, and xj
at the ;jIh pathway and j1h node of an ART 3 system.

Presynaptic Transmitter

dt (zij - i) - iji[release rate] (1)

Bound Transmitter

d_ - t 1 ± + [release rate] if reset 0j t (2)ij- ti

rij,.,(t) = 0 if reset >> 1

Postsynaptic Activation

Ji Z i + [intrafield feedback] if reset = 0x3 (t) = (3)

0 if reset >> 1.

This research was supported in part Lv the :\il Force Office of Scierlitfic Research
(AFOSR F49620-86-C-003-1 and AFOSIt "4-9620-87-(.'-001S). the .rm , y lcscaich Office (APO
DAAL03-SS-LK-008S). and ilhe National Science Fotilldat ioll (NSF , 1)IS-8(-111959 and I11-
87-16960).
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3. Transmitter Release Rate
ART Search Hypothesis 1:

Presynaptic transmitter u0 is released at a rate jointly proportional to the presyniaptic signal
Si and a function f(xj) of the postsynaptic activity. That is, in equations (1) and (2),

release rate = Sif(xj). (4)

In the simulations, f(xj) is linear above a small negative threshold.
The form factor Sif(xj) may be compared to interactions between voltages and ions,

where Si depends upon Na+: f(xj) on Ca 2+; and transmitter release on their joint fluxes.
4. System Dynamics at Input Onset: An Approximately Linear Filter

Assume that ui,(O) = :-;j and .ri(0) = vij(O) = 0. During a time interval t = 0+
immediately after a signal Si arrives at the synapse, the ART equations approximate a
linear filter:

d~ i ;: :ij S if (0) (5)
dt

and so
Vr(t) ;z K(f)Szjii for times t = 0+. (6)

By (3) and (6),

Xj(t) z: •K(t)Sizij = '(t)S .zj for times t -= 0+. (i)

5. System Dynamics After Intrafield Feedback: Amplification
of Transmitter Release by Postsynaptic Potential

In the next time interval, the intrafield feedback signal contrast-enhances the initial signal
pattern (7) via equation (3) and amplifies the total activity. These intrafield nonlinearities,
coupled with the nonlinear transmitter dynamics described below, correct coding errors by
triggering a parallel search. allow the system to respond adaptively to reinforcement, and
rapidly reset to changing input patterns. Term uiji.fi(x.) for the amount of transmitter
relcased per unit ti•me implies that the original incoming weighted signal zij Si is distorted
both by d,-r-etion of presvnaptic transmitter uii and by the activity rj of the postsvnaptic
cell. In particular, once activity in a postsynaptic cell becomes large, this activity dominates
the transmitter release rate, via the term f(X.). 1hus. although linear filtering properties
initially determine the small-amplitude activity pattern of the target field, once intrafield
feedback amplifies and contrast-enhances the postsynaptic activity xj, it plays a major role
in determining the amount of releas.:c transmitter vi',. The postsynaptic activity pattern
across the field that represents the recognition code is imparted to the pattern of released
transmitter, which then also represents the recognition code. rather than the initial filtered
pattern S • z,.

6. System Dynamics During Reset: Inactivation of
Bound Transmitter Channels

The dynamics of transmitter release implied by the ART Search tlypothesis 1 can be
used to implement the reset process, by postulating the

ART Search Hypothesis 2:
The nonspecific reset signal quickly inactivates postsynaptic membrane channels at which
transmitter is bound.

The reset signal in equations (2) and (3) may be interpreted as assignment of a large
value to the inactivation rate of bound transmitter in a imalilner analogous to tihe action of
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a neuromo Iulator. Inactivation breaks the strong intrafield feedback loops that implement
ART 3 matching and contrast-enhancement.

Following inactivation, the pattern of released transmitter forms a representation of the
postsynaptic recognition code. The reset, signal implies that the system has judged this
code to be erroneous, according to some criterion. The ART Search Hypothesis 1 implies
that the largest concentrations of bound extracellular transmitter are adjacent to the nodes
which most actively represent this erroneous code. The ART Search Hypothesis 2 therefore
implies that the reset process selectively removes transmitter from pathways leading to the
erroneous representation.

After the reset wave has acted, the system is biased against activation of the same
nodes, or features, in the next time interval: Whereas the transmitter signal pattern S uji
originally sent to target nodes at times t - 0+ was proportional to S • zj, as in equation (6),
the transmitter signal patterr S • uj after the reset event is no longer proportional to S -zJ.
Instead, it is selectively biased against those features that were previously active. The new
signal pattern S'u . will lead to selection of another contrast-enhanced representation, which
may or may not then be reset. This search process continues until an acceptable match is
found, possibly through the selection of a previously inactive representation. This search
process is relatively easy to implement, requiring no new nodes or pathways beyond those
already present in ART 2 modules. It is also robust, since it does not require tricky timing
or calibration.

7ý ART 3 Simulations: Mismatch Reset and input Reset of STM Choicez,
The computer simulation summarized in Figure 1 illustrates three ART 3 system vari-

ables as they evolve through time. The time axis (t) runs from the top to the bottom of
the square. A vector pattern, indcxed by i or J, is plotted horizontally at each fixed time.
Within each square. the value of a variable at each time is represented by the length of a
side of a square centered at that point. In each figure, part (a) plots Yq'. the normalized

STM variables at layer 1 of a field F,. Part (b) plots F" vq, the total amount of transmitter
released, bottom-up, in paths from all Fb nodes to the jth F, node. Part (c) plots Fj Vb

the total amournt of transmitter released, top-down. in paths from all F. nodes to the ith IK'
node. The ART Search Hypothesis 1 implies that the net botuiom-up transmitter pattern in
part (b) reflects the STM pattern of F, in part (a); and that the net top-down transmitter
pattern in part (c) reflects the STM pattern of Fb.

In Figure 1, the vigilance parameter is high and fixed at the value p _ .98. Fo- 0 < t <
.8, the input is constant. The high vigilance level induces a sequence of mismatch resets,
alternating among the category nodes j 1.2, and 4 (Figure la), each of which receives an
initial input :arger than the input to node j 5. At t = .215, the F, node j 5 is selected
by the search process (Figure Ia). It remains active until t = .8. Then, the input from F,
is changed to a new pattern. The mismatch between the new STM pattern at F(, and the
old reverberating STM pattern at Fb leads to an input reset. The ART Search Hypothesis
2 implies that bound transmitter is inactivated and the STM feedback loops in Fb and F,
are inhibited. The new input pattern immediately activates its category node j = 1, despite
some previous depletion at that node (Figure la).

Large quavtitics of transmitter are released and bound only after STM resonance is
established. In Figure 1b, large quantities of bottom-up transmitter are released at the -c
node j = 5 when .215 < t < .8, and at. node j = 1 when .8 < t < 1. in Figure lc. the
pattern of top-dowi! bound transmitter reflects the resonating matched STM pattern at F6
due to Input 1 at timiies .21.5 < t < .8 and due to Inptit 2 at times .8 < t < 1.
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Figure 1. ART 3 simulation with p .98. A series of 9 mismatch resets lead to activation
of the matched category (j = 5) at t = .21.5. Input 1 switches to Input 2 at t = .8 causing
an input reset and activation of a new category representation (j 1).
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SELF-ORGANIZING ANALOG FIELDS (SOAF)

by Fred S. Weingard, Booz.Allen & Hamilton, Inc.
Crystal Square 2, Suite 1100, 1725 Jefferson Davis Hwy.

Arlington VA. 22202-4158

ABSTRACT

In this paper we describe a fundamentally new neural network paradigm called Self-
Organizing Analog Fields (SOAF) capable of self-organizing analog-to-analog mappings. Analog-
to-analog mappings, in contrast to winner-take-all (WTA) mappings, are essential for developing
hierarchical systems capable of extraction and abstraction of spatiotemporal features. SOAF's
functionality can be likened to that of an unsupervised backpropagation network (with entirely
different system dynamics). We have found that "meaningful" unsupervised analog-to-analog
mapping requires the use of modulating (MOD) system dynamics, as well as long-term memory
(LTM) and short-term memory (STM) system dynamics. The MOD dynamics are used to drive the
system to homeostasis where analog activations (STM dynamics) and learning (LTM dynamics)
become "meaningful." Because we have found that unsupervised analog-to-analog mapping
requires topological learning, as well as feature-space learning, the synapses in this paradigm
contain two LTMs. One LTM regulates topology (e.g., cross-sectional area) and the other, feature-
space (e.g., efficacy per cross-sectionai area). The criteria for homeostasis allows one to solve,
mathematically, the credit assignment problem between self-organizing topology and unsupervised
learning of spatiotemporal features. SOAF design is entircly modular and readily accommodates
hierarchical organization of SOAFs to build powerful neural network-based subsystems.
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Characteristics of Neural Population Codes in
Hierarchical, Self-Organizing Vision Machines

Kenneth Johnson
Hughes Aircraft Company, Missile Systems Group

8433 Fallbrook Avenue 262/C64
Canoga Park, CA 91304

This work seeks to understand how the characteristics of the distributed population
codes at different levels in the Neocognitron affect the recognition performance of the model.
The population codes have characteristics that are controlled by the parameters used to set
weight masks at each level. In this paper we analyze these codes and provide interpretations that
indicate what constitutes a good population code, and how the codes are related to the features
in the input pattem. Analysis of the neural codes is carried out using standard pattern recognition
techniques. Results from the studies point to several general principles which are characteristic of
hierarchical population coding vision systems.

Measurement of Distributed Population Code Characteristics

The Neocognitron architecture is illustrated in Figure 1. Each layer is comprised of planes
of neurons that perform computations using the data on the previous layers as input. The
neurons form a massive distributed code that represents characteristics of the input pattern.
Associated with each layer are a number of parameters that control the shape and magnitude of
convolution weight masks that define the computation. The masks of primary interest are called
the carid d masks. Tu locajion of eaoh o s m.. ks in th .e.ha sh

Figure 1. Details of the computations can be found in the original Neocognitron papers
[Fukushima, 1982].

US13 UC1

Input Output
Pattern Vectors

C0 d1 c1 d2 c 2  d 3

Masks

Figure 1: The Neocognitron architecture is hierarchical and
massively parallel. Between each level (or representation) is a set
of masks that defines the transformation. The location of these
masks within the architecture are shown on the bottom.

Figure 2 shows that when the planes on any given layer are stacked on top of each other
the neurons at position (x,y) form a code vector representing the input pattern in the neurons'
receptive field. When viewing tlhe large population of neurons as sets of code vectors that
represent the pattern contained in the input receptive field, one can measure the code vectors'
length, orientation in vector space, relI.ionship to other code vectors, and a host of other
characteristics using standard pattern recognition concepts. Knowledge of the code
characteristics can then be related to the parameters used during the self-organizing process and
to the system's classification performance.
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Figure 2: The planes of the Neocognitron can be viewed as sets
of code vectors representing the 2D pattern contained in a small
receptive field at each (x,y) position in the input.

The Neocognitron simulation used to generate the distributed representations in this
paper was written in FORTRAN and run on an Alliant FX4. The input pattern consisted of 99
segmented IR airfield images. The original images were 512x512, the output of the segmentor
was 50x50. The simulation was trained using a selected subset of the 99 images and various
width masks. Th. masks. were 7x7 pixel, normalized 2D Gaussians with the width specified as the
variance of the Gaussian in pixels. The model had 3 sets of US and UC layers. There were 12
planes in layer 1, 24 in layer 2, and 12 in layer 3. The UC3 output planes were 3x3 pixels. The
output of the Neocognitron was classified using a backpropagation network. Ten classes were
defined according to range from target.

Work presented in previous papers [Johnson et. al., 1988a, 1988b, 1988c] defined
optimal mask widths and parameter settings. Using these parameters we achieved 93%
classification on the test set. The internal data from each of the US1, UCI, US2, and UC2 planes
were stored for each image in the test set. Each image had approximately 120,000 neurons in the
population codes of the first 2 layers.

Neural code vectors were analyzed in the following manner. The 7x7 pixel features in the
99 images were sorted and counted. This resulted in 13,219 different features. There were 27"18
features that occurred more than 10 times. The (x,y) position of each of the 2718 features was
noted in each of the stored population codes. The length and variance of the neural code vectors
was computed for each feature type across the samples. Thus, if there were 45 occurrences of a
feature in 13 different input patterns, the average length of the code vectors as well as the
spherical variance of the code vector cluster in hyperspace was computed. The length and
variance were averaged across all codes to generate an average length and variance measure for
the entire population code. This experment was carried out for all combinations of cO, dl, cl, and
d2. The data generated for each experiment were compiled into a tree structure shown in Figure
3. Codes at each layer are levels in the tree and each node represents a specific parameter
setting.

Code Characteristics

The data contained in the tree has embedded in it many important results which, when
analyzed in terms of the models' functional operation and architecture, produce greater insight
into the limitations of hierarchical population codes and into the nature of machine perception and
recognition.

Of primary interest are the nodes of the tree that are circled. These nodes correspond to
what we know to be optimal parameter settings. At these nodes the average code vector lengths
are generally larger than any other node at the same level. This larger code length increases the
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Figure 3: The data in this tree represents the code characteristics
for 190,000,000 neurons involved in the coding of 99 airfields.
The average code length and variance are specified for each
parameter setting at each level. The circles indicate those
parameter settings which we know provide the best
performance.

volume within which codes can form and therefore increases the number of codes that can be
unambiguously defined in the volume. Another observation is that trends in code lengths and
variances are related to choices of mask width. For example, the US representation at level 2 has
sigrificantly shorter codes with reduced variance if the c mask is smaller. This is different from UC
representations which have shorter codes with reduced variance if the d masks are larger.
Another important point is that when progressing from a US representation to a UC representationthe code vect-rare genera~lly coMreed in length and v,,rianc.. This -- particu•arly true if the - I
mask in the preceeding layer was large. We have correlated performance measures against code
lengths and found that those parameter settings that result in shorter code lengths generally
result in poor performance.

Principles of Hierarchical Population Coding Machines

One of the purposes of the hierarchical structure of the Neocognitron is to allow the
higher levels of the system to have larger receptive fields in the input pattern layer. The larger
receptive fields of the higher layers enable the population codes in these higher layers to
represent more global characteristics of the input pattern. This is contrasted with the lowgr level
receptive fields which have only narrow views of the world and can therefore represent smaller
localized features of the input pattern. Clearly then, if a mask at a higher layer is smaller, the mask
is restricting the receptive fields' width. This results in incomplete and ambiguous codes at the
higher levels.

A further complication with hierarchical population codes is associated with the
dimensionality of the code. As data progresses to the higher layers, the system attempts to
squeeze information from thousands of neurons into smaller and smaller populations of neurons.
Given that recognition codes are only useful if they can be discriminated, this introduces an
incomplete coverage of the code space or large ambiguities between codes. How does one
trade code discrimination capability against the desire to squeeze many codes into a given code
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volume? Our experience with this issue indicates that this type of architecture functions very well
in limited problem domains. However, as pattern complexity and the number of classes increases
the codes at the higher levels become very ambiguous. This inability to distinguish between small
differences in the codes results in poor recognition performance. From a statistical point of view,
this makes sense because leedforward hierarchical systems are essentially projection machines
that are limited by the projection capacity of the weights in the system. These observations tend
to indicate that a truly versatile vision system may have a different architecture that is free from the
capacity limitations imposed by population codes.

Characteristics of a Generic Vision Architecture

The coding limitations imposed by compressive population coding hierarchical
architectures can be overcome in several ways. If one assumes that generic object recognition
codes are contained at the higher levels, code capacity could be increased by increasing the
dimensionality of the codes. However, given the unlimited number of visual patterns in the world,
there would never be enough code capacity to unambiguously represent the entire world. A
second option would be to use the entire population of neurons at all levels to represent
recognition codes for objects in the world. This would allow large scale structural codes to be
represented at the higher levels and small scale details to be represented at the lower levels.
However, the problem of integrating the multilevel codes into another memory structure that
would allow objects to be tagged with the concept of small objects 'contained-within' large objects
arises in this scheme. Furthermore, there would still be a finite representation capability due to
the fact that neural activity can only represent what the receptive field weights allow them to. This
limitation results in a monomodal projection of patterns onto weights. A third option would be to
use feedback to adjust the population codes and thereby remove ronor-wodal projection
constraints. This option could be implemented in one of two ways. First, recognition codes could
be the state of the neural population after feedback had equilibrated. However, the system would
still have a limited discrimination and representation capability due to code capacity. A more
plausible second alternative would be to use the ýrajectory of temporal feedback distributed
across the entire population of neilrons as the recognition code. That is, the object codes are the
state transitions of the entire system, not the equilibrium state of the neural population.

The concept of temporal neural codes is not new [Optican and Richmond, 1987;
Richmond and Optican, 1987]. From a pattern processing and recognition view a temporal
recognition code would have a significantly greater representation bandwidth in the same neural
population volume. The representation would not be limited to monomodal projections of input
patterns onto the specified population weight spaces of individual receptive fields. Instead,
recognition codes and neural processing would be populations of temporal messages which
represent the input data and how it was being processed by the system. This is very different
from equilibrium population codes which attempt to represent the input data by projecting it onto
the weight spaces. This concept indicates that one cannot look at a neural signal and assume that
because the neuron is active a specific pattern is contained in the input. Instead, the temporal
codes must be viewed as longer messages which are being generated by the system's response
to the input patterns. A further characteristic of this type of coding is that the neural codes are not
only coding local features present in their receptive fields, but they are coding those features in
terms of more global codes being fed back from the higher levels. Therefore, the system is
simultaneously segmenting and representing input patterns as the temporal messages evolve in
time.

Conclusions

In this paper we present numerical results that quantify the characteristics of neural
population codes in the Neocognitron model. We have shown that neural code characteristics are
directly related to recognition performance. Furthermore, model performance is directly related to
the ability to unambiguously define recognition and representations codes in limited code
volumes. Finally, we hypothesize that construction of more powerful vision architectures will
require using the temporal aspects of neural responses to increase processing and
representation bandwidths.
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Abstract

The basic mechanism of spatial pattern segmentation for patterns such as images is an operation
analogous to cutting out an object of interest in a photograph from its surround with scissors
(finding the correct part of the image to cut out is the difcult part). A corereonding basic mech-

anism for segmenting spatiotemporal patterns (such as the time-varying power spectrum of a sound
stream containing multiple overlapping sounds of interest) is not so obvious. This talk discusses a
spatiotemporal pattern segmentation mechanism based upon a combination of the expectation feed-
back model of Grossberg and his colleagues [3,1,4,5] and the activation source backtracking spatial
pattern attention mechanism of Fukushima [2]. The talk introduces a neural network architecture
for implementing this spatiotemporal segmentation mechanism.
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ABSTRACT

In a previous paper [1], we proposed a parallel Toroidal Lattice Architecture
(TLA) neurocomputer to simulate large scale neural networks. In this paper, we
describe implementation of the TLA with Transputers including a parallel processor
configuration, load balance algorithm and evaluation of its performance. This TLA
neurocomputer has achieved 2 MCPS in a feedforward network using 16 Transputers.
Actual proof is given that its performance increases in proportion to the number of
parallel processors. We have implemented the Hopfield neural network and applied it
to the traveling salesman problem (TSP).

1 Introduction

Neurocomputer applications to speech recognition, image processing, natural
language processing, etc. need considerable computing power. Therefore, a parallel
neurocomputer which simulates a large scale network is being studied. Virtual
implemented neurocomputers. in which a large number of artificial neurons are manned
onto an actual number of physical processors, have been developed. Electrical Virtual
Neurocomputers using a parallel architecture such as CM [2], Warp [3], AAP-2 [4] or
neuro-turbo [5], etc. are reported. However, these neurocomputers have not
effectively solved the connectivity problem for simulation of large scale neural
networks thus preventing their expandability. In the previous paper, TLA provided a
solution to the connectivity problem between parallel processors.

In this paper, the TLA algorithm is first introduced briefly. Next, the load
balancing algorithm crucial for effective parallel processing is indicated. Finally,
implementation of a TLA neurocomputer using Transputers T800-20 and evaluation of the
performance of the TLA neurocomputer are discussed.

2 Toroidal Lattice Architecture

The TLA virtual processor network as shown in Figure 1 has been derived from a
general artificial neuron model. Feedforward processing along the rows and back-
propagation learning processing along the columns of a multi layer perceptron are
executed efficiently on the TLA processors. A 1-- e number of virtual processors
(VP) are mapped onto an actual number of physical noae processors (NP) by horizontal
and vertical partitions. Consequently, the NPs also have a TLA structure. Commu-
nication processes between node processors and calculation processes are executed
simultaneously, so that the overhead time for communication can be neglected.

The next important matter in efficient parallel processing is load balancing
between NPs which is also important for TLA. We solved this problem by permutation
of the VP matrix.

3 Load Balaicing Algorithm

As shown in Figure 2, when the TLA neurocomputer assigns the VP networks for two
neural network models such as the Hopfield network and the multi layer Perceptron,
the load of each kind of VP is different. For example, the CP load is about ten
times that of the SP with connection. Therefore, if the VP matrix is partitioned
simply, load balance would be in adequate. To partition the VP matrix equally,
permutations should be done before partitioning. The ba ic idea of row and column
permutation is to distribute to the NPs the rectangular subregions obtained by
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dividing a homogeneous or methodically arranged rectangular region. Using this
method, each processor has almost the same number of SPs and CPs, that is, the load
of each NP is nearly equal. A typical matrix which was partitioned almost uniformly
into submatrices is shown in Figure 3.

As shown in Figure 4, the load balance algorithm is given as row and column
mapping by permutations and partitions. Even though this algorithm is based on the
existence of a homogeneous or methodically arranged subregion in a given matrix, it
is applicable to nearly all neural network models.

4 Implementation

The TLA neurocomputer system is implemented by 16 INMOS T800 processors in a 4x4
NP configuration with TLA, a root Transputer, and an IBM-PC host. The 17 processors
are assigned as one root processor (RP) and 4 trunk processors (TP), the NPs on the
top row, and the 12 other NPs shown in Figure 5. The host computer executes the load
balancing algorithm and communicates the network architecture, initial weight matrix,
and network active potentials with the RP. It also distributes the submatrices to the
NPs via the RP and TPs. The RP is used mainly for communication. The TP has three
tasks: computing the weighted accumulation of an active potential and an error,
communicating the division of virtual submatrix, partial active potentials and
partial errors with neighboring NPs, and up-loading the status of the NPs. Except for
up-loading the status of the NPs, the NP plays the same role as a TP.

First, the host computer partitions the VP matrix equally and sends the VP sub-
matrices map to the NPs via the RP. Next, the RP delivers the assigned VP submatrices
to each NP via the TPs. Then, each NP starts neurocomputing on its assigned VP
submatrix and communicates an active potential with its neighboring NPs. Finally,
the computing result is collected and sent to the host computer via the RP and TPs.

We have implemented the TSP with the Hopfield network on the TLA neurocomputer.
The network was able to solve for 20 cities. It is important to note that the
potential number of simulated artificial neurons and connections are not limited by
the number of NPs but only by the total memory capacity. In the current
implementation, the simulation rate is approximately 2 million connections per second
(MCPS) for the feedforward propagation. Table 1 shows comparative feedforward
propagation processing times for several NP configurations. The performance is
approximately proportional to the number of NPs. This indicates the TLA architecture
can be expanded for large scale neural networks.

The practical implementation of a neurocomputer using Toroidal Lattice
Architecture has been discussed. The generalized load balance algorithm for TLA is
presented. The simulation results showed that the speed is approximately accelerated
in proportion to the number of processors.

We are now simulating other neural network models on a TLA neurocomputer and
planning a more powerful neurocomputer using DSP chips.
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v. sup=O; 1. sup=O (I)Row mapping by permutation and partition
for( h=O; h<b; h++ ) v[k,n] : the number of VPs in the n-th

v[O, h] =L/QOi subregion of the k-th layer.

for( h=b; h<Q; h++ ) vS[k,n], vE[k,n] : the start and end

v[O,h]=L./O address of the n-th subregion.

h. sup=h. sup+b I .-
vS[k,n]= I Li+ X v[k,j]for( k=l; k,;M: k++ ) ' i-0

b=mod(L4,P) vE[k, n] = vS [k, n] + v[k, n] - I
for( v=v.sup; v<v.sup+b; v'+ ) Assume that the y-th VP row is assigned

V[k,v]=L,/P+l to the y'-th VP row in the p-th NP row.
for( v=v.sup+b; v<v.supiP; v++ ) IF vS k,(p-D)QJ<y:vE[k, pQ-1], (k=l,2. .M)

V(k, v] =L/P k-- IP-I
v.sup=mod(v.sup+b, PI THEN y' =y-vS[k.(p-l)Q]+ 1- v•Q imj
for( u-O; u<P; uI ) (Il)Column mapping by permutation and partition

c=mod(V.[vIQ) Assume that the x-th VP column is assigned
for( h=h.sup; h<h.sup+b; h÷+ ) to the x'-th VP ci.;mn in the q-th NP column.

v[k,u*Q+mod(h,Q)]=Y k,u]/Q+l (a)IF vS[0, q] -:vE[O, q]
for( h=h.sup+b; h<h.sup+Q; h++ )

v[k,u*Q+mod(h,Q)]=V[k,u]/Q THEN x'=x-• v[O,m]
h.sup=mod(h.sup+c, Q) (b)IF vS[kq+jQ-lI-X;vE[k,q+jQ-1j,

(U is one of (OMI,..P-1), k=1,21 ... M)
THEN x'=x-vS[k.q+jQ-l]+v[O,q]-+

%-.I I.-I' 7- v[iq+mQ-l]+

vl! k, q+mQ-1]

Figure 4 : Load balance algorithm. Where VP network has M layers, LO units in the
input layer, and Lk units in the k-th layer. NP matrix has P rows and Q columns.

7T] TRUNK PROCESSOR

00 (TWO) (TU_) MO) (T Table 1 Performance in proportion tothe number of Transputers.

jR= O 80 Number of Number of Cities
Transputers kCPS/Performance ratio

D (coluanxrow) 1 0 1 6 2 0
P 124/0.2 114/0.2 115/0.2

4 (2x2) 505/1.0 522/1.0 522/1.0
8 (4x2) 950/1.9 1023/2.0 1037/2.0

16 (4x4) 1707/3.4 1997/3.3 2042/3.9

Figure 5 : TLA neurocomputer implementation using
17 Transputers.
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Abstract: 7, his paper describes a parallel neurocomputer architecture with an error back-propagation learning
algorithm. The prototype system consists of 256 digital signal processors a;d is estimated to run back-propagation,
at over 500 million connection updates per second. After describing the architecture and algorithm, some
improvements and research plans will be mentioned.

1. Intioduction
There have been developed and used many digital electronic neurocomputers or artificial neural network (ANN)
simulators including just software ones for general purpose processors or vector processors. These( simulators
silould be very important because they make it easier to use ANNs and help the exploration for the mechanism of
the nerve system where simulation is a v;rtually effective way to appioach because mathematical analysis of large
ANNs is very difficult due to their non-linearity. In addition, as research tools, they have certain advantages over
optical or analog neurocomputers. These adlvantages include flexibility and programmability of learning algorithms
as wel as network configurations, stability and repeatability among several simulations.

Several fast neurocomputers have been repcrted on with speeds of over a million connection updates per second
(MCUPS) such as ANZAplusl[], NeuroTurbolil, Delta[31, NeuMinlil, CM-![5l, Warplb] and SX-2171. Although the
fastest simulator, SX-2 NErtalk, runs at 72 MCUPS, even this is not fast enough for simulating large networks. We
have developed a new multiprocessor architecture for digital neurocomputers which is faster and have been
developing a 256 processing element (PE) prototype, SandT/8, as our research tool.

2. Basic Architecture
The architecture developed is shown in Figure 1 and consists of multiple , .. .
"trays" ant! PEs. Each tray functions as a container and a router tho-: is PE
connected to its two neighbors. A ring or one dimensional (I-D) torus
network is formed which functions as a cyclic shift register. Some -f the
trays have associated PEs. Each PE has a floating point multiplier, an ' "Imolementation
adder, and some local memory in which weight vectors and program code
arc stored. ( ( uua

The way to divide and assign tasks to PEs, or to map neurons or Output layer

synapses to PEs, is a problem commonly found in multiprocessors. SGveral xyi -
ideas have been considered on how to solve this for multiprocessor neuro- H(i layer
computersl4; 5: 61. The mapping developed is shown in Figure 1. There is a
three layer perfect connection ANN at the bottom and its implemen'ation is Input
at the top. The ANN has four neurons in the input layer, three in the h;dden layer
layer and two in the output layer. The implementation has four trays, three Three layer ANN
PEs, -uid no physical layer structure. The neurons at the same column in all
layers are mapped to the same tray and simulated successively by 6ie Figure 1. The Basic Architecture
associated PE (enclosed in dotted lines). It provides us the flexibility for
changing the number of layers simulated ,hat this rc:litecture has no physical layer structure. The layers arc iniple-
inented by software instead. The number of trays required is the maximumn1 number of neurons in all but the outl)ut
layer. Similarly, the number of PEs required is 1he CMaxinmuI numimhber of neurons in all but tie input layer.t Note
that it is not necessary to assign PEs to the neurons in die iryut layer.

This architecture can be explained by giving two examples. These are time-consuming opetations found in error
bi'ck-;.ropagation (1P) algorithinlsl. Figure 2 shows a time-chart computing Wx whcre IiW is a four by three matrix

1 Each 11F- can simulate any numbher of neurons by the code in rcal ini plc n i citat lions so that it is possible to
siinul'.e large ANNs that have more neurons in a layer than l'Es.
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that represents the weight vectors of three neurons in the hidden layer w14 w21 w32
and x is a four element vector that represents the outputs of the neurons w13 w24 w3l
in the input layer. Similarly, Figure 3 shows a time-chart of WTy, where w12 W23 w34
W is the same as above and y is a three element vector of generalized W1 1 w22 w33
errors, back-propagated from the output layer. The weight matrix W is

distributively stored in the local memories connected to the PEs, i.e., a wljxj Zw2jxj Ew3jxj

sub-vector of W, wi*, is stored in each local memory with skew as shown X1 x2 x3 x4
in the figure.

Each element of x is initially stored in a tray and circulated in the ring
during Wx computation. Each partial sum, Z wij xj, is stored in an w1 1 w22 w33
accumulator on a PE, whose value is initially set to zero as shown at the W

top of Figure 2. At the next time, Ti, PEi fetches and multiplies xi and Ti WlX1 W22x2w

wii and adds the product to acci. The ring is then rotated counter- x x3
clockwise one tray, which is done in the same machine cycle. At T2, PEi
fetches and multiplies xi+I and wii+! and adds the product to acci, and
so on. Finally, after T4, acci contains Zwij xj. This computation takes w14 w21 w32
only four machine cycles. T4 w1-x4 w 3

Computing Wry (see Figure 3) is similar except that the roles of trays
and accumulators are swapped. Each partial sum is circulated in the ring .X1. x2 X

and yi is held in PEi. The way in which the sub-vectors of W are stored
in the local memories is the same as for Wx so that their transfers across Figure 2. Time-chart computing Wx
PEs are not necessary. This allows for fast successive computation of
Wx and WTy, which appears in BP.

There is a problem in applying this architecture. Assuming that the
simulator has 256 trays and PEs, it requires 256 machine cycles to rotate w14 w21 w32
the ring even if the ANN simulated has much fewer neurons. The time
required is independent of the number of active PEs or the number of
neurons in a layer simulated. Simulating multilayered ANNs that have
different numbers of neurons in different layers cause similar problems.
It is thus necessary to have some mechanisms changing the ring size
dynamically across layers. This also lets some PEs eventually idle. In dZwlyiJ wi2yiýwi3yiý i

other words, the fewer the number of neurons in the output layer the
worse the performance, even though the time elapsed does not increase. w11 w22 w33

This architecture might be seen as a kind of SIMD as each PE a W2 2w
cxccutcs thc samc instruction at a time. However, the data-flow for a Ti [yji 1 1 1W22 Y ,ý2
matrix-vector multiplication is similar to that of l-D systolic machinesl9l. 2 Ji-
S. Y. Kung at Princeton University independently developed a systolic e.
architecture for neurocomputers, "ring systolic[ io," which is similar tw
ours for single layer ANNs but different for multilayered ones because w12 w23 w34
the layer structure is physically implemented in his architecture. T2 w125'1w23y2 jw34y3j

3. Back-propagation algorithm M _ ej el
The all over time-space chart for the algorithm developed, shown in
Figure 4, for three layer ANNs BP learning, which can be extended for w14 w21 w32
almost any number of layers ANNs easily. The horizontal axis shows the a I

space, i.e., PEs used, and the vertical axis shows the estimated lime T4 wl4yl w21y2 w32y-3

consumied. I denotes the numrber of neurons in the input layer, H in the e
hidden layer, and 0 in the output layer. -t is the time required for a multi-

ply and add operation. The steps expressed at the right half are the oper- Ejeuro 3. Time-chart comptoing W'x
ations performed by a PE, PEk, which repeats these steps until some
convergence condition is satisfied.

The steps (2) and (3) are the combination of' Wx, described Jhove, and the calculation oh r;oini siginoid function
that can be done clement-wise. Steps (5) through (8) are similar to (2) and (3), and require WVx and element-wise
multiply-add-store operations in addition. The others are also clement-wise upcrations. All of the steps can thus be

11 - 48



implemei •ed efficiently on this architecture. -, I I_..

4. Extensions 4- (1) Set-up ik, the k-th

There are two extensions for this architecture- one is for clement of the input training

partially connected networks and the other is mainly for 2-D vector i

image processing. The basic architecture and algorithm -- (2) Forward propagation from input

described above are for completely connected ANNs. [ to hidden layer

Partial connections are also efficiently implemented on this -H - f(2 wkih) ij)
architecture. The index of an element of vector x is the 7
same as that of PE in initial state of Wx computation and moid (3) Forward propagation from
increases cyclically through the rotation for perfect connec- | hidden to output layer:
tion. This is similar to a turntable with some trays on it, HrT lo) ti)
such as those commonly found in Chinese restaurants. A ,-04 xk(o): f(X• WkJ xj)

shuttle movement instead of full rotation of the ring results - (4) Set-up ok, the k-th element of the

in partial connection. The index first increases by half output training vector t and compute
width then decreases by width, which takes one and a half generalized error:
width machine cycles. Note that this requires bidirectional 8k50) := f'(xk(°)) (xk(0) - t k)
connection. (5) Update weights in output layer:

The network topology is not necessarily one-dimensional 3Ht Awkj(o) :- aAw(o) + h7
but can be extended to an arbitrary number of dimensions. Xw( k(h)5j()

Two dimensional networks are useful for image processing wkiO) wktýo) + Awk O)
in which perfect connection is not realistic. A spiral move - (6) Backward error propagation from
ment can be used instead of a shuttle. The required time is output to hidden layer:
thus directly be proportional, rather than proportional to the opthi le
squaie, of th-e numnber of neurons simulated. -- •= f' (xk("•) 2 ; Wik°) 8k(o)

The total time required is roughly (4H+31),r plus twice
the time for sigmoid functions. - (7) Update weights in hidden layer:

5. Prototype system and performance 21t Awkjh) .AWkj(h) + J1xk(i)•J)i-

Sandy/8,t a 256 PE prototype system of this architecture, wkj(h) wk/h) + AWkih)
shown in Figure 5, is under development. A floating point
digital signal processor (DSP), TMS320C30, is used as the
PEs for Sandy/8.V Each DSP has 2K words internal RAM Figure 4. Time-space chart for three layer BP
and 32K words high speed static RAM external. The word
size is 32 bits. These areas can be used as both program and
data storage. The machine cycle of the DSP is 60 ns in A Ring network
which multiply and add operation of two 32-bit floating | m
point numbers can be done. The shift operation of the ringP Host common bus
can also be done within the cycle, immediately after DSP - =
operations. A custom gate-array of about 2,000 gates is - " -

used for the tray including some scratchpad registers. The Local memory
additions to the basic architecture described above are: (1) a P
variable size FIFO memory connected to a host machine,
Sun-3, (2) short bridges linking over the ring network; (1) u Sun-3
and (2) are the mechanisms for changing ring size, and (3) a Tra; P"E M ,

host common bus through which all of the external local AL. V
memories associated with the PEs can be accessed by the [FIFO Host interface Li 1
host. The width of dte ring network is 32 bits and its cycle I_ J--
is 60 ns. The band width is thus 67 Mli/s, which is much VME bus

faster than the VME bus connected to the host. The training iurc 95. Prototyp syten m
sample. vectors must thus be stored in the FIFO or local

t The number following slash indicates the number of P[-s included as in powers of two.

SThe reason DSPs are used instead of custom LSIs is to speed ill) development ot the prototype. The use of'
custom I .Sis could result in a mure compact and( faster machine.
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memories and used repeatedly in learning cycles to get the best pcrfor- Table 1. Performance of fast
mance. neurocomputers

Table I lists the estimated performance for both the 64 PE and 256 Machine NETtalk Max
PE Sandy and other reported neurocomputers of over one million CUPS.
NETtalkilll which is a famous ANN application widely used for ANZAplus - 1.5
measuring the performance of neurocomputers, was used in the bench- NeuroTurbo- 2
mark tes,. The network has 203 neurons in the input layer, 60 in the Delta -I 2.7
hidden layer, and 26 in the output layer. Up to 60 PEs can thus be used NeuMan- 8.5
in this architecture. This is the reason that the estimated performances of CM- 1 2.8 13
Sandy/6 and of Sandy/8 for NETtalk are the same. However, larger W"
ANNs including more than 256 neurons in a layer show better perfor- Warp 17 17
mance when Sandy/8 is used. Sandy/6 118 141

6. Future work SX-2 72 180
We have some research plans on this architecture. Sandy/8 567
"* Hardware: 2-D version of Sandy with custom VLSI PEs.
"* Software: Developmental environment including language and compilers for describing ANNs. and firm-

ware packages for several versions of the learning algorithm.
"* Applications: Other than neural ones, conventional image processing and vector processing because this

architecture is expected to be effective for these applications.

7. Conclusion
A new multiprocessor architecture for neural network simulators with an error back-propagation learning algorithm
has been described. The estimated performance of a 256 PE prototype system, under development, is also reported.
The esticnatiot indicatis that the piotutypu runs NETtalk at over 100 and laigci tasks at uvei 500 million connection
updates per second for BP learning. Some extensions including dynamic ring size change for flexibility, shuttle
movement for one-dimensional partially connected networks, and spiral movement for two-dimensional ones are
proposed. These may make it possible to run two-dimensional neural network learning in real time.
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1. Introduction

From the beginning, Artificial Neural Systems (ANS) have been associated with massively parallel
computation1. The fundamental element of all neural systems is the processing element which is replicated
thousands or millions of times and interconnected with other processing elements to form a concurrent
distributed processing network2 . In practice, the implementation of an ANS network in a multiprocessing
architecture involves more than the mapping of processing elements to processors and the interconnection
of processing elements. The load leveling of parallel computations, the minimizing of interprocessor
communications and the coordination of processor activations must also be considered. For example,
synchronous toroidal multiprocessor architectures have been used to implement the Backpropagation
Network paradigm with nearly linear increase in performance with number of processors 3 4. These
architectures achieve high performance by exploiting the synchronous nature of gradient decent learning but
do not directly map processing elements to processors. Recently Occam has been proposed as an alternative
development environment for distributing ANS networks over multiple physical processors such as
Transputers5. However, the application of communicating sequential processes6 (CSP) can limit the inherit
concurrency of the ANS network.

In this paper, we extend some of the conclusions and explore some of the implications of a concurrent
architecture for the implementation the Backpropagation Network proposed in an earlier paper7. There we
used an actor based language called ANSpec to specify a concurrent architecture based upon the principles of
communicating concurrent processes (CCP). ANSpec uses the actor model 8 developed by Hewitt 9 for the
s•ecification of ANS networks consisting of commnnicating concurrent processing elements called actors.
An actor can operate in parallel with other actors to achieve system wide objectives. To prevent the actors
or proessing elements from competing for processing resources and developing inconsistent views of the
system, they must communicate with each other within a distributed processing network10 . An attracti,
feature of the actor model is that concurrency is considered the norm and sequential processing a special case
such that it is possible to describe ultra-fine concurrent processing modelsI 1. The actor model also assumes
no specific interprocessing protocol other than guaranteed inai delivery. Guaranteed mail delivery ensures
that communications sent from one actor to another will be delivered but does not guarantee time or order
that the communications will be processed by the receiving actor. This condition is so general that the actor
model covers a wide range of physical processing architectures from loosely coupled asynchronous
distributed processing to tightly coupled synchronous pipeline processing architectures 12. Here we discuss
the differences between CSP and CCP and their implications in modeling ANS networks and implementing
them in multiprocessor VLSI architectures.

2. Backpropagation Network Paradigm

The Backpropagation Network 13 seems to violate the condition of local computation at thc processing
element during training. In the forward propagation direction, the recall activation function for a processing
element is:
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For the backward propagation direction during training, the error function is:

(tpj- opj) opj (1 - oPj) output layer

Opj(l - opj) 1:6 P ki hidden layer

k

To implement both the recall activation function and the error function within the local processing element
j, the processing element must have access to the connection weights for both the forward (wkj) and
backward (wij) prw.essing elements connected to it. This would imply that the weights are external and
shared among the processing elements so that the connection weights can be updated according to:

Awji(n + 1) = 11 (83pi ) oa Awjiln)

where 7 is the learn rate and a is the momentum. The localizing of computations to processing elements is
typically a property of ANS networks and a necessary property of concurrent processing networks. The laws
of concurrent processing state that there can not be shared access to data among concurrent processing
agents.

There is a further problem characteristic of back propagating or feed back networks of both forward and
backward propagating signals asynchronously arriving at a processing element. There is the very real
potential that an inconsistent implementation will occur if the two types of signals are not coordinated. The
processing element performing the error function must match the error (3pj) with the input activation (opi)
and output (Opj) generated in the earlier forward pass for the pattern p. If the processing element is
implemented using communicating sequential processes, the processing element holds these activations as
internal state parameters, and blocks any further forward signals until the backpropagated error signal
activates the processing element. Once the error and weight changes have been computed the processing
element can then change state again to receive the next input signal. This approach will essentially force the
network to pass training patterns through the network sequentially. Typically this is not a concern for
single processor architectures or tightly coupled synchronous architectures. It does restrict the usefulness of
the paradigm in multiprocessor concurrent architectures.

3. Concurrent Implementation of Backpropagation Networks

The concurrent implementation of the Backpropagation Network addresses the computational or algorithmic
aspects of the paradigm within a concurrent architecture using communicating concurrent processes. This
implementation directly addresses the synchronization problem in the BP network between forward and
backpropagating signals and the local computation of weight updates. In the CSP case, the process element
has a serialized behavior. That is to say, its state changes with each activation and the forward and backward
propagated errors must be synchronized for the processing of the network to be consistent. This is precisely
the situation one encounters when attempting to use sequential process techniques such as channels in
Occam to implement ANS networks.

The implementation for the concurrent version of the Backpropagation Network requires that the processing
elements be unscrialized throughout the processing of a set of training patterns. At the end of a training
cycle, the weights for each processing element are updated. Tle synchronizationi problem arises because the
processing elements are serialized during the forward propagation with its internal state defined by the input
and output activations. This situation can be removed if another actor is created to receive the back
propagated signal and has an initial state given by the input activation and output signal (figure 1). This
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Forward Activation Signal

hjth processing eltment in

Opi r (Iwijopi) - Opj

Implicit actors created for each
training pattern p to receive the
delta error generated by signal

Opi output Opj

Jth Layer inversion 1P th error processor for pth pattern

Backward Delta Error Signal

Figure I Use of implicit actors created during forward propagation to receive the delta
error during backpropagation to resolve forward and backward signal
propagation conflicts at the processing element. This will create an implicit
actor for each training pattern pair during training. The delta weights are
collected but not applied until the end of the training cycle.

uncouples the forward and backward propagation and allows both signals to propagate independently from
each other. This new actor handles the error processing for each fire activation and is the customer of the
error signal for the particular training pattern p. Meanwhile the original processing element is free to
process the next training pattern.

The creation of new actors during processing frequently occurs in actor models and is analogous to
spawning parallel processes. Often when implementing processes within a behavior, actors are created
implicitly tf provide the appropriate sequence of ac!ions, The impli it actor creamed here inherits the weights
and activations of the parent processing clement and receives the delta error replies from processes the parent
initiated. This eliminates the need for the processing element to save its forward activation state making
it an unserialized process capable of immediately processing the next input activation. The error process
actor will be the customer of the delta error signal from the forward layer. The error process actor is created
implicitly and disposed implicitly after complcting the error function process.

To localize the error function, the error process actoi pj computes a vector of delta errors (6pji) using the
weights local to the parent processing element (wji). The layer performs the inverSIon to compute the delta
error (6pi) to be distributed to the processing elements of the next backward layer. The layer is an
unserialized actor which essentially forwads or propagates signals among the processing elements. In the
actor model unscrialized forwarder actors become part of the guaranteed mail delivery system. The resulting
network with forwarder layer behaviors is isomorphic to the direct connection of the processing elements
themselves. For the computation of the weight changes, the order in which the weight changes are
accumulateI during a training cycle s not important and can be.. performed asynchronously with the input
processing. This means that the processing of input signals and the accumulation of weight changes at a
processing element can proceed concurrently.

In Kraft et. a16 this strategy is implemented in detail except that the new actor is created •t thew layer level.
An implicit layer actor is crcated each tinic the layer receives a forward activatiori, The implicit actor sends
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the appropriate activations along with the delta error to the process elements during error processing. To
ensure that the layer actor is always active, the layer behavior is unserialized. This allows for a potential
static implementation of the layer behavior while implicit actors are created dynamically as required.
Therefore, all intermediate error computations are managed by the processing elements to eliminate the need
to save these as part of the layer task processing. This division of labor among the layer, process elements,
and implicit actors will allow for a concurrent implementation of the network while at the same time allow
for a more efficient static implementation of the original architecture.

4. Implications of the Concurrent Architecture.

This architecture was derived from the direct application of communicating concurrent processing to the
computation of the Backpropagation paradigm. It attempts to maximize the concurrency of the given
paradigm by removing sequential processing requirements. In this case the forward and backward signal
propagation processes are uncoupled and can proceed concurrently over a training set to implement optimal
updating of the weights. This was accomplished because the Actor Model which implements CCP allows
for the spawning of parallel processes. The implication is that processors which would have remained idle
are free to perform computations increasing the overall throughput of the system. Further the architecture is
sufficiently general to support a number of implementation approaches from loosely coupled processing
networks to tightly coupled MIMD processors implemented in VLSI chips.

1J.L. McClelland, D.E. Rumelhart, and G.E. Hinton. "The Appeal of Parallel Distributed Processing",
Parallel Distributed Processing, Vol. 1, pp3-44, MIT Press 1986.
2 D.E. Rumelhart, G.E. Hinton, and J.L. McClelland. "A General Framework for Parallel Distributed
Processing", Parallel Distributed Processing, Vol. 1, pp45-76, MIT Press 1986.
3Fujimoto, Y. and Fukuda, N. An Enhanced Parallel Toroidal Lattice Architecture for Large Scale Neural
Networks, IJCNN 89, also Fukuda, N, Fujimoto, Y, and Akabane, T. A Tranputer Implementation of
Toroidal Lattice Architecture for Parallel Neurocomputing, UCNN 90.
4 Kato, H., Yoshizawa, H., Iciki, H. and Asakawa, K. A Parallel Neurocomputer Architecture towards
Billion Connection Updates per Second, IJCNN 90.
5 P. Koikkalain and E.Oja. "Specification and Implementation Environments for Neural Networks using
Communicating Sequential Processes", Proceedings of the 2nd International Conference on Neural
Networks, Vol. 1, pp533-540, 1988.
6 Hoare, C.A.R. C•uiiaiuriicatiig Sequential Pr"ocesses, Coirmiunications Of uthe A.CM L VOl 21 No. 8
(August 1978), pp. 666-677.
7 Kraft, T., Frostrom, S., MacRitchic, B., and Rogers, A. The Specification of a Concurrent
Backpropagation Network using Actors. NeuroNiemes 89.
8 G. Agha. Actors, A Mode[ of Concurrent Computation in Distributed Systems, The MIT Press 1986.

9 C. Hewitt, "Concurrency in Intelligent Systems", Al Expert, Premier 1986.

10 C. Hewitt, "Viewing Control Structures of Patterns of Passing Messages", Journal of Artificial
Intelligence, pp323-365, June 1977.
11G. Agha and C. Hewitt, Actors: A Conceptual Foundation for Concurrent Object-Oriented
Programming", Research Directions in Object-Oriented Programming, cd. Shiver and Wcgnei pp4 9 -74,
MIT Press 1988.

"" .... aft and S. Deiss, "ANSpec : A Specification Language for Massively Parallel Distributid Systems",
unpublished.
13 D.E. Rumelhart, G.E. Hinton. and R.J. Williams, "Learning Internal Representations by Error
Propagation", Parallel Distributed Processing, Vol. 1, pp318-364, MIT Press 1986.

II - 54



FUZZY KNOWLEDGE MODEL OF NEURAL NETWORK TYPE
-A model which can be refined by learning -

* * * **

Atsushi MORITA, Yoshihito IMAI, Akio NODA, and Morikazu TAKEGAKI
* Industrial Electronics & Systems Development Lab., Mitsubishi Electric Corp.
** Central Research Lab., Mitsubishi Electric Corp.

8-1-1 Tsukaguchi-honmachi, Amagasaki, Hyogo 661, Japan

1. INTRODUCTION
Inaccuracy in the knowledge model often degrades the performance of an expert

system, but it is not easy to extract accurate knowledge from a human operator. One of the
solutions is to refine a model by learning, and a few learning algorithms for a fuzzy model
have been proposed [1,2]. They change an original fuzzy model by shifting membership
functions, or by changing expression in THEN clauses so that the error included in the
model is decreased. But these methods do not cover the problem when IF clauses are not
properly described.

This paper proposes a fuzzy knowledge model, where each fuzzy rule has a weight
which changes the importance of the corresponding rule. In the learning process each
weight is changed to reduce the error included in the model. As a result those rules which
are not quite correct are excluded from the model. Since the proposed model is already
close to a skilled operator at the beginning, learning speed is faster than that by a neural
network, where it starts from almost nothing.

2. STRUCTURE OF THE PROPOSED FUZZY KNOWLEDGE MODEL
Figure 1 shows a block diagram of the proposed fuzzy knowledge model of a neural

network type. The model describes the knowledge of a skilled operator using fuzzy rules,
and infers an output value from input values. It is different from a conventional fuzzy
knowledge model in that the output of each fuzzy rule is multiplied by a weighting factor,
wi. By varying the weighting factors the input-output characteristics of the model is
changed. In the learning process the weighting factors are changed to decrease the error
included in the model.
Since the weights of weighting
the proposed model ialput factors Ouput
correspond to synaptic [----------------------- ------ ---- ------

weights of a neural Rule N is C

network, we call the x f|izsy /_y) defz•i ly

proposed model a -, .... .n
"fuzzy knowledge Rule n: IF x~j is A,, AND x,,2 i sition B"fuzzy kowledg ,[ THEN• y is c1,1j
model of a neural .. .N. . .is. . . . . .
network type".

Figure 1 Structure of the proposed fuzzy knowledge model

The output value of the model, y, is calculated in a similar manner as a
conventional fuzzy knowledge model using Equations (1) and (2).

)(y) = max [wi, *p(y) * mill {Ii(xLi), Bi(x2i)}I .".. (1)

,f"/-I(y)y dy

y A (y) dy 
(2)

where tAi(, ),B i (-) ard a ci(-) denote membership functions for fuzzy sets Ai, l3i, and Ci,
respectively.
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3. LEARNING PROCEDURE
In the first stage a knowledge base is created by describing skilled operator's know-

how in the form of fuzzy rules and membership functions. This procedure is the same as a
conventional one, which uses this knowledge base without modification. In the proposed
model the model is refined by modifying the weighting factors so that the difference
between the output value of a nominal model and that of the proposed model becomes
smaller than that in the previous iteration.

In the following three learning methods are shown, one of which models a skilled
operator directly, and the others make the proposed model approach an inverse model of a
plant.

3.1 The model of an operator
The first method uses a skilled operator as a nominal model in the learning

procedure. Figure 2 shows a block diagram of the system. With the proposed fuzzy model it
is refined by adjusting the weighting factors so that the difference between the output
value of the proposed model and that of a skilled operator is decreased.

Let J(k) be a performance index of an error in kth iteration as shown in Equation
(3). The weighting factors, wi(k), is modified in the next iteration so that the performance
index of an error in (k+±)th iteration, J(k+i), is
slightly less than J(k). Then the proposed model
is adjusted to approach the skilled operator as Fuzzy
the number of iterations increases. knowledge -1 x(k) rmodel y(k) •

J(k) = Ily(k) - yd(k)JJ2  ... (3) xnpu m olOutpy t

Awdi(k) - i 8 k = - y(k) k (4) variables variables

kW(k) Skilled
wi(k-I-1) = wi(k) + Awi(k) ... (5) operator yd(k)

where ei is a positive small number. Figure 2 The model of an operator

3.2 Inverse model of a plant
The goal of the previous method is to model operations done by a skilled operator,

who does not guarantee the best operation. A better method is to build an inverse model of
a plant. Figure 3 shows a configuration of this method, where the output of the plant is
compared with the
command. The weighting Ch/ wIt.L0 anipulated Controlled
factors in the fuzzy Commands variables variables
knowledge model are x(k) Fuzzy y(k, f(yk)

modified so that the knowledge Plant
difference between the model
output of the plant and the +
command is decreased.

1 igure 3 Inverse model of a plant

Let J(k) be a performance index of an error in kth iteration as shown in Equation
(6). The weighting factors, wi(k), are modified after each iteration as follows:

J(k) = I 11f(y,k) - x(k)1l2  ... (6)

Ai(k) = - Viwo(k) = - f(y,k) Of k) byýk) ... (7)

-(k Dw(k)

wji(k+l) wi(k) + Awdi(k) .'- (8)

Then the proposed model is modified to approach an inverse model of the plant as the
number of iterations increases.
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3.2 Another method to build an inverse model of a plant
To calculate Equation (7) partial derivative of f(y,k) with respect to y(k), (a sign of

it at least,) is required. But it is not always available, especially when the characteristics of
the plant is not monotonous. To overcome this problem learning steps are divided into a
coarse ahd fine steps which are used in CMAC [3]. In the coarse step the model is roughly
tuned in the configuration shown in Figure 3. Then the difference is compared not at the
output of the plant but at the output of the model in the fine learning step, which is
described by exchanging the
plant with the proposed Manipulated Manipulated
model as the one shown in variables Commands variables
Figure 4. The weighting yd(k) x(k) Fuzzy y(k)
factors, wi(k), are modified Plant knowledge
using Equations (3)-45), model
where partial derivative of+
f(y,k) with respect to y(k) is _-

not required.
Figure 4 Another method to build an inverse model of a plant

4. SIMULATION RESULTS Rule IF clau.e THEN clause
# Machining Elecrd S urface PulseTo verify the validity of the proposed ___,__ _e___o__e_.__ __CrSpeed Consumpiron Roughness Wrtdsh Current -fuzzy model, simulations are performed. The I Lage Large Me,,u Large-

control used in the simulation is machining 2 Large ',edium Large Large

condition setting for an electric discharge 3 Large Small Large Large
- 11- " 1 LTrg- .- S I ightly Lag

macine, and the learrnng procedure used in ,s,3 ._ Large -- --

the simulation is the one described in 3.3. Lare ,edium St gIly Large

The commands are machining speed, 8 Med, Smal Lar h
electrode consumption rate and surface T Medium Small Small Medi•r

roughness, and the manipulated variables 8 Small Small Medium small

are current and pulse width. The s Sml sii Sltsll,, Sm,

characteristics of the machine is given in [5]. 10 Large Large Medium Large

The fuzzy rules and their membership 11 Large .Nledjus Medium Medium

12 Large Small Small SSII ghtly
functions are shown in Figures 5 and 6, 1 MSediu Larghtl mall

respectively. There are 17 fuzzy rules and 13 Mrdium Larg •rge" Large

14 Medium Mledium Mtedium S~I ghi
their corresponding membership functions. Meaiul Small .m,,

15 Medium small small Small
l• ~ ~~ ~ ~~~ Sal LgeI1rg Lrge

Small Medium S1ghIly Medium

Figure 6 Membership functions e Large L

used in the simulation Figure 5 Fuzzy rules used in the simulation

Machiarig asped Electrode consumption rate Surface roughness

small rmedisum large 1 small medium large sinall medium large

S1105 0.1 0.2 0.5 Ill 2.0 9.7 1 2 7 8 15 311) 15 :10 5o Oil 1110 1.5o
(g/r1in) (%) (yunlttnax)

Pulle width C;urrmat

slightly slightly sligllly sl' lrtly" all .ssll s1 ,I'ur I a'rg, large . small sirall inrrlrdril larg, large

1 2 3 4 5 G 7 8 9 10 II 12 15 23 25 35 15 5 5 , 75 5 85
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The results of the simulation for the pulse width are shown in Figures 7 and 9, those
for the current are shown in Figures 8 and 10. The vertical axes in Figures 7 and 8 show
the performance index given in Equation (3), and those in Figures 9 and 10 show the
weighting factors given in Equation (5). The horizontal axes show a number of iterations.

In the simulation the weighting factors at the beginning, wi(0), are set to 0.5, and
the input values to the machine are randomly changed. It can be seen that the errors
included in the model are decreased as the number of iterations is increased. Figures 9 and
10 show that the weighting factors are adjusted according to the importance of the rules.

2.

II I 2 ,
-• 6 . .. " 2.4

5

S. .1.5

, _ 1.2.. - r-

2

0 0 6

0 1000 2000 3000 4000 85000 0 1000 2000 3000 4000 5000
(number of iteratUo0s) (num=be of teraUons)i
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Figure 9 Change in weighting factors (pulse width) Figure 10 Change in weighting factors (current)

5. CONCLUSION
In this paper we presented a fuzzy knowledge model of a neural network type. The

output membership function of each fuzzy rule in the model is weighted by a factor, which
is adjusted to minimize the error included in the model- Three learning methods are
presented. One of them models a skilled operator directly, and the others make the
proposed model approach an inverse model of a plant. Simulation results for an electric
discharge machine show that the error decreases as the number of learning iterations is
increased.

References
[1] T.Yamazaki and M.Sugeno: Self-Organizing Fuzzy Controller, Trans. of SICE of Japan,
Vol 20, No.8, 720/726 (1984, in Japanese)
[21 M.Maeda and S.Murakami: Self-Tuning Fuzzy controller, Trans. of SICE of Japan,
Vol.24, No.2, 191/197 (1988, in Japanese)
[3] L.A.Zadeh: Fuzzy Sets, 338/353, Information and Control, Vol.8 (1965).
[4] J.L.Albus: Data Storage in Cerebellar Model Articulation Controller (CMAC), Trans. of
ASME, J. of Dynamic Systems, Measurement, and Control, 228/233 (1975)
[5] NC-EDM Systems K Series, Machining Characteristics, Data Book 1 & 2, Mitsubishi
Electric Corporation (1988)

I[ - 58



ARCHITECTURE OF A SYSTOLIC NEURO-EMULATOR

U. Ramacher, J. Beichter
SIEMENS AG, R&D CENTRE MUNICH, W. GERMANY

ABSTRACT

The response and the characteristics of present models of artificial neural nets are primarily
investigated by simulation on vector computers, workstations, special coprocessors or transputer
arrays. The fundamental drawback of such simulators is that the spatio-temporal parallelism in
the processing of information that is inherent to the neural net is lost entirely or partly and that
the computing time of the simulated net especially for large associations of neurons (tailored to
application-relevant tasks) grows to such orders of magnitude that a speedy acquisition of
"neural" know-how is hindered or made impossible. This paper discusses systolic architectures
that support emulation of neural networks composed of MLP-modules, and presents the layout of
a chip specially designed to accelerate the weighting.

1. INTRODUCTION

An appreciable reduction in computing time for the simulation of neural nets and thus the
handling of largish tasks or those that are to be executed in realtime become possible with neural
hardware that contains an artificial neural net of finite size. Apart from the shortest possible
computing time, neural hardware offers a very much smaller structural volume than can be
implemented with hardware simulators for the same task. This aspect is especially important
when neural hardware is to be incorporated in terminals for man/machine communication or
mobile robotics.

In the development of digital neurocomputers it is consequently a matter of implementing the
compute-bound learning algorithms in hardware and designing a system and circuit architecture
that supports in optimal fashion the massive parallel networking of the neural net and produces a
sufficient measure of flexibility and expansion capacity for coping with a domain of applications
(e.g. vision, speech, signal processing, robotics) or with general-purpose action.
Emulation pursues a strategy of restricting the massive parallelism of a neural net as little as
possible. The basic idea is to generate a large net by means of a systolic array of small (chip-
integrable) nets. An implementation of this kind has the spatio-temporal parallelism for the
modules of the array and sxill allows the spatially parallel, time-sequential processing of the
neural input. Systolic emulation with small nets seems to be the best possible approximation to
reural parallelism for rapid execution of the learning and recall phase respectively of large neural
nets.

2. NEURAL SIGNAL PROCESSING

A neuron's elementary recall function is of simple algorithmic structure:

N

YI= I (Wi ) (+al+ X M)

N is the number of inputs common to a layer of M neurons. The first summand represents the
weighting of the common inputs a,, the second one the weighting of the neuron's individual
input b,, and the last one a threshold value 0I,. f is the discriminator function (step, ramp,
sigmoidal, tanh or a table) and y, the output of the i-th neuron. The parameter X controls the
slope of the discriminator function or the temperature in case that a Boltzmann net is to be
generated Formula 1 displays an elementary neural processing step which is common to all
known neural paradigmas [1,2]

For large neural nets with several thousands of neurons, 1-chip implementation becomes
impossible, even with a future 0 3 pm CMOS technology [3] at wafer level In order to preserve as
much of neural parallelity as possible, we su,!gest to decompose formula (1) in the following way:
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/ h-I ik+ lI)i

Y,=f N' \' W a + + 0.t) I) h m=M . (2)
k=O j=k4+ i

n counts the number of parallel multipliers of a neuron, m the number of neurons to be
implemented at a chip. It follows imm'ediately that the whole weighting takes N/n-M/r steps.
Therefore, the number n-m of synapses to be implemented in parallel on a chip should be
chosen as high as possible. Figure 1 shows a 4-neuron unit with 16 synapses.

MMuli-

plierr

'Inputs Mle

table ro rf

I'aj, b,Y i rA(

MsuiM, t M

pirplIer pirpJ

multi- M

plier .

AD ADD ADDAD

AKK AKK

table fo'r
discrimi- fz)f,)fzX)f(z,X)
nation - - -

---- ---- Outputs

Figure 1 Schema of a 4-neuron unit with 16 multipliers.

It becomes clear from figure 1 that the number of pads needed to transfer the weights to the chip
determines the number of neurons to be implemenled. If 8 bit weights were to be used, a total of
128 pads were necessary for parallel transfer of the weights to the chip. Apparently, it makes no
sense for the fast emulation of large nets to implement more neurons on a chip than can be
supplied with parallel weights. The use of pad demultiplexers will make little change to this
either Chip area which is not used by mjltipliers can be used to advantage for implementing
those parts of the circuitry that support universal emulation (for example, block floating point
format) . See, however, [4]

A second constraint which influences the chip architecture is posed by the clock cycle If the
weights are to be stored in a DRAM bank, reading the memory in the ripple mode results in ca. 30
ns clock cycle. Thus, trimming the multiplier array to highest throughput is not an urgent

requirement and word-level multipliers and accumulators suffice.
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The rn-neuron unit may be embedded into ,6 -vst~ch!c chain (figure 2). A chain of L rn-neuroin units
makes multiple use of the input data ai..a.. The input vectors need tn be rppeated Ml(Lm)-times

Thresholds _________________

Inaividual input
2x32x F2x32x 2x32x 2x32x 2x32, 2,32x

L2kbl t32kb

We q hts

128x 128x
[I ýbi"2x 41Abi4M bit

r22x rn-neuronj r-neuron rn-neuron
L Mbit uit E unitunit

Com~mon inp-Ats____

2x32x
outputs 4M~bitLix

Figure 2 Systolic neuro-emulator with peripheral iný,mory banks.

only, i.e the sy',tolic chain computes L-tiines foster that the simple ni-neuroin unit.

The w:mputation time is given by~ the expression

Col ip Ut-ujj) I~i/I l =i -+ ~ A A cloch jivriod

With 6 = 50 ns, L = 1C and rnm 4, a number 6 4 - 108 of connections may be computed in) 0 2 s.
This size of Ioca; memory is Sufficient to run a Hopfic'ld net of 25000 neurons Larger nets,
hovwever, require addlitio-nal time toi he added for loading new weights into the loccl mem-ory (a
DRAM\J bank of 6 4 -8 -108 bit would take approximateF.ly 160 s to be rewritten by means of a
ebit huw, with a tram -of 400kB/5)
Figure 3 CJisplayS a SyLIuic chain for multiple use -if weights. For instance, a set of pictures could
be scanned by the same set of wveights.

Weights, thresholds

in i eu ron 1 r-neu ronll cuo~. Unit Urii - unit
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Figure 4 shows the layout of a WSI chip with 512 data pads which can perform the simultaneous

L'. -

Figure 4
Layout of a systolic array of multipliers & accumulators (chip size = 6x6.8cm 2).

weighting of 6 independent input lines. The chip mea'sures 6.8x6 cm 2 and comprises more than
900 000 transistors. It consists of an 6x8 array of 16 bit multipliers and accumulators. Fvery row is
provided 2 spare modules which are controlled by soft configuration. The total power
consumption of the chip is estimated to be less than 10 Watts when run at 16 MHz (see [5] for
details concerning the worst case clock frequency)- A full account of the crip architecture and its
redundant configuration is found in [6] .

4. LEARNING ARCHITECTURE

In the search mode, (i.e. when the network responds to given weights and input patterns), the
dat.a flow has a relatively simple structure, for all a contoller has to manage is start and stop the
weighting for a layer, initialize subsequent discrimination, transfer the results and proceed for
the next layer. In case of the systolic chain, the control would be systolically transmitted along the
chain. In the learning mode, however, the data flow progiam is more involved, and support for a
wide variety of neural paradigmas is harder to achieve. Figure 5 shows an architecture comrnon to
the learning rules according to Hebb, Widrow-Hoff and error back propagation. Here, the indices
p numnerate the palterns to be learned, k, is an index running th~ough the neurons of the i-th
layer, tk (p) and yk,(p) indic~ite the referenie output at the last layer and the actual output at the
i-th la:,er respectively Having computed the ii,(p) in the recursion unit (necessary for ML.Ps), an
additional block of 4x4 multipliers suffice to compute the corrections iW•k . 1he learning
module shown is deigried to fit the in neuron Unit, also in the systolic mode. 1- and 2-
dimensionial systolic arrays composed of these basic modules may be arranged, either for fast
learr-;ng and/or recall. Similiar architecural schemes have been proposed irn -j].
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Figure 5 Lea,,~n-rn-ng dul-ecorres.pondingtoa m-neuron unit
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Optically Configured Phototransistor Neural Networks
Charles F. Neugebauer, Aharon Agranat, and Amnon Yariv

California Institute of Technology
Mail Code 128-95, Pasadena, CA 91125

Introduction:
Modeling neural networks on conventional digital hardware is inherently slower than

special purpose hardware simulations. Single processor and coarse grain multiprocessor
simulators with high numerical precision are not particularly suited to neural network processing --

a fine grain, low precision task. The highly parallel task of computing synaptic weighting for
neural networks can be most efficiently addressed by a hybrid optoelectronic technology 1 . The
systems which we develop take advantage of the fact that signal processing in silicon is a mature
technology and incorporate optics where silicon fails -- namely the interconnectivity problem.

Network Description:
The basic synaptic accumulation calculation

Ii Wij * Vi Eqn. (1)

(where Vj is the pre-synaptic input, W-i is the connection strength, and Ii is the accumulated input)
has been implemented with a variety of technologies, the most common being silicon. VLSI
hardware simulators with computation rates on the order of 108 - 1010 connections per second
have been proposed, demonstrating the gains to be had with hardware imolementations. The
computation rate increase comes at the expense of flexibility, however. Most hardware solutions
of Eqn. (1) rely on some form of VI.SI memory to store the synaptic connection matrix, Wij. To
achieve the high computation rates, the synaptic weight memory access time must be minimized,
resulting in the local storage of the synaptic weights within the neural processor IC. In order to
change the weights completely to simulate another network, new connection values are time
multiplexed into the neural processors -- a time consuming process for large networks. Thus
quotes of computation rates of a billion con ections per second per chip must be qualified by the
fact that they can only simulate small (<103neurons, <10 6 connections) networks very quickly
and larger networks (involving changing the weights) prohibitively slowly. Thus for interesting
networks containing biologically relevant numbers of connections (>107) these implementations
must either contain prohibitively large numbers of chips or be constrained by the classic von
Neumann bottleneck.

Volume 0hologratiphic crystals uxe currently under development that permit the storage
and readout of multiple 2-D images with a simple beam indexing scheme. Images are read by the
application of a single laser beam, the specific pattern recalled beirg indexed to the 0irection 9f the
laser beam. Theoretical limits on the storage capacity of these crystals are about 10 bits/cm- with
readout access times limited by the switching of the single indexing beam. The architecture we
propose use., these materials to break the von Neumann bottleneck associated with large networks.

The basic features of the architecture are shown in Fig. 1. The system consists of two
main subassemblies: a 2-D spatial light modulator (SLM) using a holographic crystal for storage
and an integrated circuit which performs the synaptic accumulation and nonlinear processing.
The connection matrix Wij is stored within the SLM which projects an image of the weight rnauix
onto the IC. 'The neural processing IC contains a matrix of detectors which convert the intensities
(proportional to the weights) into an electrical signal to be used for the synaptic weighting and
accumnulation. Thus the connection strengths can be loaded into the IC in parallel from the SLM.
Many independent sets of connection strengths can be stored within the holographic crystal SLM
which is accessed by the directi'•, of a single laser beam, Thus by changing the direction of this
single beam, an entire new set weights (e.g. a different section of a large network) can be loaded
into the IC. There is no penalty associated with loading the entire weight matrix, making very
large (>10 5 neurons, >108 connections) and very fast (limited by silicon detector response)
networks possible By using parallel optical storage/transfer to solve the memory bottleneck and
fast VLSI detectors, a hybrid optoelectronic approach makes very large networks possible.
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Fig. 1 Basic Architecture

The IC is accessed by a conventional digital computer which stores the input and output
of the network. The computer deals only with the neurons, not the connections, reducing the
computation and storage needs tremendously. In addition, the computer allows conventional
access to the neural network -- namely digital I/O (no special interface needed).

Circuit Description:
A typical pwell CMOS process has a parasitic vertical bipolar transisto~r that makes an

excellent photosensor. The standard? E• OSIS CMOS process produces a phototransistor with a
typical current gain of over 200. _This i,4PN bipolar device has its collector (the substrate) tied to
Vdd. The base region (the pwell) is left floating -- photocuirent generated in the base will be
multiplied by the current gain factor. The emitter is formed by a heavy N type diffusion at the
surface of the substrate.

An IC implementing an optoelectronic neural processor using phototransistors has been
built. A single synapse performs a multiplication and sum operation. The phototransistor synapse
contains two devices -- a phototransistor and a p-channel FET, as shown in Fig. 2.

IiV 44

WV"

•t OGVO)

0U e

Fig. 2 Binary Phootransistor Synapse

The photocurrent generated at each detector is proportional to the respective Waj's. In
this initial impleme utation, the neurony are binary -- thus a multiplier is simply a switch which can
be implemnented with a single PET. The gate of the multiplier ET is connected to the column input
line. The potential of thetj column line eflects the st/ate of the respective input (Vj). The
multiplying FE Fs at each synapse produce currents propor-tional to Wije * a which are
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subsequently summed along a row output line. Thus the accumulation according to Eqn. 1 is
accomplished in parallel, providing the synaptic accumulation, Ii, in the form of a current. Each
row line is then connected to a decision function which provides binary outputs, as shown in
Fig.3. In addition, the IC contains peripheral circuitry for subtracting a weight offset to allow for
inhibitory connections.

V, V V 3  V4

Yd d'd d 7dd

w W Ww
12 13 W14

x X X Xp T

Vd'd d Vdd V'44

w. wa w. w -

21 223~ Z

X X X X

-dd '.
7 4d i

31 3i 3i

X X X X
'3 ru 732

w d W Wjd W %
41 43 44

Fig. 3 Photctransistor Network

Fabrication Results:
The IC, containing a 32x32 array of synapses and 32 decision functions, was

fabricated in MOSIS's 3pirn pwell process. The synapse size was approximately 50x50 t.tm 2 . The
binary decision function circuits were found to have thresholds within 7-10% uniformity across the
chip. The phototransistors themselves could resolve the minimum SLM changes in input intensity,
putting their sensitivity at >45dB. The sensitivity of the entire neuron (phototransistors and
decision functions) was measured at 35dB which translates into 5-6 bit accuracy. The settling time
of the network depends on the illumination strength as shown in Fig.4. A simple, two layer
inverting XOR was implemented using a low power CRT as the SLM. Six weights and three
neurons were used to demostrate operation, shown in Fig. 5.

Conclusion.:
We have demostrated an optoelectronic network that computes 103 connections with

5-6 bit accuracy in less than 10tsec in low illumination, giving a computation rate of >10A
connections per ,second. The architecture can be scaled (this chip is only 3mrti on a side) and
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illumination incieased, resulting in greater performance. More importantly, very laige networks
can be efficiently computed using holographic crystals as connection storage.
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Fig. 5 Inverse XOR Operatio-z

1. A. Agranat and A. Yariv, "A New Architecture for a Microclectronic Ifllperncntation of Neural Network Models,"
in Proceedings, I[EE First Annual International Conference on Neural Networks, June 1987, Vol. 3, pp 403-409.
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Optically implemented Hopfield associative memory using
two-dimensional incoherent optical array devices

Kazuhiro NOGUCHI and Toshikazu SAKANO
NTT Transmission Systems Laboratories,

1-2356 Take, Yokosuka-shi Kanagawa-ken, 238-03, JAPAN

Optically implemented two-dimensional (2-D) Hopfield associa-
tive memory using a hologram array for interconnection between
optical source and detector arrays has been proposed("-' (2).
However, it is difficult to construct such large element number
systems because extremely large size hologram elements are neces-
sary. This communication describes a simplified optical
Hopfield associative memory using 2-D arranged incoherent source
and detector array devices. Polarization encoding and shadow
encoding methods for installing the optical interconnection for
the Hopfield memory are proposed.

In Hopfield associative memories, the connection matrix
T=-(Tj) is written as

M

S(2Vk,-1) ( 2 V ,-1) - Ma , (1),

k= 1

where VM(k=1,2, -..,M) is a set of stored binary vectors~s). In
networks which have N 2-D arranged elements, the output vector
Vout is determined by the following operation,

N

Vout =th T, j V (2),

j=1

I-,. 1 if x>0
LýIA % 0 otherwise (3),

where V'n is the input binary vector. The vector V°t" is fed
back to the input, and the resulting vector converges to the
stored vector which is most similar to the input.

In this operation, a matrix represented as

M
r*Ij=: Z (2V-1-1) (2V-1-1)

k=-1

M

{EQV(Vk VNJ)-XOR(Vk, V1,)} (4)

k=1

EQV (A, B) 1 if A=B XOR(A,B 1 if A*-B
Q 0 otherwise OAB 0 otherwise (5)
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is used as an alternative for the T,, matrix(4). Thus, the
Hopfield associative memory can be optically implemented using the
optical EQV and XOR interconnections.

Here, we propose the optical Hopfield associative memory using
polarization encoding as shown Fig. 1. This system consists of
source and detector arrays which are covered with polarizer
arrays, and a spatial filter. The source array contains NxM
incoherent optical sources, and the detector array contains NxM
detector pairs each of which consists of two adjacent detectors.
The source and detector arrays are divided into N segments which
contain M sources or M detector pairs. In Fig. 1 arrays are
divided into 12 segments containing 4 sources or detector pairs.
Each segment corresponds to an element of V'n or Vout.

Here, we classify all the polarizer states to be "0" if they
pass vertically polarized light, and to be "1" if they pass
horizontally polarized light. Obviously, light passes through
two polarizers from source to detector only when the two
polarizer states are equal to each other.

The optical interconnection scheme linking a source segment to
a detector segment through a spatial filter is shown in Fig. 2.
In this example, each segment contains 4 sources or detector
pairs. The spatial filter connects k-th source in a segment
only to k-th detector pair in all detector segments in the detec-
tor array. The state of the polarizer that covers the k-th
source element in the i-th segment agrees with the i-th element
of the stored binary vector Vk(1:ksM). Also, the state of the
polarizer that covers one detector element(named "+" detector) in
k-th detector pair in the i-th segment agrees with Vk , and that
with the another element(named "-" detector) agrees with the
complement of Va,. In the example shown in Fig.2, the "+"
detectors are put at the upper side of the detector pair, and the
""dte... to. s a- t.he "Lower side. Th e'n the light currents
I(Ck) and I J an which are generated at the k-th "+" and "-"
detectors in the j-th segment by the light emitted from the k-th
source in the i-th segment, is written as

ICk) + 1,.EQV(VK,, VW) (6)
and

11 0  XOR(V-,, Vj) (7),

where *T, is the generating light current when V ,=V'j. These
equations show that optical EQV and XOR interconnections can be
formed using polarization encoding.

In the operation of this system, all sources belonging to the
i-th segment are simultaneously turned on or off according to the
i--th element value of the input binary vector V' '. Provided
that the I1 for all optical connections are equal, the
photocurrent difference in the i-th detector segment I, between
the total photocurrents generated in all "+" detectors and that
generated in all "-" detectors is written as
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M N ,

Z ZX V1 n ,(EQV(V-,, V-j) -XOR (V-, Wj)} (8).
k=1 j=1

Therefore, Vout, is determined from the photocurrent difference
Z1.

We have constructed a 5x5-element Hopfield memory with 2
stored patterns as shown in Fig. 3(a). The sources are 880-nm
LED's, and the detectors are Si-PIN photodiodes. Two patterns,
which represent 5x5-dot characters of "A" and "C", are stored in
the memory. Figure 3(b) and (c) shows the the demonstration of
the Hopfield memory operation. In both cases, one of perfect
stored patterns is reconstructed from the part of the stored
patterns.

The optical EQV and XOR interconnection can be constructed by
shadow encoding without using polarizer arrays. Similarly to
polarization-encoding, the Hopfield memory using shadow encoding
is assembled from source and detector arrays, which contain NxM
sources or detector pairs and are divided into N segments. The
interconnection scheme between one source segment and detector
segment is shown in Fig. 4. The states of source elements, which
agree with corresponding stored vector element, are determined by
the source position. In the example in Fig.4, the upper side is

""... an the is"1" The l.-ight from a source ---- ts tO
only one detector in detector pairs through the spatial filter,
and another detector is covered with shadow of the spatial fil-
ter. The state of the detector pairs is "0" when the "+"
detector connects with the state "0" sources, and is "1" when the

"-" detector connects with "0" sources. In this condition, the
EQV interconnection is constructed between the source and "+"
detectors, and the XOR between source and "-" detectors. There-
fore, Eqs. (6) - (8) also hold in the shadow encoding model.

The Hopfield memory using the polarization encoding or the
shadow encoding described above is constructed very easily if
integrated 2-D optical source and detector array devices are
used. Therefore, we believe that these enzoding methods are
suitable for constructing a Hopfield memory with a large number
of elements.

To summarize, optically implemented 2-D Hopfield associative
memory using incoherent optical array devices was proposed.
Optical EQV and XOR interconnections were implemented between
source and detector arrays using polarization or shadow encoding.
The structure of the system is suitable for constructing the
Hopfield memory with a large number element because it is very
simple and easy to assemble.

The authors would like to thank Hidetoshi Kimura and Takao
Matsumoto foT their continuous encouragement.
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LEARNING IN OPTICAL NEURAL COMPUTERS

Demetri Psaltis, David Brady, and Ken Hsu

California Tnstitute of Technology, Pasadena, California 91125

Optical holography is useful in artificial neural hardware because of the relatively
large size of the networks which can be implemented and because it provides a potentially

nple method for dyna.mnically controlling the free parameters of the network. The
simplicity of learning in holographic systems is based on the analogy between Hebbian
learning and hologram formation: A holographic connection between two optical modes
forms in linear proportion to the product of the activities of the modes. When this
principle is applied to construct large-scale adaptive networks, the hologram must
integrate contributions from many modes over many learning cycles. The use of multiple
learning cycles (holographic exposures) necessarily restricts the dynamic range of the
recorded holograms. In this paper, we describe how these restrictions arise and how
they may be partially overcome by periodic copying between short term and long term
components of holographic memories.

A basic module for a volume holographic neural system is sketched in Fig. 1. The
activity of the ith neuron in this system is represented by an optical signal on the Zih

pixel at the input plane. A connection is made from the iz'h neuron to the jth neuron via
a holographic grating coupling the mode excited by the ith input with the mode incident
on the jth output pixel. The signals diffracted from all the input modes onto the j t h

output mode are summed and thresholded at the jth output pixel. The strength of the
connection is proportional to the the product of the activity of the ith pixel on the input
plane and the activity of the jth pixel at the training plane. Light from the jth pixel

on the training plane excites the mode which couples into the jtll pixel on the output
plane. The strength of the connection between the ith and jth neurons is increased if
the interference pattern between the corresponding modes is in phase with the hologram
which stores the connection and is decreased if the interference pattern and the hologram
are out of phase.

In addition to connecting the modes used to record it, a grating coupling a pair
of modes results in undesired connections between other pairs of modes. To prevent
this degeneracy from constraining the nature of the transformations which can be
implemented using a hologram, the modes which are coupled by the hologram must
be restricted. Since each mode corresponds to a unique pixel on the input or output
plane, only a subset of the available pixels can be used in the interconnection system.
Suppose that the input and output planes each consist of N 2 pixels. If the same number
of pixels are to be used on the input and output plane, only N7 of the pixels on each
plane may be used in an unconstrained interconnection system. A grid wich samples
pixels on the input and output planes such that each pair of input-output pixels may be
independently interconnected is shown in Fig. 2. The input pixels are sampled densely
as shown at the top of the figure. The output pixels are arranged in lines separated by
the width of the input grid. In this figure, N = 100.

The most promising technology for recording adaptive volunmie hoiograms is based
on photorefractive materials. The key advantages of these materials are that they offer
relatively high (dynanic range, that their response to new recording bcams does not

degrade under multiple exposure, and that they respond in real-time with rio devl{opment
steps. A photorefractive hologram is formed by the redistributioin of p)hotovge1ucrate(d
charge among local traps. While a recorded holograimi remamias stable in thie dark,
the excited charge created by writing a new ho•ograun increases the conductivity of
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the material and causes the charge patterns corresponding to previous holograms to
decay exponentially in time. The time constant of the decay is inversely proportional
to the intensity of the writing beams. The decay of previously recorded holograms
limits the number of exposures which can be usefully recorded in a photorefractive
crystal. We have described previously, [1], an exposure schedule by which an arbitrary
nuinber of holograms, M, each with identical diffraction efficiency, may be recorded in a
photorefractive material. Unfortunately, recording each hologram with the same strength
necessitates a fall off in the efficiency with each successive exposure. The end result is
that the diffraction efficiency of each hologram falls off in proportion to 1

Outer-product based storage of associated patterns can be implemented using
photorefractive holograms in the system of Fig. 1 by exposing the hologram with a
sequence of appropriately sampled patterns on the input and training planes. As an
example, we have stored up to twenty associations between random image-name pairs of
the sort shown in Fig. 3 using this approach. The sampling grids of Fig. 2 where used
in these experiments. The reconstruction fidelity when only a few patterns are recorded
was good and we were able to verify the fall off in diffraction efficiency with the square
of the number of associations recorded.

By an adaptive system, we mean a system which responds in real time to some
function of its input and control signals. In general, the input arid control signals will be
generated externally and will not drive the system to its "optimal" state in a minimum
number of steps. For a system implemented using photorefractive crystals, it is desirable
to minimize the number of learning steps in order to preserve the diffraction efficiency, and
thus the dynamic range, of the recorded hologram. One method by which the effective
number of recording steps can be minimized is to record the hologram in a two step process
using a "short terrm memory" to condense the information stored in each short series of
exposures and a "long term memory" to store the connections which emerge over the
length of the learning process. This approach is particularly applicable to systems which
adapt continuously, in which case an indefinitely long sequence of exposures controls a
finite number of independent connections in the hologram.

In this paper we de.cribe and present experimental results from a preliminary
implementation of short term-long term storage. The basic idea is to use two holographic
media to periodically refresh each other. The architecture of our system is shown ill
Fig. 4. A series of holograms between a reference plane wave and a set of signal beams is
recorded in a cesium dopcd stromum barium niobate crystal (SBN:Ce). Shutters 54 and
S5 are closed during this operation. In our experiments we used plane waves generated
by rotation of the mirror RM as signal beams. The diffraction efficiency of the recorded
holograms is monitored continuously using the phase conjugate of the reference wave.
The path of the diffracted conjugate to an output CCD is shown as a dashed line in the
figure. A self-pumped BaTiO3 phase conjugate mirror is used to generate the conjugate
wave. We use a PCM to compensate for the generally poor optical quality of the SBN. (
This problem is unique to the particular crystal we used.) When the diffraction efficiency
of the photorefractive holograms begins to be unacceptably low, the recorded holograms
are copied from the SBN to a second holographic medium, which in our experiments was
a thermoplastic plate. The thermoplastic hologram is fornied using the diffracted phase
conjugate reference and a back-traveling reference wave. Shutters 82 and 84 are closed.
The hologram written on the plate is copied back to the SBN with the original intensities
in the signal and reference beams. The original reference beam and the conjugate to the
thermoplastic reference are used to create this hologram. Shutters S1 and 55 are closed
during this step. The result is a rejuvenated hologram of each of the signal beams in the
SBN. The diffraction efficiency of each hologramn is now proportional f',)-I as Op)jos(ed

to the previous I Since the diffraction eflicie•icy per hologramn for Al superposed

patterns is at best -I-, this copying scheme allows us to imnplemient adaptation und(er

Al
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multiple exposures with no cost compared to recording the same information in a single
exposure.

The temporal behavior of phototefractive holograms may be described by growth in
the amplitude of the space charge density proportional to (1 -- e-ca) during recording
and decay proportional to eCIt during the recording of successive holograms. I is the
recording intensity. The amplitude of the space charge corresponding to the mth hologram
when M holograms are recorded is

Al
Am = A,(I e.t- exp(-_ aItm'), (1)

where A 0 is the saturation diffraction efficiency and tm is the recording time of the m'
hologram. Am is a constant for all mr if

tm = (aI)-llog + (m-l)y X (2)
(+n - 2)x}

where X = Ai.

To begin recording a series of holograms in the system of Fig. 4, we record nil
holograms on the SBN following the schedule of eqn. (2) for X = 1. The amplitude of
the space charge for each hologram is -AQ- at this point. When only a few holog.amsTInj

are recorded, the diffraction efficiency of the optical field may be nonlinear in the space
charge amplitude due to pump depletion. We assume, however, that mnl is large enough
that the diffraction has fallen to the linear regime. In this case the diffraction efficiency
in intensity for each of the stored holograms is -- , where 71o is the saturation diffraction
efficiency for a single hologram. We now copy the summed holograms in the SBN onto
the thermoplastic plate by using the phase conjugate of the reference beam to read out
the crystal. Copying the hologram on the thermoplastic back onto the SBN with the
original total intensities in the signal and reference beams results in a restoration of the
photorefractive hologram with Vr/U times greater amplitude. The reduction by a factor of
(-)- in the amplitude of each hologram results from a reduction in the modulation
deptth with which each hologram is recorded due to the sharing by all r-n signals of
the intensity available in the signal beam. This factor is inherent in the simultaneous
recording of ml signals. However, the total diffraction efficiency, summed over all ml
holograms, is restored to its saturation value.

At this point we begin recording another series of new holograms on the SBN using
the schedule of eqn. (2) with X = , ,7. We make m2 exposures in this cycle. In order

to maintain a constant diffraction efficiency from tile thermoplastic, 7n2 is selected such
that the total diffraction efficiency of the summed hologram on the SBN falls back to its
value after the first ml exposures, i. e. ---. After -n- exposures we copy back to the

thermoplastic, back to the SBN and again make holograms until the total diffraction
efficiency falls again to I-. From here the process may proceed irileffilitely. Each

time M = rmi holograms are copied back and forth, the difflaction efficiency for each

hologram is restored to 11'
Fig. 5 is a log-log plot of experimental results for recording liologrmuns in using the

exposure schedllle of Eq. 2 and using periodic copyillg. The diffraction efliciency of the
recorded holograms was monitored in each case using the dilfractcd phase conjugate
reference and the CCD shhowu in Fig. 4. The solid line in Fig. 5 corresponlds to the
theoretical 1- 2 decay in the diffractioii efficiency per hologram with it() copying betwe'en
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short and long term storage. The *'s are experimental data points for the mean diffracted
power of the stored holograms. The dashed line shows the theoretical decay in diffraction
per hologram when periodic copying is used. The first 5 holograms are recorded exactly
as in Fig. 2. These five are then copied to the thermoplastic and back to the SBN,
restoring the diffraction efficiency per hologram to the Al-1 line, which is the dotted line
in the figure. Thermoplastic holograms are also made after 10 and 15 exposures. The
#'s represent expecimental data points.

In conclusion, photorefractive volume holography remains a very promising
technology for implementation of adaptive neural networks. Of the difficulties which must
be addressed before large scale networks can be implemented, the mos,, troublesome is the
need to find a way to control volume holograms over many exposures without sacrificing
too much dynamic range. Significant progress can be made on this problem using the
short term-long term memory approach sketched in rough form here.

This work is supported by the Defense Advanced Research Projects Agency. The
authors thank Rockwell International and Ratnakar Neurgaonkar for the SBN used in
these experiments.

[1] Demetri Psaltis, David Brady, and Kelvin Wagner, Adaptive optical networks using
photorefractive crystals, Applied Optics, 27, 1752-1759, 1 May 1988.
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Simulated Annealing Feature Extraction from Occluded and Cluttered Objects
Harold Szu, and Kim Scheff

Code 5756, Naval Research Laboratory, Washington D.C. 20375-5031
Abstract: Human Visual System (HVS) is investigated for solving the occlusion pattern recognition problem. A
movie of partially occluded moving objects is simulated in a cluttered imagery sequerce. In order to suppress the
clutters and the occlusions, the HVS passes the salient features before lowering the image resolution by means
of a layer-by-layer coarse graining of the input image sequence feedipg through a Fukushima-like neural
network, namely a feedforward neural network architecture. In a successive approximation manner, the last
layer produces invariant object templates having almost orthogonal features. Such useful coarse-graining
processing, based on multiple frames and successive layers, has efficiently achieved the mini-max
optimization that is useful for intra-interclass clustering with respect to associative memory iecall. Thus, we
have adopted in this paper, an imagery sequence of different land vehicles of 3 x 3 pixels tracking over natural
terrain within the attentive field of view of 9 x 9 pixels, scanned by a space-filling Peano curve [Space-
Scanning Curves for Spatiotemporal Representations.., Szu. Foe, IJCNN-90, Wash. D.C. 1990]. Then the
technique of Fast Simulated Annealing (FSA)[Szu. Hartley, Phys.Lett. A122 p.157; Proc. IEEE, =_.75p.1538! is
employed for the first time to search for those orthogonal features constrained by object templates. The
constraint is obtained by an imprecisely centroid-overlayed sequence due to various degrees of motion-occlusion
by moving past trees. These template imperfections can be overcome by the fault tolerance nature, inheritant in
associative memory, together with the orthogonal;ky of those extracted features from templates [IJCNN-89, p.
1- 547, Wash. D.C. 19891. In this paper, pattern data have simulated the pointing-and-tracking gray-scaled
land vehicles, and the FSA has sped up the automation of binary feature extraction and orthogonalization.
Keywords: Image Processing, Clutter, Occlusion, Simulated Annealing, Peano Curve, Neural Networks
1. Introduction: An animal visual system is known to be sensitive to a moving object, and pays attention to the
object immediately with the second look pointing and tracking towards the motion-detected scenery. This kind
of attentive image summation is believed to be important for better object template formation, and simultaneous
feattre extraction, as well as subsequent neural network pattern recognition. A video sequence of a submerged
object has been taken downward through a wavy surface of swimming pool. Then, a shifted-and-added
technique was used in the second look to produce a sharp template of the submerged object. The second look was
a regional resummation that was re-done piecewise with respect to the identical set of imagery that has
produced in the first pass a blurred template which had a correct statistics of image pieces through the
straightforward pointing-and-tracking summation of many frames (about 16 distorted fields) according to the
centroid of the whole frame [1](c.f Fig. 1 Distorted Fields, Object, Long Term Average, Centroid Correction).
This effect had demonstrated the need of a smart sensor concept such as the eye which can see a weak star
during an "instance of good seeing"[21 through the turbulent sky. On the contrary, the undiscriminating and
dumb telescope camera can only produce a blurred picture of the weak star in the over exposed picture by the
whole frame summation basd on ihe straightforward pointing-and-tracking gimbal without any adaptive
phase for turbulence medium phase correction mechanism.

Recently, a sequence of distorted imagery that consists of a training set of 15 samples of hand-written
characters (each has 4 by 4 pixels, only trained to recognize 3 classes) has demonstrated the ability of
generalization: recognize a new class of letter[3]. This was done by means of critical feature extraction using the
"mIini-max concept" to discover by itself a new class of 5 more hand-written characters by analyzing the "intra-
interclass ,lustering property" on the self-constructed feature space(c.f. Fig. 2 for 20 samples 4 classes).This
example used a table top computer, because the Gram Schmidt orthogonal feature extraction was based on the
associative memory employing the Fixed-Point Cycle Two Theorem 14]. Such a procedure of parallel Grarn-
Schimdt constrained orthogonalization could be exceedingly usefully for a covert communication constrained by
call signs and known scrambling instruction, because feature extraction by means of the straightforward
projection is not permitted to obliterate critical portion of the signal. However, any practical construction of
large set of orthogonal feature vectors could be subject to a realtime processing bottleneck. In this paper, the
Fast Simulated Annealing (FSA) technique is adopted to alleviate the bottleneck problem.

Image processing by annealing techniques have been attempted by Geman and Gernan [4], Barrett et
al.151. etc. mainly for noise/distortion reduction. Neural networks have been recently applied to pattern
recognition by Kohonen, Fukushima, Grossberg, Hopfield, etc.. White noise annealing and neural networks are
combined through the Boltzmann Machine by Hinton, Sejnowski, Ackley 161 of which colored noise variant has
been referred to as Cauchy Machinc[7,8,9].
2. Imagery Sequence: A useful clutter rejection hypothese is that man-made vehicles are designed to minimize
the hydrodynamic drag via streamlined shapes and wheels while the natural environment of tree trunks is
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mainly vertical against the gravity[unpublished work of J. Landa, H.Szu]. Thus, a sequence of imagery of land
vehicles passing trees and bushes is considered, Fig. 3a. When a land vehicle moves by a tree, the partial
occlusion of the vehicle by the tree trunk can be easily overcome by a properly pointing tracking, zooming,
imaging on the moving vehicle. The image sequence can be averaged and threshold to get rid of the relative
motion between the tree and the vehicle, Fig. 3b, together with the 3 by 3 scanning curve and the 9 by 9 scanning
curve. The centroid pointing and tracking of the vehicle is assumed to produce the averaged gray-scaled image
< Ic(xY) >

< Ic(x,y) > = Yj I i(x+xcy+yc)/ frames (1)
where (xc, Yc) is a vehicle local centroid coordinate. After a certain threshold, the obscuring effect of the tree
and bush will be minimized. Fig.2 (describe the templates)

Ic(x,y) = Threshold( < Ic(xy) > ) (2)
Let the critical feature of the template class-c be denoted as fc(x,y). Then, the performance criterion is the
minimum distance between the template of the c-class=1,2 together with the direction cosine in the numerator,
and the maximum difference between feature vectors in the denominator. Thus, the mini-max filter energy is

E(fc)= a 2 c * c' ( < f, I fc' >) + b Zc4=1,2,... I fe" Ic 12 +Z c # c' d / I fc - fc' 12  (3)
where the coefficient of the direction cosine via the inner product < I > may be heavily weighted, eg. by setting
a = 10 (relative to b = 1, and d=10). The change of energy is defined as A E = E new - Eold.
3. Cauchy Simulated Annealing: The physical space is 2-D; but the search space can be 1-D, provided that
space-filling scanning technique is adopted here for mapping 2-D imagery space to 1-D search space and yet
preserving the local neighborhood relationship[ll]. In principle, the space-filling can be done to any desired
degree of resolution that is meaningful by the original dynamic range and the image pixel resolution.

The periodic 1-D space is used for the 1-D infinity search space for the Cauchy probability:
(1) Generation of the new state x' from the previous old state x by the Cauchy random number X, and the

1-1 mapping back to 2-D image domain: Choose fl = Iel. Let f2 be constructed from Ic2.

GT .x'ix'=x+X) = (t)/i[T(t) 2 + X 21 ] 7 ; Tit)= To/( 1 + t) where To - 100. in this paper.
The random displacement X is equivalent to the following simple formula: using a random number n,
normalized between [0,1], to generate a uniform angles: (n - 0.5 )x n, between - n/2 and + n/2.

X = T (t) tan (0) (4)
(2) Canonical Acceptance Criterion
1c2 pixel toggling for f2(x) with A E < 0 is accepted; the output state energy increase A E > 0 is also

accepted if the random number generated between [0,0.51 is les3 than the following acceptance function
PT(A E) = 1 / [ 1 + exp(AE /T (t))] (5)

Eq(5) is similar to the Cauchy acceptance criterion [10] when expressed in terms of the energy increment in a
simulation by a serial process. To insure the mini-max property,Eq(3), if f2 (x') happens to be togged to be 0, we
can reset fl(x') to 1l(x %otherwise, we chang f2 (x') back to L2(x') and set fl(x') = 0. The final data of fl and f2

are given in Fig.3d. The generating, the accepting, and the energy are plotted in Fig. 4 which shows three
segments of the coordinate with respect to the abscissa of 2000 time points in five minute CPU of MAC II(top:
searching 9 x 9 states , middle: accepted 9 x 9 states, and bottom.: the energy of the visited state). Note that
the scattering points about the accepted states is gradually narnowing down due to the Cauchy random walks
but never completely because of the occasionally Cauchy random fligtts. Moreover, the energy occasionally
goes up before it goes down, demonstrating the typical characteristics of simulated annealing.
Acknowledge: J. Landa, F. Polkinghorn and A. Tse have helped prepare the land vehicle imagery.
Reference:
[1] H. Szu, J. Blodgett, "Self-reference Spatiotemporal Image-Restoration Technique," J.Opt.Soc.Am,, Vol.72
pp.1666-1669, 1982; Also, Szu, Messner, "Adaptive Invariant Novelty Y-ltecr," Proc. IEEE, YV74, p.51 9 , 1986.
[2] H. Szu, J. Blodgett, L. Sica, "Local Instances of Good Seeing," Optical Comm., Vol. 35, pp. 317-322, 1980
[31 H. Szu, K. Scheff," Gram-Schmidt Orthogonalization Neural Nu-ts for Optical Character Recognition," Int
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Technology, Washington D.C., pp.1003-1017, May 3-5, 1988
151 S. Gcinan, D. (Geman, "Stochastic relaxation, Gibbs distribution and Baysian restoration in images," IEEE
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Fig. 3 b Gray-Scaled Templates in terms of 3 x3 and 9x9 Sanning Curves Fig. 3c Binary Features
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1 introduction

In their organization and operation neural networks differ radically from conven-
tional computer systems. However, it is likely that the systems that may eventually
be built around them will be remarkably similar to the traditional computers that
these networks are designed to augment. This is because the business of the system
architect is to build systems that solve problems at a reasonable cost: all else is
secondary to this goal. And viewing neurocomputer arohitecture in terms of such
traditional issues as communication bandwidth, processor utilization, and memory
system organization lends a problem-solving perspective to the entire system design.

The bulk of research reported today treats neurocomputer design in a very narrow
focus: in most cases the goal is simply to design an electronic analogue to a biological
neuron. Despite the significant achievements in this regard, it can be argued that
this approach sidesteps the fundamental goal of building practical problem-solving
systems. This is largely due to the inordinate burdens that a. faithful neuron design
would place on the surrounding system. For example, pure analog processors often
require real-valued inputs to each synapse. Few communication systems (other than
direct optical input) could begin to deliver the required millions of analog signals
that a complete systemn would require. As another example, many proposed designs
push the burden of neural learning off-chip, slowing it to the point of eliminating
the performance gains achieved by using a neurocomputer in the first place.

These common situations result from a premature emphasis on elegant circuit
design that relegates architectural issues to secondary status. This is surprising, for
it is the traditional architectural issues mentioned above that really determine the

T'his work was supported in part by the Semiconductor Research Corporation contract no. 86-10-097, and by

the Office of Naval Research, ONR contract no. N00014 88 N 0329.
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viability of the system. Given models of neural operation and network structure, the
primary task of the neurocomputer architect is to select the best set of implemen-
tation strategies to implement them. Analog versus digital computation is only one
of many questions that must be addressed, and its deteriaination must be balanced
with the other requirements of the entire system.

We believe that the three key issues in neurocomputer architecture are (1) com-
munication, (2) weight representation and learning, and (3) neural computation.
These represent special cases of traditional system design considerations, and will
be briefly discussed below. When analyzing the target neural network model, as
much attention should be paid to the model's temporal characteristics as to its con-
nectivity structure and learning behavior. Many significant economies are possible
if concurrent utilization in any of these areas is sparse.

Looming above all implementation issues is the connectivity dilemma. Our re-
search has shown that an attempt to fabricate a neural network consisting of one
million nc ons, each connected to its one thousand nearest neighbors in a two-
dimensiuw1 d grid, would result in a VLSI wafer approximately 85 square meters
in area [1]. Most of this area is consumed in routing the one billion metal wires.
Multiplexing is one technique available to reduce this area appreciably, but only if
the target model can tolerate the reduced availability of interconnect. We are cur-
rently investigating architectures that have appropriate static characteristics such
as sparse and spatially local interconnect, and appropriate dynamic characteristics
such as sparse temporal behavior, allowing the shared utilization of valuable com-
munication resources, a technique that biological systems seem to exploit.

Compromises that must be made to create a practical communication system
have impact elsewhere. Neural computation has been the favorite topic of neuro-
computer research, and most proposed systems feature the parallel nature of analog
multiplication, essentially having a processor per synapse. These approaches usually
require that all inputs to the neuron be available coincidently, a requirement unlikely
to be satlisfied by any C01711117Un-mnication systemn based ou shared wires. Even if all in-
puts could be made available simultaneously, the attraction of parallel multiplication
is dimmed if only a small subset of inputs actively take part in the computation. If
input activation is low, which is common in many associative structures, it may be
possible to share computation resources in the same manner as was interconnect,
and to consider serial digital or hybrid analog/digital approaches for multiplication.
Again, this kind of compromise depends on the temporal behavior of the particular
neural model being implemented, and exemplifies the sort of questions that system
architects must face before committing to alternate forms of computation.

If the area implications of direct interconnect do not seriously impact the pure
ideal of distributed, electronic nervous systems, the difficulties posed in learning
and weight representation might. Thousands of parallel multipliers require a corre-
spondingly enormous memory system bandwidth to feed the inputs and store the
outputs. It is difficult to conceive of a single data path off--chip to memory that
could approach the required performance. Instead, local storage of synaptic weights
in close proximity to the multiplication hardware is the preferred solution. The
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challenge is to combine a memory system compatible with the local computation
hardware. Even more troublesome is the learning task. The hardware required to
enforce local learning rules can be prohibitively expensive unless ways can be found
to share the area burden among multiple processors. For example, at OGC we have
designed and built a hybrid analog digital implermentation of the Klopf/Kosko dif-
ferential liebbian algorithin. This learning rule is not atypical of biological learning
mechanisms. By the time we had integrated all the circuitry required to perform
the various differentiations and temporal integration, the per synapse circuitry had
grown to quite unreasonable proportions. As we try to implement such functionality
we are increasingly impressed with Nature's sophisticated and compact mechanisms.
In a manner analogous to using multiplexed interconnect and processors, such learn-
ing can only be contemplated if the target neural model limits coincident learning
to small subsets of the total number of neurons. In the associative structures we are
studying, learning occurs at a fraction of the total synapses at any point in time.

Neurocomputer design as expressed here embraces an enormous design space, a
much broader one than the narrow focus on Y-HI neuron design. This architectural
perspective embodies a problem-solving approach consistent with traditional meth-
ods of system design. The key steps in neurocomputer design first require breaking
the system into its three main architectural components, and then closely examining
the target model's structure and temporal characteristics, as well as their complex
interielationships. The questions for the architect involve selecting the best set of
implementation strategies consistent with the requirements of the model.

One theme mentioned repeatedly here is the focus on sparse activity in the model
that allows us to cost-effectively leverage shared resources. Many currently popu-
lar neural models such as backpropogation are not compatible with this technique
because of the simultaneous activity across multiple pr(-cessors and communication
lines. Some of the work involved in neurocomputer design, then, involves looking
for those models that possess "sparse" characteristics, i. both the temporal and
spatial domains, so that architectural economies can be considered. Much of our
research is typified by this type of effort, and interestingly enough some biological
models appear to fit many of our requirements. One such example is the pyriform
cortex model of Gary Lynch, Rick Granger and their colleagues at the University of
California at Irvine [3].

It is our belief that these "second generation" neural network models will be more
closely inspired by biology and will have the size and power for solving some of the
more truly difficult problems that currently sit at the boundary between the messy,
analog, real world and discrete world of the digital computer.

Although we have couched our discussion in the context of our own research in
silicon cortex miodels [2], we feel that much of this is broadly applicable to general
neurocomputer design. The take-home message of this paper can be summarized
quite simply: beware of local optimizations, for neurocomputer design requires a
systems perspective.
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Abstract
We describe a parallel implementation of Kohonen sclf-organizing feature maps based on an epoch update.
That is, for a set, or epoch, of training patterns the weight changes are calculated independently for each
pattern and added at the end of the epoch cycle. Use of the epoch update allows efficient parallel implemen-
tation, as demonstrated on a Warp systolic computer, with simulation speeds ranging from 6 to 12 million
connections per second. Experimental results indicate, that for a small epoch size (10 to 20 patterns), conver-
gence is similar to the original algorithm. It is observed, however, that the epoch update causes instability of
the ordering process and "folded" maps sometimes result. To ensure topological ordering it is recommended
to use a small number of iterations of the exact algorithm to initialize the map to an ordered state before
using the parallel algorithm.

L. Introduction
The Kohonen self-organizing feature map [1] is a two dimensional mesh of neurons each with a weight vector,
wi. During the search phase, each node, i, computes the Euclidean distance between its weight vector and
the input vector, x,

S= IIx - will (1)
and chooses the closest neuron (minimum 7h) called the winning cell. During the update phase, a small
number of neurons within a neighbourhood around (and including) the winning cell are updated,

w, = w, + a(x - w,) (2)

where a is a small learning constant. The update neighbourhood usually begins large (to include about half
the cells in the network), and deceys slowly with time, until it includes only the winning cell.

A parallel implementation of the Kohonen algorithm is desired because of the large cost to compute (1)
for every neuron in the network to find the winning cell, and the large number of iterations required for the
update rule (2) to converge.

The Kohonen algorithm is difficult to implement on a parallel computer as global communication is
rcquired to braca•t. p• t vector x to all nva.untb iln tL ett two to iiuu tue WIILtiLIIkg ijaedrOi i'n

the network. Current attempts at a parallel implementation of the Kohonen algorithm depend on global
communication in analog hardware [4] or a global broadcast facility if the network can be implemented on
a single digital chip [5]. Although a fully parallel implementation will require the global communication
available in analog or optical computers, it is possible to achieve limited parallelism using digital computers
if the number of processors is small relative to the number of neurons in the network.

This paper presents a parallel implementation for the Warp systolic computer. The implementation based
on the epoch update is similar to the implementation of the back propagation algorithm for the Warp [3].

I. Partitioning the Problem for Systolic Architectures

The Warp systolic computer [2]. shown in figure 1 is a linear array of 10 computing cells, connected to an I/O
processor at either end, and driven by a Sun "host". The elements are systolic in the sense that communication
is local (left or right neighbour), and that each cell has a simple function (floating point add and multiply).

The simplest implementation called network partitioning [3], is to divide the neurons amoung the pro-
cessors. The feed-forward operations of (1) can be calculated independently, but global communication will
be required to find the global winning neuron. This approach is efficient as long as the number of pro-
cessors is small relative to the number of neurons. For the Warp implementation, however, this approach
was abandoned due to the programming complexity of dividing the neurons amoung the processors, and of
implementing a variable sized update region (neighbourhood) which may span more than one processing cell.
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For the Warp implementation, a second approach, called data partitioning [3], was used. In this approach,
the input patterns, rather than the neurons are divided amoung the processors. A different pattern is given
to each processing cell, and the network updates are calculated independently for each pattern. At the end
of the cycle, all of the network changes are added to provide an updated network. Each set of patterns used
for one cycle is called an epoch. Assuming a small epoch size and small weight changes for each pattern, this
update is expected to give results similar to the exact algorithm.

III Warp Implementation

The epoch update was implemented on the Warp architecture shown in figure 1. One training pattern is
placed in each of the first 9 processors. During the search phase, the weights fow through the array from
the left to the right, with each cell computing the activation of the neurons in the network given by (1)
and choosing the winning neuron. During the update phase, the weights flow through again, with each cell
outputting the weight changes given by (2). The weights flow along the upper (X) channel, while the weight
changes are accumulated along the lower (Y) channel. The tenth cell inputs the weights and the weight
changes, adds them, and outputs the updated weights.

Two changes were made to increase the speed on the Warp. The first change was to put two patterns
in every Warp cell since the I/O speed of the Warp is limited to approximately on half of the computation
speed. This results in an epoch size of 18 patter ,s. The second change is to calculate the similarity measure
of (1) as a dot product. Since the squared Euclidean distance can be written,

lix - will2 = IlwiI12 + 11X12 - 2xTwi (3)

it cart be calculated using the dot product, xT wi, if the magnitudes of wi and x are known. This requires that
the final cell compute the magnitudes of the weight vectors, and that the magnitude of the input patterns be
calculated as a pre-processing step.

The implementation of (3) requires 1 computation cycle per weight on the Warp, while the update rule
given by (2) requires 2 cycles per weight. The compiled code for the Warp performs the search and adapt
cycle in approximately 4 cycles per weight, corresponding to a maximum speed of 12.5 million connections
per second. The actual simulation speed ranges from 6 to 12 million connections per second depending on the
network size. This is due to a fixed communication overhead of 0.01 seconds each time an epoch of patterns
is started on the Warp array. For example, a network of 1024 neurons (32-by-32 mesh), with 16 inputs, runs
at 29 epochs per second. This corresponds to a speed of 522 iterations per second or 8 million connections
per second. The same network with 128 inputs will run at 5.3 epochs per second, a speed of 95 iterations per
second or 12.5 million connections per second.

IV. Experimental Results

The effect of the epoch update is to average several individual updates. For a small number of patterns the
epoch update appears to have similar performance to the exact algorithm, but suffers from two limitations.
The first limitation is that for stability, the size of the learning constant, a( is limited to a <5 1/K, where K is
the size of the epoch. This provides a practical limit on the epoch size. The second limitation is that, because
of the epoch update, the self-organization process occasionally fails, giving maps which are not topologically
ordered.

Maps were trained with both 2 and 8 dimensional inputs to compare the epoch update to the exact
algoiithm. The two dimensional data shown in figure 2 consists of two Guassian peaks, the first with a
variance of 1 centred at (0,0) and the second with a variance of 2 centred at (2.32,0). The 8 dimensional data
had the same two peaks, with centres at (0,0,0,0,0,0,0,0) and (2.32,0,0,0,0,0,0,0) respectively.

For the 2-dimensional input, 16-by-16 maps were trained with the input of figure 2, a learning raft o!f .05
and a neighbourhood decaying linearly from 8 to 0 during the first 3600 iterations. Figure 3 shows the exact
algorithm, while figure 4 shows the similar results of the epoch version. Figure 5 compares the convergence
of the exact (solid line) and the epoch (dotted line) algorithm based on inean squared error calculated as the
map evolves. The convergence of the exact and epoch maps was almost identical when the same learning rate
(.05) was used.

In the second experiment a 32-by-32 map was trained with the 8-dienicsion.d data set. The learning
constant was set to .05 and the neighbourhood was decayed linearly from 16 to 0 during the first 7200
iterations. Figure 6 shows that the exact and epoch versions have similar convergence in terms of mean
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squared error. Figure 7 shows the topological ordering of the exact algoriohm (solid line) and the epoch

update (dotted line) using a variant of a method proposed by Lampinen [6]. A line is drawn in the input

space moving from neuron (1,1) to (2,2), (3,3), and so on up to neuron (32,32), while the path of the line

is plotted by the position in the network. If the map is topologically ordered, the path should follow the

diagonal as in figure 7. Figure 8 shows how the path deviates from the diagonal for a map which is not

topologically ordered, as is occasionally found when the epoch update is used.

V. Summary and Conclusions

A parallel implementation of the Kohonen self-organizing feature map algorithm is proposed based upon an

epoch update. An efficient implementation on the Warp systolic computer achieved a learning rate of between

6 and 12 million connections per second depending on the network size.
By using the measurements of mean squared error and topological ordering, it is possible to evaluate

the convergence the algorithm for maps with any input dimension. Experiments have shown that for a small

epoch size (10 to 20 patterns), most runs of the epoch and the exact algorithm provide sinilar performance.
It has been observed, however, that as the epoch size increases, failure of the topological ordering becomes

more likely.
Two alternatives are being considered to improve the reliablity of the topological ordering process. The

first idea is to train the map with the exact algorithm for the first 100 to 1000 iterations, as the early

iterations, called the ordering phase, are responsible for the topological ordering of the map [I]. This could
be implemented on the Warp by disabling learning on all but the first systolic cell for the first 100 to 1000

epochs. For the longer convergence phase, the network could be trained with a full 18 patterns per epoch.

The second idea is to start the network in an ordered state before learning begins by choosing an initial set

of ordered weights.
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MULTIPLEXED, CHARGE-BASED CIRCUITS FOR ANALOG NEURAL SYSTEMS
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Abstract

A charge-based analog multiplier circuit and a time-division multiplexed architecture for single-chip,
multi-layer neural network implementations is presented. The neural cell supports continuous signals and
weights; all computations are performed in the analog domain and multiplexing is accomplished by
dynamic current injection. Test circuits fabricated with the MOSIS 2.O01m analog process operate as
predicted by analysis and simulation, with a multiply cycle time of approximately 30 nsec.

INTRODUCTION:

If one uses the development of mature microelectronic technologies as a precursory model, the extension of
artificial neural network models into integrated hardware at VLSI levels will require scalable, modular circuit
primitives, high-bandwidth communications, and possibly unique circuit designs not yet seen in traditional digital
or analog systems. Many engineering issues presently complicate chip-level integration of connectionist systems
[1].

One direction of neural implementation efforts has been the construction of massively-parallel digital systems.
These networks exhibit good global communication (interconnect) efficiency and VLSI potential, but aire limited
by the complexity of the individual computational (multiplier) elements and inherent quantization effects. In
contrast, analog VLSI offer simplicity of the neural processing elements, good dynamic range, and continuous
signals. However, analog systems are often plagued by interconnection limitations, a less than modular/scalable
arrangement, and high power consumption.

The particular long-range implementation goals of our group (VLSI, radiation-tolerant, space systems) pres-
ents many system constraints. Massive interlayer connections on a planar chip require multiplexing [2], yet high
throughput is essential. The analog synaptic weighting requires a multiplication circuit which is size and power
efficient, accurately supports continuous weights and signals, maintains a high degree of noise and degradation
imamunity, arid czan bM nattucally and eff-icinly mult~ipexed, Traditional active multiplier circuits, such as Gibert

cells [3] or op-amp gain stages, which are common in analog neural implementations [4], are complex circuits
requiring substantial space and power, thus limiting system complexity at the single-chip level. Passive weighting
using resistors or single FET devices are usually not modifiable after construction or are highly nonlinear.
Charge-based approachlus, such as CCD [5] or switched-capacitor [6], hold a great deal of promise for power and
size efficiency, but weighting by charge attenuation opens questions of reliability in noisy environments, such as
space.

This paper presents a charge-based approach for analog, multi-layer neural systems using charge-injection
multiplier circuits and analog multiplexing over distributed communication busses. Standard double-polysilicon,
2 um CMOS processing is utilized in the design.

TRANSDUCER CELL DESIGN:

The basic circuit module is a cell which produces an integral charge proportional to an input signal and a
weight, both of which are analog (continuous) quantities. Figure 1 shows a schematic of the multiplier circuit.

This York is supported in part by an internal research grant from the Vanderbilt Univ. Research Council.
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Fig. 1. Schematic diagram of the charge-based mu!tiplier circuit.

During operation, the input signal to a group of these modules, termed a neural broadcast cell, is temporarily
stored as a voltage, V., in a low-power buffer. Clock signal, 4, and devices M1 and M2 act as an input switched
capacitoi siage which uycles tie cathode of coupling capacitors CC between Vs and ground. The weight voltage
appears on the gates of devices M3 and M6; this weight can be stored in a nonvolatile fashion using double-poly
floating gate devices for M3 and M6, or can be dynamically refreshed from off-chip circuitry [7]. (We have
fabricated both and are evaluating the tradeoffs of nonvolatility versus ease of weight programming.)

The remainder of the circuit generates excitatory and inhibitory exponential pulses controlled by the signal and
weight, onto distributed charge accumulation busses shared by all cells. Multiplication is performed using the
simple property tha. the integral charge contained in an exponential current pulse is given by the peak value
multiplied by the decay time constant. This circuit is designed so that (to first order) the weight and the input
signal independn•tl, determine the exponential decay time constant and the initial magnitude of the pulse, respec-
tively. Sourcing and sinking output drivers connected to excitatory and inhibitory busses produce two-quadrant
multinlication over the weight range 0 to 10 Volts. More rigorous circuit analysis [8] shows interesting second
order nonlinearities, as is subsequently discussed.

By circuit design and constraints on the accumulation bus voltage, the output devices, M5 and M8, are always
saturated; because of this, the charge delivered does not depend (to first order) on the changing voltage along the
distribution bus. Thus, many of these cells can be, active at any one time. Also, since analog switches onto the
shared busses are not needed, clock feedthrough from switching transients are minimized. The circuit not only
performs the multiply operation on weight and signal, it acts as a simple, pulsed amplifier for high signal-to-noise
ratios. However, because this is a dynamic amplifier technique, power consumption is minimized.

ARCHITECTURE:

These basic multiplier circuits are grouped in neural broadcast cells, as shown in Fig. 2a, and time multiplexed
over shared analog busses, as depicted in Fig. 2b. Space does not permit a complete discussion of the overall
architecture of the analog multiplexed system, but the extension to more cells and layers is straightforward. In the
figure, S denotes signals and W denotes interconnect weights. Local control signals generated by a globally-
clocked shift register within each neural cell produce the 4 timing signals of Fig. I. l~ockstep operation proluces
concurrent multiplication and charge injection by one output of each neural broadcast cell during every clock
cycle.
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Fig. 2. (a) Operation of the basic neural broadcast cell. (b) Multiplexing and interconnect diagram; solid
lines indiPate active signal paths during one clock cycle.

During each clock cycle, the parasitic capacitance of the accumulation bus acts to integrate ald sum the charge
packets delivered by the neural cells. Shared buffer and activation circuits process the sum, perform appropriate
offset and scaling, and produce a voltage corresponding to the particular activation function implemented (e.g. a
sigmoid function). This output is then distributed to an analog latch for the first neural cell in the N+I layer. The
process is repeated (tim,; multiplexed), loading each neural broadcast cell in the N+1 layer. Since only one set of
processing (activation) ;ircuits are used between each layer, considerable cost (size, complexity, power) can be
expended where it is needed in these analog subcircuits without severe penalties in system size. In fact, the
approach is generic in that any type of activation function can be implemented with minimal modifications.

EXPEiRIMENTAL RESULTS:

Test bars of several of the subcircuits described have been fabricated using the MOSIS 2lp.m analog (double
polysificon) process. The circuit of Fig. 1, which was not at all optimized for space in this phase of the work,
occupied approximately 40x60 ltm. Experimental results of the operation of this basic circuit are shown in Fig. 3.
Here we see the injected charge as a function of the input signal for three weight values. Other similar data was
acquired, but only three curves are shown for clarity. An interesting natural nonlinearity of the circuit is seen in
Fig. 3. This nonlineawity was not unexpected; it is directly predicted by circuit analysis of Fig. 1. The curves
were fit with a sigmoid function multiplied by weighting factors, shown by the solid lines. Because of this form,
if backpropagation [9J is the learning scheme implemcnted, a simple modification of the activation temperature of
the desired sigmoid function between layers can predistort tie input signals so that very linear respons is seen
over the entire rait-lo-rail dynamic range of the circuits 181.

The test circii1. delivered the charge packet at the clock edge in approximately 30 nsec. A conservative
clocking scheme of 100 nscc cycle time with 50% duty cycle corresponds to 10 MHz operation for the multiplica-
tions, summing, and loading of each neural broadcast cell in a layer. Scaling and speed-optimization could
increase this figure, as well as pipelining information through the layers. Of course, niany outputs are active
during any one clock pulse, so throughput depends on the number of broadcast cells in each layer.
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CONCLUSIONS:

Our results indicate that a charge-based approach may be useful in the multiplexing of analog interconnect
paths for planar implementations of neural systems. The circuit described here generates a linear multiplication of
a stored weight (either dynamically refreshed or stored in a nonvolatile fashion on a floating gate) and a
predistorted input signal, and delivers the results as an amplified current transient of exponential form. Experi-
mental results show proper operation and predictable, controllable current impulses at an accumulation bus. Even
though multiplexing necessarily reduces the throughput of any system, we conclude from our results that the
distributed, concurrent multiplications of this architecture are efficient and accurate enough to be a useful compro-
mise between total interconnection and the limitations of planar VLSI proccssing.
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LEARNING LOGIC ARRAY. Ethem Alpaydin. Microcomputer Laboratory, Swiss Federal
Institute of Technology, Cour 37, 1007 Lausanne Switzerland.

When a logic function with some inputs and output is to be implemented, it is
generally hardwired using some, preferrably optimal, number of logic gates. When
the specification of the function is modified, the system is halt, the old circuit is
removed, and a new circuit is placed in its stead. One approach is to make the gates
programmable, thus allowing the modification of the logic function by just modifying
the values of some memory elements, i.e., enabling or disabling connections. This
second approach is the soft approach, as opposed to former hard approach. The
third approach that I am proposing here is the learning approach, where
modification of these memory elements are also performed by the system, thus
removing the need of a higher-level supervisor completely, who either needs to build
the new circuit in the hard approach, or determine and program the connectivities, in
the soft approach.

The idea is very simple. The diagram for a two-input function is given. There
lies a first layer which is a n to 2n decoder. The decoder layer gives out unit
vectors, i.e., one of the outputs is "on" at a time, others are all "off," thus the
actual output of the function can be computed using D" OR gat. The connections
from the decoder outputs to the actual output are enabled or disabled according to
the states of J-K flipflops, each governing one line. The state of the flipflop, as can
also be written as a logic function, can be determined by the system itself. A
feedback signal is required to inform the system when it commits an error.

x and ,/ are inputs, a is the only "on" output of the decoder, b is systems output, r
is the required output, e is the error signal when b and r do not match. Only one of

S~the 'and gate-flipflop" connection controller is shown, there are altogether four.
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First, the connection from the decoder output a to output b is important only
when a is "on." Besides, when there is no error, nothing needs to be modified. But
when there is an error, the error should be due to the connection connected to the
currently "on" otitput of the decoder. The state of that connection should be toggled,
i.e, disabled if currently enabled, and vice versa. A J-K flipflop when both inputs are
"*1on" acts as a toggle. The error signal can be fed to the system directly, or when
the required output is known, can be computed by a XOR gate. No special
initialization phase is required.

This work is supported by the Fonds National Suisse de [a Recherche Scientifique.
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Abstract The design of the ANSklit system is intended to integrate
heterogeneous computer systems through standard network

In this paper, we describe a distributed artificial neural system protocols, while avoiding any architectural dependencies. By using
(ANS) simulation environment for research on large-scale ANS Berkeley sockets (3) for interprocess communication (IPC), the
networks. The ANSkit. as the environment is called, allows local ANSkit system can operate over the many networks that make up
graphics workstations to utilize ANS simulation engines the TCP/IP Internet. This offers an environment which is
implemented on remote supercomputers and to interactively display conveniently extensible, both in terms of scale (to other
the results of the simulation. The ANSkit design uses extensive data supercomputer systems and graphics workstations on the network.)
compress-on and standard network protocols to permit its use over and for future improvements (to incorporate the benefits of new
wide area., as well a.,' local area networks. The ANSkit demonstrates ANS paradigms and visualization techniques). It is hoped ANSkit
an easily used, simulation visualization canability for ANS research will provide an exampie of how remote sup-=o.uting sc--
in a heterogeneous, distributed comouting environment. Further, can be used to provide , cost-effective tool for iesearch on large-
ANSkit demonstrates how remote supercomputing resources can scale ANS networks.
provide a cost-effective tool for jLNS research. 7The focus of this paper is to describe the physical architecture of

the ANSkit environment. A brief synopsis of the network
1. Introductlin environment at PN'L will be presented in order to provide some

perspective for the system architecture in context of the overall
Research in artificial neural system (ANS) technology is largely computer network.

based on coriputer software simulations(l]. This approach offers
researchers the opportunity to simulate a variety of ANS paradigms 2. Previous Work
in order to assess and compare their capabilities. However, the
simulation of even a moderately large ANS network on a The utility of supercomputers for ANS simulation has been
conventiona.: digital computer requires an immense amount of recognized by miany rt.adliex,,. Several systems, some of them
computation and thus, makes this approach both time-consuming very effective, have been proposed and/or implemented. For
and expensive. As the need for research on large-scale ANS example, the multilayered pcrcepton network has been implemented
networks grows, so must the computing power used for ANS on the massively parallel Connection Machine (41, the Warp,
simulation. systolic array computer [5], and the Cray X-MP vector processor

Supercomputing systems ofter a powerful workbench for ANS (6]. Most of this work has focused on the design and
simulation and provide an effective near-term solution. With the implementation of a particular ANS algorithm on a supercomputer.
supercomputer. a researcher can test ideas and optimize ANS In ct.ntrast, our work presents a framework for a distibuted ANS
network designs faster and more cost.effectively than would be simulation environment capable of incorporating multiple ANS
possible b, any other conventional means. Although only a few algorithms. Advances in implementing ANS algorithms on
years ago supercomputers were a scarce resource for the general supercomputers and our distributed ANS simulation environment
scientific crmruunity, the creation of national supercomputer centers are complementary. Our work ;.cpez.= - methodology so that
have made them accessible through wide area networks'. ANS algorithms running on remote, supercomputers are accessible

Because of the enormous quantities of data that ANS simulations through the internet to local graphics workstations.
can produce, graphical display capabilities are a major concern to
ANS researchers. In certain cases, graphic% have. led to a h,-.- . .r3. ANSIdt DesiEn Princirles
understanding of the computation taking place in ANS networks (2].
By translating data into images, computer graphics provide an Our monvation, in designing and implementing ANSISt, was to
effective way to reveal information that otherwise would remain facilitate research with large-scale ANS networks. It was not
buried in an avalanche of numbers. A computer system well-suited intended as a simulation tool for any particular ANS network model.
for ANS research would use a dedicated high-performance computer Instead, our goal was to develop a distributed ANS simulation
for ANS simulation that is tightly coupled to a dedicated graphics env;.onment that could easily incorporate additional ANS models
workstation for network visualization, However, this is not a cost- and "omputing hardware as our research progressed. This goal led
effective approach when the simulation engine is a supercomputer. to the :-t of key design principles listed below:

Our approach in satisfying these somewhat conflicting resource
constraints is to distribute the processing of ANS simulation across
computer systems. A distributed ANS simulation environment Natural distribution of processes. Each process of the
known as ANSkit (Artificial Neural System toolkit) was designed at simulation system should be executed on a computer system that
Pacific Northwest Laboratory (PNL) to make use of both remote is natural for that process. For example, ANS learning mode
supercomputing resources and local graphics workstations. This simulation is nr-mrally done on a high-performance floating-point
approach allows us to use remote supercomputing resources to architecture, A' &ilc the rendering of the ANS network under
achieve appreciably higher-performance ANS simulation, study is most naturally done on a high-resolution graphics
Visualization support and ANS simulation control is incorporated in workstation.
the ANS simulator implemented on local graphics workstations.

I Operated for the U.S. Dcparunent of Energy by Batelle Memorial J Warp is a s5rvicemark of Carnegie-Mellon University.

Insutute under conu-act DE-AC06-76RLO 1830.
2 The sites that supply supercompuung to the general scientific community

amr: National Magnetic Fu5ciu Energ/ Center (NMFECC). National Center for
Atnospheric Pesearch (NCAR), and the National Science Foundation
suplercomputer enters (SCSC, PSC, JvNC, NCSA), Access to these
superconipuung centers is via wide area rnctworks.
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simulator on a supercomputer produces an appreciable performance process. Optionally, for small ANS networks, the learning mode
difference. Therefore, the ANS simulation modules for learning simulation can be run on the local graphics workstation.
were implemented to perform operations on vectors of data which When tne learning process is running on a remote
represent the ANS network and training data. As described in more supercomputer, it must transmit a file containing the numeric
detail elsewhere [6], the resulhing modules are both highly representation of the ANS network (connection weights and
vectorizable on supercomputers and quite efficient on scalar processing elements values) back to the local worksiation. The user
processors. Third, the learning process must provide the user interface process decompresses this data into the standard vector
interface process with the ANS network state information in near- representation of the ANS network, and provides this data to the
real time. From a remote supercomputer, the learning process must graphics interface module.
transmit both the network connection weights and learning state Once the learning process is complete, a file containing the final
information over the internct to the user interface process. connection weights is transmitted to the user interface. From the

To reduce both the amount of data transferred and the transfer user interface, the researcher can display the ANS network and
time, the data is compressed by limiting the significant digits and perform experiments, to evaluate the results of the training. The
removing redundancy. To compress the connection weights we use ANS network definition can also be saved and reloaded from fileJs in
wha. amounts to a sequential quantization entropy reduction text formats. An ANS network definition includes the network
technique. This is similar in principle to differential pulse code connection topo!ogy, underlying data structures, and oationally,
modulation (7]. The small loss of accuracy in the connection weight selected state information (such as connection weight values and
values does not adversely affect the quality of the graphics display processing element states).
of the ANS network. When the ANS learning process is complete.
the final connection weights are sent over the network without 5.3. Graphics Interface Module
compressing the data, to preserve the accuracy of the values.

The ANSkit learning process can be used effectively over the The graphics interface module can render graphics images from
internet s.nce it does not send out huge amounts of data to the user the vector rtprr-senration of the ANS network and dispavy the
interface process on the local workstation. On a Cray X/MP, the network in near-real time. This allows the researcher to view ANS
value of one connection weight requires 64 bits of storage. Each network information as the computations are taking place,
connection stre.ngth is data compressed prior to being transmitted independent of the process running the ANS simulation. The
with 12:1 -15:1 compression. With the 50fMbit/sec H'PERchannel, graphics interface module presents this interactive graphics display
the data transfer rate is approximately 11 million connection values of the ANS network during both the learning and execution modes
per second. At l.5Mbit/sec, the data rate is considerably slower of simulation.
going across the microwave connection to the Ethernet. However, Graphics primitives are rendered by scanning the numeric
these data transfer rates are sufficiently fast to support the near-real representation of the ANS network stored by the user interface
time display of ANS network information on the local workstation, process. Each ANS network processing element and connection is
To illustrate, in a large ANS network with 1,000 processing displayed as -- separate icon whose size, shape, or shading varies
elements and 160,000 connections, the connection weight values with the current value of that processing eTement or connection. As
and learning trace information amounts to approximately 83 Kbytes the simulation runs, the icons are updated to reflect changing values,
of compressed data that must be transmitted for each graphics providing a continuously changing view of what the network is
display update. This rakes slightly over one-hundrtedh of a second doi ng.
at 50 Mbits/sec, and slightly less than one-half a second at Supporting the graphics interface module are two graphics
1.SMbit/sec. representation algorithms that are general enough to be used for

displaying any ANS network model. The first is an algorithm to
5.1. Simulation User Interface Modules display the ANS connection weights and processing element values

as Hinton diagrams. The user may select which processing
The simulation user interface modules are responsible for elements and connections are displayed, and may select the rate at

interpreting user commands, and executing the ANS simulation on which the connection weight display is updated during learning
either a remote supercomputer or a local graphics workstation. The mode simulation. The second is an algorithm to display the ANS
user intef--ce is dzigned to present the researcher with an network connection weights and processing e!..cn v aLc. .
interactive interface to the ANS simulation, regardless of the network graph diagrams. This algorithm provides a mechanism for
machine on which the simulation is being run. It also provides displaying the complete network topology of the network under
support for creating and archiving ANS networks and training sets, study. Here, the user may select the rate at which the connection
and furnishes the graphics interface module with the data rrsquired to weight and processing element state display is updated.
create a visual display of the ANS network. Other graphical operations on the ANS network display include" ',.,,t has a g-aphica interface which alows the u .er to design zoom and pan on the processing element and connection icons, and

an ANS network interactively, using a mouse and pull-down menus the ability to trace the value of any icon over time. The result is an
to create and edit information which corresponds to the network's interactive graphics display that allows the researcher to graphically
structure. The output of this process is two data files. One specifies view and examine the ANS network under study at any time without
the ANS network configuration and model parameters. The other disturbing the simulation.
contains the training data for ANS learning. A validation module
then performs error and validity tests on the user specified network. 6. Future Directions and Enhancements
The resulting ANS network is displayed on the graphics display by
the graphics interface module. In a few seconds, the researcher can Though the ANSkit environment is still under development, it is
define and build an ANS network, and view a graphical display of being used by researchers to develop applications of ANS network
the resulting ANS network, models to real-world problerts. For example, we have used the

From the user interface, the researcher can elect to run the ANS ANSkit environment to develop a multilayered perceptron network
network on the local workstation to conduct experiments (i.e., for a matched filtering problem (Barga and Melton (81).
classification performance, error tolerance, etc.) with the network Future plans for enhancing the ANSkIt environment include the
under study, or execute the learning process. ANSkit has incorporation of additional ANS algo'ithm implementations and
provisions for controlling learning mode simulation runs on remote computers systems, and enhancements to the user interface. As
machines. Once the user has created the ANS network and selected illustrated in Figure 3, several ANS algorithms have been
the training data, the user opens an authorized session on the implemented on computer systems throughout the PNL computer
supercomputer through a terminal emulator on the workstation. By network. Currently, only the multilayrred perceptron (NILP)
selecting an option from the user interface menu, the user begins the network is fully integrated into the ANSkLt environment. Our
learning mode process, which in turn establishes the interprocess ultimate objective is to integrate all of the ANS simulation algorithms
communication path on the network. The user interface process into the ANSkit environment. In addition, we will utilize other high
then transmits the data files which contain the ANS network speed computer systems for ANS algorithm simulation, such as thc
specification and the training data to the ANS learning mcxie process. Convex (refer to figure 2). The ANSkit environment will continue
At this point the learning process on the supercomputer creates the to grow, incorporating new ANS simulations and compurcs
ANS network from the specifications file and begins the learning systems, in response to resources required to support our ANS

research efforts.
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. Standard network interface. The system must utilize 5. The ANSIhit Distributed VNS Simulitinn nvirrnment J-
standard network protocols and avoid architectural dependencies.
This is to permit the extension of the system to computing ANSkit was designed to take advantage of the heterogeneous
resources that are accessible over the intcrnet and which run computing resources described above. The ANSkit system desian
TCP/I.P. involves two processes: the user interface process and. the ANS

learning mode process, as shown in Figure 2. The user interface
"• Vectorization. The learning mode process should be able to process is designed to run on a local graphics workstation, while the

exploit vectorization and pipelining. Calculations that are similar ANS learning mode process is designed to run either locally on the
should be done together. workstation or on a remote supercomputer. as the user sees

appropriate. These processes communicate over the Ethernet or
" Common representation. Most of the simulation system HYPERchannel networks using TCP/IP protocols and the Berkeley

should work with a single rmpresentation of the ANS network, socket library. The user interface process controls the ANS
To accomplish this, we represent the ANS network and training simulation and graphically displays the ANS network under study.
data as vectors. All of the ANS simulation calculations and The learning mode process simulates the ANS learning mode and
visualization algorithms are performed exclusively on these sends the network lear.ning state information over the internet to the
vector representations. This is not only an efficient method of user interface process. By remotely simulating the ANS network on
transmitting ANS network information over the internet, it also the supercomputer. numerical data instead of image data can be
facilitates the vectotization of ANS simulation. transmitted, reducing the bandwidth requirements for interactive

simulation. The user interface process then displays the state of
" Large ANS models. The system should be designed to ANS network processing elements and connections on te local

simulate a large number of ANS network processing elements workstation, in near-real time, independent of the learning process
and be able to process large a-aining sets. running on the sup!rcomputer. The user interface process is

designed to simulate both ANS execution and learning mdcces. This
" Near-real time display of the ANS network. The is useful for executing the learning procedure tor small ANS

graphics display of the ANS network must be highly efficient, as networks and for experimenting on trained ANS networks.
we expect the display to be updated in near-real time. There an= 3 main modules in ANSkit: the simulation engine for

ANS network learning mode; the ANS simulation user interface: and
4. The Network Envhjonment, finally the ANS network graphics display. These software modules

are illustrated in figure 2a. As shown in Figure 2b, the modules can
At PNI, the three principal networks associated with the ANSkcit be connected procedurally on a local graphics workstation, or, as

system are Ethernet. HYPERchannel. and the long-haul network shown in Figure 2c, by interprocess communication between a local
NSFnet. The local area network based on Ethernet links all the graphics workstation and a remote supercomputer.
computers with the exception of the Cray X-MP computer system.
The Cray X-MP is linked to the network by HYPERchanneL Both
of these local-access networks connect computers located within A . ..... 1 -

PNL. These laboratory-wide connections are made with microwave I Ab-"W..-I
technology, repeaters, and bridge connections for the Ethernet and I1 ,
HYPERchannel nctworks, as -,dicated ii Fu•i I. I.

I -

I - i _-i ',,-

Figure 2. The distributed architecture of the ANSkit system. The ANSkit
software modules and interfaces am filuitratex in Figure 7a. 'The modules may

,D ' be connected procedurally on a local workstation or by interprocess
. communication between a local workstation and a supercomputer, as shown in

Figures 2b and 2c, rmpoxtivcly. The partitioning of the modules is specified by
the user at runtime.

Figure 1. Partal hardware configuration of the PNL computing facilities. This is a complementary combination of technologies. Each
machine is permitted to do what it does best (interactive graphics vs.
intensive computation) and utilizes supercomputing resources
available over wide-area networks. Most imiportantly, the researcher

All the computers shown in Figure 1 run the TCP/IP is presented with an interactive simulation environment for
communication protocol. In addition, Berkeley-style networking investigating large-scale ANS networks. The ANSkit software
commands are supported on many of the larger systems, which modules are discussed in more detail in the following sections.
further facilita.es the distribution of application systems. The use of
TCP/IP provides remote users transparent access to the computing LL..Slmulatlon Entrine for ANS_.1..ani".g
resources on the network, including the Ciay X-MP, through the
Ethemet and HYPERcharnel gateways. We had several goals related to thc design of the modules for the

The internet accommodates multiple. diverse computing systems, ANS learning mode process. First, the software had to be able :o
network technologies, and operating systems while providing a run on both supercomputers and workstations. The researcher
uniform set of conventions for usage. ANSkit is designed to take could then elect to run the ANS learning mode simulation on the
advantage of this extensive technology. The success of distributing local workstation or the supercomputer, depending on the
;he ANSkit system cerois the internet is that ANSkit "sees" and uses complexity of the ANS network and training set data. This meant
only one, uniform interface: TCP/IP and Berkeley sockets. The we had to avoid architectural dependencies. Second. whenever
result is a highly extensible system that can easily incorporate any possible we wanted to take advantage of the fine.grained parallelism
additional computer systems that run TCP/IP with the Berkeley afforded by the pipelined vector processors found on
socket library. supercomputers at our lab. This way, running the ANS learning
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GL"NIOIWOUrtrfO GkZ.A~j WRKJ#TA170M The rievelopmcnt of an operational distributed ANIS simulation
ARTIA AT2cnvironment for research with respect to thc methodology.

Our exper-ience with ANSkIt demonstrates that distributed ANS
MLY ow-ssimulation can be quite successful in wide area networks.

C UN Sr(;ýYNItJOLICS 3&50 processing on both remote supercomputers and local graphics
workstations. It is our view that the development effort expcrnded to

11 -A implement the ANSkit environment on the hardware described is
wel jucifedby the increase gained in performance. We feel that

CPA VX-Mthe usC of supercomputers is essential for thc simulation of large-
ocoac mr (mscale ANS networks to be performed in a feasible amount of time.

For a mome complete treatment on the use of supercomputers for
ANS simulation (with a detailed cxample), sec Barga (6].
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Our specific accomplishmnirts include:

*The developmant of a methodology for distributing ANS
simulation computations. This methodology is based on the
utilization of local graphics workstations and remote
supercomputer resources accessible over wide area networks.
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ABSTRACT

The interpretation of radiological images is a two step
process requiring 1) the identification of abnormal anatomical
structures as they appear on the radiographic image, and 2) the
interpretation of any abnormal findings into a list of plausible
diagnoses. The first task involves pattern recognition, where
the second step in this process is a cognitive procedure. We
have evaluated the performance of neural networks in both of
these steps, independently, and found that in both cases neural
networks were capable of performance comparable to radiologists.

INTRODUCTION

Medical diagnosis is an endeavor requiring the assimilation
of complex, often sparsely related and sometimes conflicting
data. consistent and accurate medical diagnosis is a prerequi-
site to efficacious medical treatment. The quality of medical
diagnosis, however, is very much related to the training and
experience of the medical diagnosticians that the patient
encounters in his or her clinical evaluation. The aim of
computer aided diagnosis (CAD) is not to replace, but rather to
aid and assist in the diagnostic work-up of patients. The
hypothesis surrounding CAD is that computer assisted diagnostic
tools, if they can be implemented, tested and demonstrated to be
reasonably accurate, will introduce improved consistency and
accuracy in the diaqnostic phase of patient care.

Radiologists sit at the front line of the battery of
diagnostic tests in medical practice, and often the "x-ray"
(radiograph) is the first diagnostic test ordered in the work-up
of a patient. Thus, the radiologist works in a realm where the
radiographic image is the primary, and often the only, source of
diagnostic information. The sparsity of clinical information is
only compounded by the enormity of the radiographic information.
For example, chest radiography using the anterioposterior and
lateral views (two images) comprises the analog equivalent of
approximately 32 megabytes of data.

Radiologists first read the radiographic images, and compose
a mental list of abnormal "findings", which may serve as clues in
the diagnosis. This process is clearly one of pattern
recogni.tion. Due to the constraints imposed by minimizing the
radiation exposure to the patient, the signal to noise ratio of
radiographic images can be very low. We examined the performance
of a two layer perceptron in evaluating simulated, very simple
but noisy 25 pixel images and compared the network's performance
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with two human observers given the same task. The second step in
radiologic diagnosis is to interpret relevant radiographic
findings, comprising a list of possible diagnosis, which in turn
is used in guiding further diagnostic work-up. We evaluated this
in the specific application of pediatric chest image diagnosis.
The two phases in this process will be discussed sequentially.

STEP 1: PATTERN RECOGNITION IN A NOISY IMAGE

One hundred 25-pixel (5 x 5) images were generated with
Gaussian noise, and in 50% of these a signal was added. The
amplitude of the signal with respect to the noisy background was
governed by the signal to noise ratio (SNR), a dependent variable
in this study. The signal was a 3 x 3 square added to the center
of the 5 x 5 image. The 100 images served as a training set for
the feedforward 2 layer network, using 25 input nodes (I for each
pixel), 5 hidden nodes and 1 output node. The image data in each
case was normalized to the interval (0,1) prior to being input to
the network. The target nodes were set to 0 if no signal was
present, and to 1 if a signal was present. The learning
algorithm used was a variant of the generalized delta rule. The
network solution converged with 100% accuracy in under 3000
iterations on the initial training set generated at a SNR of 5.
The same noise ensemble was used to generate training cets at
lower SNRs, and the network (along with its coefficients) was
trained using progressively lower SNRs (5, 3, 2.5, 2 to 1.75).
This "sensitizing" technique was used because the network was
unable to converge on the training set when initially generated
at a SNR of 2.

The network was tested on test sets of 1000 images
(different from the training set), generated as above, at various
SNRs. The numbers of true positives (tp), true negatives (tn),
false positives (fp) and false negatives (fn) were scored, and
the true positive fraction [tp/(tp+fn)] and the false positive
fraction [fp/(fp+tn)] were calculated. A threshold could be
applied and varied to the network output (which is continuous on
the interval (0,1)), such that network outputs less than the
threshold were considered as "no signal", and output above the
threshold value meant that the network is calling the signal as
present. The tp and fp fractions were calculated as a function
of threshold value and are plotted against each other in Figure
1. These plots are known as Receiver Operating Characteristic
(ROC) curves. Two human observers (one radiologist and one
physicist) were tested using 300 images each, and their results
are also shown on Figure I. Because the human observers did not
vary their decision threshold, only one point of the ROC curve
was determined for each human observer.

On ROC curves, a perfect observer would be represented by a
plot climbing the ordinate to 100% and then spanning the abscissa
at the top of the graph. A perfect guesser would be represented
by the diagonal line from lower left to upper right. The ROC
curves shown here illustrate that the neural network was able to
perform comparable or better to human observers, at least in this
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very basic visual perception task. This result suggests that
continued research using neural networks in radiological pattern
recognition is warranted.

FIGURE 1
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STEP 2: COMPUTER AIDED DIAGNOSES USING NEURAL NETWORKS

The second step that a radiologist performs is to convert a
mental list of radiographic findings to a list of plausible
diagnoses. This step encompasses cognitive reasoning based on
the radiologist's medical training and experience. We developed
a checklist with 50 possible choices for radiographic findings,
and 23 possible diagnoses, pertinent to newborn chest
radiographs. A training set of 77 images, all fronm natients-
under 48 hours of age, was read by a pediatric radiologist (RAD
A). A separate set of 103 images, to be used for testing network
performance, was read by two pediatric radiologists (RAD A and
RAD B) in independent sessions. The 50 possible findings could
be represented by 21 input nodes. Eleven of the 23 possible
diagnoses did not occur in over 2 patients, and so only the 12
remaining diagnoses were used, in corresponding to the 12 output
nodes. Table 1 lists the findings and diagnoses used in this
study. A two layer feedforward perceptron (one hidden layer, 15
hidden nodes) was used, and again a variant of the generalized
delta rule was used to train the network on the training data.
After 20,000 iterations the network was able to correctly
identify 150 of the 190 positive diagnosis (79%) and 727 of the
736 negative diagnoses (99%) made by the mentor radiologist, RAD
A. The agreement in the test resuLts between the two
radiologists, between the network and either radiologist, and
between two random guessers is shown in Figire 2. Positive
agreement is defined as tp/(tp+fn+fp), negative agreement is
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tn/(tn+fn+fp) and total agreement is (tp+tn)/(tn+tp+fn+fp). The
random guessers were armed with only the prevalence of the
various diagnoses as determined from the training data.

Table 1: The findings and diagnoses used in this study

FINDINOS DIAGNOSES

CnrdiomegaLy Amniotic F.jid Aspiration
Pulmonary Vascular Density Neenatal Pneumonia

Nediastinat Shift Hyaline Membrane Disease
Pleural Effusion Meconium Aspiration Syndrome

Pneumothorax Acute Pulmonary Hemorrhage
Pneuiomediastinum Atelectasis
Aeration-degree Transient Tachypuca of Newborn
Aeration-spatial Cyanotic Congenital Heart Disease

Pulmonary Infiltrate+8 characteristics Acyanotic Congenital Heart Disease
Pulmonary Intittrate Distribution Congestive Heart Failure

Rowel Gas Pulmonary Hypoplasia
Aszites Normal Chest

Hepatomegaty

SUMMARY

We have applied neurocomputing towards computer aided
diagnosis in radiological diagnosis, and found that neural
natworks. show early promise in both steps of image interpre a-
tion. The results presented in this study provide a basis •nd
encouragement for further investigation.

Figure 2: Comparisons of performance between diagnosticians
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Abstract
A small network of electronic Pulse Coding Neurons (PCNs) is presented

having features similar to those of its biological counterpart. Information is
encoded in the instantaneous impulse rate IR(t). It functions in a completely
analog and asynchronous way, with the synaptic weights being stored digitally
(8 bit). Neural net topology can be selected flexibly. A personal computer is
used for monitoring functions.

It is shown that the PCN network can learn logical functions including
XOR when provided with a corresponding teach signal. The learning rule is
embedded in the neural net topology rather than in a learning algorithm. To
this purpose, some of the PCNs function as "learning neurons", having special
contacts on synapses (presumably similar to pre-synaptic synapses) to modify
the wuights.

Introduction
There have been several efforts to build fast VLSI hardware emulators

for Artifiiial Neural Networks (ANNs,[8]). Most of them are based on simple
Processing Elements (PEs) that show only very few similarities with biological
rieuiko•s. One of the main differences between these P~s and Pulse Coding
Neurons (PCNs) is that PCNs use pulse trains as information carriers, whose
temporal structure offers a wide range of free parameters. The PCN concept
emphasizes the information processing in biological neural systems ([4], [7],
[101).

The literature describes several attempts to combine pulse coding schemes
with VLSI technology. ([1], [2], [3], [5], [6], [9], [11]). Most of them
stress not only biological relevance but technical advantages like small size,
low power dissipation, and ease of design. Alterable synaptic weighting is
usually not possible or accomplished by either gating incoming pulse streams
([5]) or modulating individual pulse widths ([2], [5]). However, in our
a•nproach, nae 4ight inconing pulses by modulating their a..plitudt only
without changing any temporal parameters.

Concept
The PCN network consists of two different hardware modules, neurons and

synapses. The modul.s (built with discrete electronic componerts) can be
flexibly combined to create various neural net topologies. A Personal Computer
(PC) is used to initialize th'3 synaptic weights, provide network- and teach-
inputs for learning, and monitor the weights during learning.

Fig. 1 shows a block diagram of our electronic PCN. Rectangular pulses of
unity zmplitude (5 V, TTL level) and a duration of 1 ms represent action
potentials (APs). Synaptic weights are digitally stored ip 8 bit counters and
A/DI-converted. An incoming AP closes a switch and creates a pulse of lms and
an amplitude corresponding to the stored weight. Weighted pulses of an
arbitrary number of synapses are connected to a common low-pass filter. The
filter output is the linear superposition of the single AP response3 and
represents the membrane potential (TTM) . A comparator triggers a pulse
generator that generates a new AP whenever UM reaches the threshuld potential

*) supported in part by a BMFT--Grant to R. Eccmiller
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Control InputU

Fig. 1: block diagram of Pulse Coding Neuron (PCN)
(UT) . To siimulate the iefractory period, the AP at the output drives UT to its

maximum value (usually the supply voltage) . UT then decays towards the
stationary threshold UTO following a hyperbolic time function

U (t) = 1 / (m - t) + UTO
(see lig. 2). Consequently, the instantaneous impulse rate IR(t) is
proportional to the suprathreshold membrane potential Um (t) (see: inset
Fig. I).

As the synaptic weights are stored in counters (8 bit resolution) , they
can only change by +/- 1 bit. To effect weight changes, each synapse has two
control inputs (presynaptic synapses) in order to increase (M) or decrease (-)
weights by means of arriving APs. A weight will be changed only if the AP at
the cnntrol i-•,rvt coincides at least partially with another AP at the regular
synaptic input.

i 5V

- TU in : input signal
out: ou •'ut signal

UM OV UM : membrane poteintial
• -• _ __--' UT : threshold potential

cut U1,0 : UT resting value

irm t

Fig. 2: Time course of PCN signals while processing a burst of APs
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Fig. 3: Network that learns Boolean functions
inl, in2, bias, teach : network input signals
out : network output signal_
Nh : hidden neuron
No : output neuron
NL+, NLL_ : learning neurons

Application
A neural network of PCNs, which learns Boolean functions of two variables

(e. g. XOR), is shown in Fig. 3. The logical values (1, 0) are represented by
the following coding scheme:

"1" -> "one ore more APs (burst)",
"g lov "no AP".

The PC generates 2 inputs (nl and in2), an additional bias input, and a teach
signal as desired output. All the signals exhibit bursts of the same type
(shown at the top of Fig. 2) to denote "1". The "hidden unit" Nh fires
whenever both inl and in2 are active. The only changeable weights in this
network are those of the synapses 1, 2, 3. and 4 of output unit N_.

N1,+ and N are "learning neurons" that "compare" teach and output signal
out generated ý-y No, detect errors, and change the weights. NL+ fires when
teach = 1 and out = 0. Its output is directly connected with one of the "+"
control inputs of synapses 1, 2, 3, and 4. NL_ operates respectively for the
"_" control input.

In the following experiment to learn XOR, the four possible input
combinations together with bias and teach were presented repeatedly with a
pause of 10 ms between them. Teach was "1" when either inl or in2 were "I"
(XOR). Fig. 4 illustrates synaptic weight changes while the number of learning
cycles increases. Initial weights were set to +1. Learning curves were
monitored until no further error could be detected for at least 200 more
learning cycles. The experiment was repeated with all the other possible truth
tables and proves that the network is indeed able to learn Boolean functions.

This approach, using asynchronous information processing in PCNs, is
fundamentally different to standard self-organizing mechanisms in neural
networks: "learning neurons" projecting to weight-changing inputs of synapses
embed a modified version of the Delta-rule in the neural net topology.
Consequently, no analytical calculation of learning rules is necessary.
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Fig. 4: Synaptic weights of the output unit NO while learning XOR
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Introduction

Biological neural systems employ synaptic learning rules which include associative learning of
temporal relationships between multiple inputs. Much of the cellular basis for this learning has
been identified experimentally in the neural ganglia of simple invertebrates such as worms,
snails and .nsects [1]. An example is the plasticity in the sensorimotor synapse which controls
the gill withdrawl reflex of the marine mollusc Aplysia [2-4]. The synaptic weight in this case
undergoes (a) habituation, in which repeated stimuli of the siphon elicit reduced gill withdraw]
responses as the animal learns to ignore the stimulus (b) sensitization, in which a shock to the
tail evokes the opposite response of increased sensitivity to siphon stimulation and (c) classical
or Pavlovian conditioning, in which there is a temporal pairing of the conditioned stimulus
(CS) to the siphon which precedes the unconditioned stimulus (US) to the tail by a critical time
period. in the latter case the enhanced response is similar to sensitization but is learned faster
and results in a larger synaptic weight [2-4]. This paper suggests that EEPROM devices of the
floating gate tunnel injection geometry can implement in situ nonvolatile versions of all of these
biological, non-Hebbian synaptic learning primitives.

EEPROM Synapses

Fig.1 illustrates an EEPROM device of the floating gate tunnel injection type [5]. This device
will be- shown to represent the equivalent for an artificial VLSI network of a biological synapse
such ai tre :;ensonmotor synapse described above. The weight of this synapse is proportional
,o the chanrel co.nductance of the EEPROM device which in turn is determined by the charge
Qfg on Os e~ectiAcally floating gate FG. This device has an ultrathin oxide region (region 3 in
Fig. &1' ,)veL , diffused region which permits electron tunnelling to the floating gate. We will use
the symo.i 4,p for the voltage applied to this diffused region since in our circuit it represents the
programming pontial. A potential Vg applied to the upper or control gate also affects the
tunneling process by contributing to the potential of the FG given by [5--7]

Vfg = (Qfg + C1Vp + C3 Vg)/CT (1)

where tht. c.ýaci-'mnces C1 , C2 and C3 are between the FG and the Vp terminal, between the
FG and the ,i;annel, and between the FG and the Vg terminal, respectively. The total FG
capacitance C-r = C1 + C2 + C3 . The electric field in the tunnel oxide is given by

E = (Vp-Vfg) / d (2)

with d the tunnel oxide thickness. The tunnel current to the FG is responsible for the learning
process; this current is due to Fowler-Nordheim tunneling and is described by

J =K K• exp (- 0/ E) (3)
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where K = 9.625 x 10-7 AV- 2 and 0 = 2.765 x 108 Vcm- 1 [8] . The sign of E determines the
direction of J; it is the absolute value or magnitude of E which appears in (3). The charge Qfg
determines the synaptic weight via the conductance of the MOSFET channel. This conductance
depends upon th. threshold voltage VT of the device which in turn is related to the charge on
the floating gate via

VT = VTO Qfg/ C3 (4)

for an n-channel device, with VTO the threshold voltage when Qfg is zero. Modifications to
this charge due to the tunnel current thus result in changes to the threshold voltage of

AVT = - AQfg / C3 = - J At T" / C3  (5)

where 1" = A1 C2 / (A2 (C1 +C2 )), with A2 and A1 the areas of the floating gate over the
channel and over the tunnel oxide. This factor takes account of charge redistribution on the FG
following tunneling from the V terminal. In (4) and (5) the charges and capacitances are per
unit area. Finally, the channelcurrent in the EEPROM which represents the quantity of
neurotransmitter release NT is given by

I = NT = (L.t C0/2) (W/L) [( Vg - VT) 2 ] (6)

for saturation condifivns in the transistor.

Habitumticl-, is -:icorporatcd into our model by employing the control gate CG and Vg in Fig. 1.
Assume thia ihe US is zero and that a series of pulses (of magnitude Vg -= IOV and duration
Ilms) are appl ed as a CS to the drain and control gate terminals. Initially there is no charge on
the FG so the threshol I voltage is VTO. The potential Vp and Qfg in (1) are zt~ro and the
floating gate potential is- Vfg = Vg (C3 / CT ). The magnitude of the electric field E in the
tunnel oxide is Vfg / d and the tunnel current is given for this E by (3). This current results in a
buildup of negative chatge on the FG, an increase in VT and thus a decrease in the channel
current NT. It also causes a reduction of Vfg which reduces E and J. The result is that further
pulses continue to increase the threshold voltage but with diminished effect. This is shown in
Fig.2 which presents the dependence of AVT on the number of CS pulses (the curve marked

habituation). For this simulation we have that Vg = 10V, 1 =0.1 and At = 10-3 s. We have
used values of C3 = 0.6 CT;, C3 per unit area = 3.45 x 10-9 Fcm"2 , and d = 50 A.
Also shown in Fig.2 arc the effects of sensitization and classical conditioning on threshold
voltage. During a sensitization trial US pulses are applied to the Vp terminal with the CS set to
zero. Thus Vfg in (2) is obtained from (1) with Vg = 0 in this case. The ,harge on the FG now
becomes positive. The shift in threshold voltage due to US pulses is shown in Fig.2 by the
curve marked sensitization, where we have employed the values V - 6V and Cl/CT = 0.1.
During classical conditioning a very similar process occurs to that Turing sensitization. If the
US pulse described above is immediately preceded by a CS pulse within a critical time period
then circuitry external to the EEPROM can facilitate the positive charging of the FG in three
distinct ways: (i) the CS can be made to leave a temporary negative charge on the upper gate,
(ii) the CS may provide a substrate bias, or (iii) the CS together with the US can be used to
increase Vp. We have developed circuitry which accomplishes (iii) for the example of Aplysia
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synapses by using three ex:rt transistors [9]. This circuitry also prohibits backward
conditioning (thereby enforcing a causal relation between CS and US) at the cost of a single
transistor. This provides the desired time window for classical conditioning, and the shape of
this window may be controlled via the time constants of the external circuitry.The increase in
Vp ih turn provides a larger electric field in the tunnel oxide layer of the EEPROM and
enhanced tunnel current for classical conditioning as compared to sensitization. We demonstrate
the effects in Fig.2 (the curve marked classical conditioning) with a value of VP of 7V. The
same EEPROM device thus accomplishes all three biological learning primitives.

The influence of the threshold voltage shifts of Fig.2 on the learning behaviour is illustrated in
Fig.3. This is a schematic timing diagram in which the relative magnitudes of the synaptic
currents (the NT pulses in the figure) have been determined quantitatively from the results of
Fig.2. More or less rapid response is readily accomplished by adjusting assumed values of
device and circuit parameters in the simulation. In this sense the silicon model is more flexible
than its biological counterpart. An initial threshold votage of IV was assumed for the EEPROM
and the sensitization and classical conditioning results begin with a habituated device. We
conclude that in situ synaptic learning primitives for habituation, sensitization, and association
including Pavlovian conditioning can be efficiently realized with analog EEPROMs.

Acknowledgements: I am grateful to the Natural Sciences and Engincering Research Council of
Canada for financial assistance. The hospitality of Oxford University and Jesus College during
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1. Introduction

This paper introduces a neural network design language [11 for solving problems using the
neural three-layered perceptron model [2] with three-valued-logic network [3]. Users may describe
the features of a problem in a natural-language-like manner instead of going through the pain of
using the conventional binary representation. The following introduces the syntax semantics of the
language. It also illustrates the language with an example.

2. An Example

Consider a car-dealer record system where the used cars are specified according to selling price,
year manufactured, and engine displacement. Suppose the range for the specifications are as follows:

Price (10K +, 5-10K, 5K-);
Year (2YRS.., 2-5YRS, 5YRS+);
Displ (2000cc +, 1600-2000cc, 1600cc-);

In the above, the price is divided into 3 catagories: larger-than $10,000, equal to or between
$10,000 and $5,000, and less than $5,000. Similarly, the year and displacement each has 3 catagories.
Furthermore, each car is identified by tag number, engine number, make, model, and year as
described below.

Car-id (Tag#, Engine#, Make, Model, Year);

Suppose the following cars are available at the dealer:

Car (10K +, 2YRS-, 2000cc +1);
Car (5-10K, 2YRS-, 1600-20 00cc);
Car (5K-, 2-5YRS, 1600- 2 000cc);
Car (5K-, 2-5YRS, 1600cc-);
Car (5K-, 5YRS+, 2000cc +-);

The corresponding car identifications are:

Car-id (XYZ123, 112233, Buick, Century, 1988),
Car-id(MDS7345, 340703, Honda, Accord, 1987):
Car-id (ABC987, 987654, Toyota, Selica, 1985);
Car-id (MNK222, 128268, Chrysler, Labron, 1984);
Car-id (WAT357, 778211, Ford, Escort, 1978);

The car dealer tries to match these cars for the buyers, according to the specifications given by
the buyers. There may be no match, one match, or serveral matches. The program in the neurai
network design language [II (NN!)L) is shown to be developed below.
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3. Program Heading

The program of NNDL begins with the program heading followed by the user-defined program
name. The enclosed program parameters consist of input name, output name, and unknown input
name. The program heading is shown below.

Program Progname (Input-name, Output-name, Unknowninput):

Input-name and Output-name are user-defined names to represent the set of input and output
vectors, respectively. Unknowninput is also defined by the user to represent an unknown input
vector, an example is:

Program Dealer (Car, Carid, Buycar);
(* This example is to buy a car from the stock in a car dealer *)

4. Input and Output Attributes

Suppose there are m attributes: Ai, A2, ... , A. to represent m input features (or characteristics),
and n attributes: BL, B2, ... , Bn to represent n output features. Then, the NNDL will appear as follows:

Input Attribute:
Inputname (Ai, A2, ... , Am);

Output Attribute
Outputname (B1, B2, ... , Bn);

Using the same example, the following declarations are for input and output attributes.

Input Attributes
Car (Price, Year, Displ)

Output Attributes
Car-id(Tag#, Engine#, Make, Model, Year)

5. Ranges for Input Attributes:

The constants of each input attribute usually represent range of values instead of a specific
value. For example, the ranges of"Agegroup": AGI, AG2, AG3, AG4 and AG5 are shown below:

AGI: 65+ (retired age);
AG2: 40-65 (middle age);
AG3: 21-39 (adult):
AG4: 12-21 (youth);
AG5: 0-12 (child);

In many applications, it is more meaningful to use age group than age.

In NNDL, the ranges of each input attribute can be defined as follows:

Attribute Range:

At (it11, R12. RIr); (*r ranges forAL*)
A2 (R21, R22, ... , R2s); (*s ranges for A- *)

A., (Rml, Rm2 ... ,Rt); (* t ranges for A. *)

where Rij is thejth range value for attribute Ai. Using the same example, the attribute range is:

Attribute Range

Price (10K +, 5-10K, 5K-)
Year ( 2Y RS-, 2-5Y RS, 5Y RS +
Displ (2000cc +, 1600-2000cc, 1600cc-)
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6. Input and output Constants

A set of initial exact input and output values must be given to the system to serve as the
database for self-learning, which is used to match exact or possible answers for any unknown inputs.
For a given input vector,it is possible to have more than one answers.

Suppose that the constants of a set of k input and output vector-pairs are given to form the
database. In NNDL, the initial input constants can be defined as followb:

Input Constant

Inputname (Cu , C1-, ... , C,)
Inputname (C-21, C22, ... , C..);

Inputname (Cki, Ck2, ... , Ck,.)ý

Where Cij (i= 1,2, ... , k, j = 1, 2, ... , m) is the input value for attribute Aj in the ith input vector.
Likewise the initial output constants can be defined as:

Output Constant:

Outputname (Dii, D12, ... , DL.);
Outputname (D21, D.. ... D,);

Outputname (Dki, Dk2... Dk);

where Di (i= 1,2, .... k, j= 1, 2, ... , n) is the initial output value for attribute Bj (or jth element) of the
ith output vector. Using the same example, the following declarations are for input and output vector
constants.

Input Constants

Car (10K +, 2YRS-, 2000cc 4-);

Car (5-10K, 2YRS-, 1600-2000cc);

Car (5K-, 2-5YRS, 1600-2000cc);
Car (5K-, 2-5YRS, 1600cc-);
Car (5K-, 5YRS + , 2000cc +);

Output Constants
Car-id (XYZ123, 112233, Buick, Century, 1988);
Car-id(MDS7345, 340703, Honda, Accord, 1987);
Car-id (ABC987, 987654, Toyota, Selica, 1985),
Car-id (MNK222, 128268, Chrysler, Labron, 1984);
Car-id (WAT357, 778211, Ford, Escort, 1978);

Now, the definitions required for a NNDL program is completed, and the neural network model is
formed.

7. Program body

Once the neural network model is formed, we are ready to accept unknown inputs and to match
for exact output solution or possible output solutions. The program body defined in NNDL is as
follows:

Begin
Do

Read Unknowninput (Al, A2,..., Am);
Write Outputname (Unknowninput);

Until EoF
End.

Using the same example, the program body is,
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Begin
Do

Read Buycar (Price, Year, Displ);
Write Car-id (Tag#, Engine#, Make, Model, Year),

Until EoF;
End.

8. Complete Program and Execution

By combining the above constructs, the complete program is thus obtained. For execution,
assume that the input for the Read statement is:

Read Buyer (10K +, 2YRS-, 2000cc-);

After matching in a 3-layered perceptron, the output is found to be:

XYZ123, 112233, Buick, Century, 1988

The above output is a matched one. Assume that another input for the Read statement is:

Read Buyer (5K-, 2-5YRS, unknown);

where "unknown" refers to the input attribute of engine displacement. There are two outputs:

ABC987, 987654, Toyota, Selica, 1985

MNK222, 128268, Chrysler, Lebaron, 1984

in summary, the program structure consists of the definitions of program name, input Attribute,
Output Attribute, Attribute Range, Input Constant, Output Constant, and program body. The
program body so far has only three statements: Do ... Until, Read, and Write. The Read statement is
used as usual to accept unknown input attributes. The write statement prints out only exact or
possible solutions for the unknown input. The design language provides a friendly and easy
environment for user to describe the features of the problem in a natural-language-like manner
rather than goes through the pain of using the conventional binary representation in neural network
model.

9. Remarks

The data sets of the neutral 3-vaiued logic network are in vector form, and the processing in the
network is parallel. The design language can be made interactive. An interactive design environment
can be implemented for direct interaction and debugging.
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Abstract

A neural network model can be implemented with an optical disk. By doing so, the
capacity and speed of the associator are increased beyond that of any existing neural
network model implementation. Justification of this claim is presented by the design and
analysis of the binary weight pattern associator using an optical disk.

Introduction
Neural networks are noted for their applications. Hand written character recognition,

speech recognition, visual data comprehension, language comprehension, optimal control,
data classification, inference engine, etc. are practical applications. Some of them are
discussed in the literature [Ande88] and [Rume86a]. With such potential applications in
mind, there has been an effort to incorporate the neural network in computer ai shitecture.
This paper presents the design of the neurocornputer which incorporates digital electron-
ics, optics, and optical disk technology which enhances the usefulness with significantly

increased capacity and speed.

Neurocomputer
Invariably, the models of a neural network exhibit an associative characteristic; thus,

an implementation of a neural netwo, k in this paper is called an associ.Itor. It can be
attached to a conventional compute, system in a similar way as a CPU. The computer
system which has an associator is referred to as a neurocomputc:.

Figure 1 is the block diagram of the neurocomputer using optical disks. IL employs
both the digital electronics associator as well as the optical associator. The block AP
is the asscciator imnlemented with digital electronirs. The details of its architecture are
presented in ChoiS9b]. The OD blocks are the optical disk units with hybrid optics for
associative retrieval. Their details are the focus of the followin.g presentation. Note that
there are two sets of buses. The BUSI is used to interchange data among the ODs and AP.
It is crucial to accommodate the highest data bandwidth on the interconnectiorns among
optical associators and the electronics associator in order to fully exploit the speedup
advantages. The data width of an associator is very large. It has the same number of bits
as the number of neurons in an associator. The BUS2 is a conventional computer bus; it
connects OD and AP to a CPU and mcinory. There can be multiple AP as well as OD
units.

Neural network model
The neural network model implemented both electronically and optically in this paper

is the Binary Weight Pattern Associator* (BWPA) which is perhaps the simplest model of
a neural network. It was originated by D. J. Wiilshaw [Wili69]. His studies of information

* This name is an invention of the author; IRumeStia] calls it pattern associator.
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storing and retrieving using optical holography led Willshaw to his ingenious network
model correlograph and its simplified version, the BWPA. Willshaw then carried out the
analysis of the network in [Will7J] and [Wi_181]. The network analysis is followed by
another, [McCI86a]. The associator is then applied in [McCI86b] to read English words
and in [Rume86b] to learn past tenses of English verbs. Also in [AustS7], it is used in
pattern recognition and 3 dimensional scene analysis. Anderson and Rosenfeld, in their
introductory remark for Willshaw's paper [Ande88], noted its suitability for modern VLSI
implementation.

Furthermore, the model can be efficiently implemented with an electro-optics system.
The main advantage of an optical associator is its speed. The vector-matrix multiplication
is carried out at the speed of light. The whole process of retrieving a pattern can be done
as fast as displaying a pattern. More importantly, the optical implementation enables the
use of an optical disk as massive associative storage at fast retrieval speed.

Optical disk based neural network architecture
Figure 2 illustrates the optics arrangement of the optical disk interface for the retrieval

operation. Starting from the upper left, the pulsing laser light is fanned and directed to
the moving head scanning on the disk surface. The moving head consists of a mirror M1 ,
a polarized beam splitter PBS1 , a quarter wave plate QWP 1 , and a lens L2. Tne moving
head travels along a diagonal line of the disk and its travel distance covers the most inner
tract to the most outer tract. The lacer beam reflected off the disk surface is directed to
the lens L2 which in turn projects the image, with magnification, on the diffuser E. The
arrangement past the diffuser is identical to the optical neural network proposed by T. Lu
et al. in [Lu39]. The diffuser replaces the TV screen which displays the interconnection
weight matrix. Through the lenslet array, ýhe sub-blocks of the weight matrix are projected
on to the input vector displayed on the spatial light modulator, SLM1 . In the resulting
image, the product of the weight matrix and the input vector is then focused on the
photo-detector array to be converted into the digital electronics signal.

Based on currently available technology, the following example parameters are calcu-
lated. The area on the disk surface, on which the laser beam will be focused, is 1 rmm 2 .
This is primarily due to the limitation of L2 and L3, the microscopic lenses' field of view, in
which the magnification factor is about 70. The area of 1 mrnm2 amounts to 529 x 529 bits,
a matrix block for 529 neurons. Note that the square is distorted radially. This distortion
can be corrected by the lens or it can be accounted for by the SLM and the photo-sensor.
Also note thlat the number of sectois varies radially. This way, it uses the disk surface area
more efficiently.

To retrieve an association, the moving head seeks (locates) the desired matrix block,
and the laser unit emits pulsed light to capture the matrix block on the diffuser screen.
The approximate formulation of the required laser power is '7 x PL > Sph where PL
is the laser power, Sph is the photo-detector sensitivity over its response time, and 77
is the absorption coefficient. i7 can be written as 77 = (1/2) x t1 x t1 x t1 where t1
is the reflectivity of the disk surface, t2 is the transparence of the SLM, and t3 is the
energy loss factor between the diffuser and the SLM. We assumcd, as an example, that
tl = 0.5, t2 = 0.2, t3 = 5 x 10--, and Sh. io-5 watts over a 10 nsec response time.
The resultirng power is PL > 10-o/(0.5 x 0.5 x 0.2 x 5 x 10-i ) = 4 x 10- - watts. It
is also required to maintain the matrix image on the diffuser over the duration of the
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photo-detector response time. This limits rotational speed of the disk to at the most
Vrpm = (tp/lý) x tph = (10- 6 /(7r x 12 x 0.0254)) x 60 x 108 = 6, 265** rpm where 1 is a
pit length, I1 is the circumference of a disk, and tph is the response time.

Capacity and speed
Based on the above design parameters, there are 3,663 matrix blocks on each side of

the disk (7,326 blocks per disk***). Assuming that each block can store 50 associations,
there are 366,000 associations that can be stored per disk. This number well exceeds the
150,000 entries in the Webster's Collegiate Dictionary.

With the use of 529 parallei photo-detectors, retrieval of a pattern can take within
100 nsec - 50 nsec for AD conversion and 50 nsec for thresholding (10 bit arithmetic).
Since each matrix block consists of 279,841 connections, this yields a peak processing
rate of 279,841/(100 x 10-9) = 2.8 x 1012 connections per secoad. Compare this with the
multiprocessor of 529 processors and a 50 nsec memory access time. The parallel algorithm
takes O(n log(n)) time steps [Choi89], which yields a peak processing rate of 1.1 x 109
connecltions per second. Furthermore, the currently available single processor, specialized
for neuro computing, is rated at a peak 106 connections per second [Hnc88]. The speed
up factor of the optical disk-based processing over the parallel computer algorithm is 103

and over the best single processor algorithm is 106.
However, the operational speed of the optical disk-based neurocomputer is limited by

practicality. The input and output of the OD units arc dircct.cd from and to the AP, an
electronics associator. Thus the operating speed is limited by the slower of the two, the
AP's. But, this is still an advantage since ODs may allow AP's speed be sustained at its
peak.

Sumrnnary
The original idea and the design of a iiý:urocomputer using an optical disk is presenied.

It takes the advantages of recent technological developments such as neural networks,
digtal electronic computers, optical information processing, and optical disk technology.
Through this effort the usefulness of the neurocomputer has been increased. The gained
advantages are (1) a large associative data base capacity, (2) a better method of providing
stable, permanent, compact, and economic associative data storage, and (3) a speedy
retrieval of a large amount of associative data (2.8 x 1012 connections per second peak
processing rate). Perhaps this neurocompater will make the real time recognition of image
and voice a reality in the near future.

Also, this design reveals some of the difficulties and potential problem areas of using
the optical disk as associative storage. First, writing the information on the disk still
relies on the old method of a serial bit stream and presently the disk allows writing only
once. Second, the weight of the moving head (including the set of lens, mirror, and beam
splitter) may significantly degrade the seek time. Lastly, the size of the network is limited.
However, these difficulties can be overcome by further development of the technology.
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An Analog CMOS Implementation of a Self Organizing
Feedforward Network

James J. Clark

Division of Applied Sciences
Harvard University

Cambridge, MA

Abstract

We describe the design of a CMOS current mode neuron for use in neural networks and describe its
application to the construction of a self organizing feedforward network. The synapses are implemented
with a modified version of the Bult-Wallinga [21 four qumdrant analog current multiplier, We present the
design of a current mode based circuit which allows the adjustment of the synaptic weights according
to a Hebbian learning rule. This allows the circuit to be used in a self organixing network, such as the
Kammen-Yuille orientation selective network [6,10]. The neural elements described in this paper can be
implemented in a standard CMOS integrated circuit fabrication proceu.

1 Self Organizing Feedforward Networks

In [61 Kamnnen and Ylulle a Wuowedl taL a two-dimensional feedforward network of linear summation elements
with stochastic inputs can develop (learn) into a system that exhibits directional selectivity (i.e. the response
of a neuron on the output layer of the network responds maximally to patterns of input oriented in a specific
direction). The adaption mechanism they used to obtain their result was limilar to that of Linsker [8] and
used the following synaptic weight update equation:

w,.i(t + At) = wi'(t) + At(-A - 2Bwi(t) - 4Cw3,.(t) + 2 < O,, Iq >) (.)

where i indicates a particular neuron, j indicates a particular synapse on the neuron, wi.(t) is the weight of
synapse j on neuron i at time t, Oi is the output of neuron S, Iq is the input to synapse j on neuron i and
<, > indicates expectation or stochastic correlation. The terms with the B and C multipliers are needed in
Kammen and Yuifle's model to keep the w,.'s bounded. We will follow Linsker [8) in obtaining boundedness
by using sigmoidal nonlinear summing elements that saturate when the magnitude of the weighted surn of
the inputs is large. Thus, in the .:ircuit described below we set B = C = 0.

This research was supported in part by the Office of Naval Research and the
Joint Services Electronics Program under grant N0014-84-K0504, as well as by
the NSF Systems Research Center of Excellence, under grant number CDR-
85-00108.
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Figure 1: An analog multiplier based current mode neuron.
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Figure 2: The bidirectional cascode current mirror.

2 A Current Mode Neuron

The standard model of processing elements in artificial neural networks [9] is a linear weighted summation
of inputs followed by amplification by an amplifier having a nonlinear (sigmoidal) transfer function. We
present here a current mode based approach to the implementation of this standard model. Current mode
analog circuit design [7,4,5] is a methodology wherein currents axe used to represent information rather that
voltages.

The design of our neural element is shown in figure 1. There are two major building blocks of our current
mode neuron. The first is an analog current multiplier, the second is a bidirectional cascode current mirror.

The analog current multiplier is based on the scheme of Bult and Wallinga [2]. The only difference
between our version and that of Bult and Wallinga is that a cascoded current mirror is used in place of a
standard current mirror in order to reduce the output current offset error (i.e. the output current when the
input currents are both sero). The multiplier is a four quadrant multiplier which means that both the input
and weight currents can be bidirectional, as required.

The bidirectional current mirror consists of k-.... nnel and an n-channel cascode current mirrors [1]. It is
a circuit that allows the replication and scaling of currents. This circuit is shown in figure 2. Note thaL one
can split the current mirror into two halves, one which receives the input current, the other which produces
the output current. We will refer the the left half of the current mirror as LHICM, and the right half by
RHCM. The two halves are connected by three voltages which, as a set, represent the output current. By
sending these three voltages to other RHCM's one can obtain replication of currents. This will be used to
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Figure 3: The synaptic weight adaption circuit.

send the output of our neuron to many different neurons.

The current moda neural element consists of three parts: a set of synapses, the summing junction, and
the weight adaption 'zircu;.ts (one for each synapse).

The synaptic function is performed by i'u analog multiplier which multiplies the input current by a weight
current. The input to the synapse is a set of three voltages from the LHCM at the output of the neuron
feeding this particular synapse. These voltage3 are converted to a current with a RI{CM and this current is
multiplied by a weight curient (in the form of three cascade mirror voltages) in the analog multiplier. The
weight current is produced by the weight adaption circuit which will be described in the next section.

The summing of the weighted input currents is perfformed by a single current, summing node connected to
the outputB of the analog multiplie~rs and to an LHCM, The LHCM takes up the excess current flow coming
from the analog multipliers which, by Kirchoff'i• current law, is equal to the sum of the outputs of the analog
multipliers.

3 The Synaptic Weight Update Circuit

Each synapse contains circi:itv. whaich allows it to adapt the weight applied to its input according to the
learning rule given earlier (equation 1). The synapse weight adjustment ci'cuit which has this task of
updating the synaptic weights of a current mode nieu-on is shown in figure 3.

The weight adaption circuit consists of two main blocl•i, the input-o.itput multiplier and a leaky two
phase switched capacitor integrator. The input-output multiplier, which computes the Ij × O• term in the
weight update equation uses tue modified Bult-Wallinga multipFier tircuit described earlier. The current
output by the input-output multiplier is fed into the leaky integreator. A zonstant current (corresponding
to A in the weight update equation) is subtracted from the input to, tl~e Jeaky integrator (this causes most
of the leaking) by a current source/sink consisting of tra•nsistors M! a,,,d M2. The voltage VA adjusts the
amount of current subtracted from the input (it is also u.sed to 'compen~ate scmnewhat for offset3 in the
switched capacitor integrator opamip). The input current :,3 •:onverted to a voltage with the left halt' of a
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standard (i.e. non-cascoded) current mirror (transistors M3 and M4). The transistors in this current mirror
have a rlatively large channel width to length ratio in order to provide for i small current gain (when
the current source voltage is converted back to a voltage with transistors M9 and M10). This small gain
corresponds to the At term in the weight update equation. The current mirror voltage is then integrated
with a switched caparitor integrator to perform both the time averaging required by the correlation term in
the weight update term, and the actual storage and updating of the weight.

Detailed description of the design and operation of the weight adaption circuit can be found in [3].

4 Summary

We have presented the design of an adaptive CMOS analog neural network which implements the learning
rule of Kammen and Yuile's self organizing neural network. It utilizes CMOS analog current multipliers to
perform the multiplication of inputs by weights. The weights are adapted according to a simple Hebbian
learning rule, implemented with a correlator and a leaky integrator. The weights are stored dynamically on
a capacitor, hence the circuit must be constantly running and learning, else all learned states will be lost.

A prototype of an implementation of a 10 synapse neuron is currently being fabricated through the MOSIS
facility in a 2 micron CMOS process. The size of the neural element is roughly 1.0 by 1.4 millimeters.
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CASENET
Computer Aided Neural Network Generation Tool

R. W. Dobbins and R. C. Eberhart
The Johns Hopkins University
Applied Physics Laboratory

Laurel, MD 20707

INTRODUCTION

For many applications of neural networks, such as electro-encephalogram (EEG)
spike and seizure detection, there is a need to explore different network
architectures and paradigms. Generally a network must be hand coded and debugged
for each new application. Many researchers are faced with the problem of
developing their own neural network software and the time spent on this activity
detracts from the application.

Various general purpose parallel processing system simulators have been proposed,
in efforts to provide researchers with network development tools. These have
generally been interpretive systems requiring large scale or special purpose
processors to achieve reasonable performance. While such simulation systems may
be useful for some applications, they have not been usable on personal computers
and smaller general purpose machines. A large class of problems can be
effectively solved on personal computers, providec that the neural network
software is reasonably well optimized. The CASENET approach is to generate highly
optimized machine code from the user's network specifications in order to
maximize performance of the available computing machinery.

A second problem of the simulators that have been proposed, is that they present
a complex command language that takes time to master and use effectively.
Instead, CASENET provides a graphical interface, that allows the user to draw
the network architecture on a graphics screen and enter network attributes from
menus on the screen. The network graph together with the attributes attached to
the nodes of the graph, form the network specification, fruo which executable
code is automatically and quickly generated.

In thiS paper the basic CASE (Computer Aided Software Engineering) tools and
mechanisms used by CASENET to automate neural network generation, are described.
Preliminary results for typical applications using Back Propagation Networks,
a paradigm well suited to EEG applications are described. Other types of networks
are being incorporated into the development environment.

COMPONENTS OF CASENET

The CASENET system consists of four major sets of tools, namely the network
definer, the analyzer, the code generator and the compiler. Figure 1 illustrates
the CASENET system components. The network definer is a graphical network editor
for drawing the desired nretwork architecture. The editor translates the user's
graphics into a formal representation. The analyzer validates this network
definition and extracts essential network attributes. The code generator parses
the network definition and emits code fragments. The compiler builds the
executable network from the code fragments and a generic network skeleton. The
results of each phase of the network translation, are available as intermediate
files, which the advanced user can edit to customize or optimize any level of
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the network.

These tools are described in detail in the following sections, with examples
showing teir use,

GRA•PHICAL NETWORK SPECIFICATION

The architecture of a generic neural network can be defined using a few simple
concepts. Neural networks are typically viewed as consisting of several layers,
each layer comprising a number of processing elements. However, some applications
may require several hidden layers, partitioned into slabs, as illustrated in
Figure 2. A slab is a more convenient, more general concept to work with. It is
a group of elements with identical attributes, activation functions and
connections to other slabs. An example of the resulting specification for a three
layer back propagation network follows:

slab(l,48). connect(5,1). inputs([l,2,3,4]).
slab(2,48). connect(5,2). outputs([6]).
slab(3,48). connect(5,3).
slab(4,48). connect(5,4).
slab(5,16). connect(6,5).
slab(6,4).

The statement,

slab(id, number of units).

creates a slab with a unique identifier and number of processing elements,

connect(destination, source),

establishes a path from the source slab to the destination slab,

inputs(list of input slabs).
outp•nts(list of o,,tpit slabs).

create connections from the ne'iral network to the outside world. The graphical
editor is used to build a visual executable model of the neural network. The user
places slabs on the graphics screen with simple mouse commands and connections
between slabs by drawing directed arrows. The diagram is annotated with the slab
identifiers and number of units.

NETWORK ANALYSIS AND CODE GENERATION

The analyzer and code generator are automated tools, to validate the network
definition and generate executable code. The analyzer checks that a valid neural
network architecture has been defined. Two important facts are that all nodes
are properly connected and, for a feedforward network, that there be no feedback
cycles. These facts are easily established using Prolog. To search all slabs of
the network and check that each slab is connected, the predicates,

connected(X, X).
connected(X, Y) :- connect(X, Y).
connected(X, Y) :- connect(X, Z), connected(Z, Y).
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define the transitive closure of the connect() facts in the database, to
recursively determine connections in the network.

The analyzer detects cycles by using the connect() facts to visit all slabs in
the network, as in the predicates,

cyclic(X, Visited) :- member(X, Visited).
cyclic(X, Visited) "- connect(X, Y), cyclic(Y, [X I Visited]).

NETWORK CODE GENERATION

The code generator parses the validated network definition and emits C code
fragments, each corresponding to a particular net task:

allocate slab, read weights, read patterns, read targets,
iterate net, delta net, iterate weights, sum squared error,
write weights, write net, free slab.

The C code consists of a small code skeleton with several parameters. The Prolog
code generator unifies parameters with the particular network architecture being
defined. Typical parameters are,

X, Y name of the slab, fan-in slab
N, M size of the slab, fan-in slab

The parameterized code fragment for the "iterate net" task is

float sum - BiasX[i];
for (j - 0; j < N; j++)

sum +- wX[j] * outY[p][j];
outX[p][i] - I / (I + exp(-sum));

NETWORK COMPILER

Compiles the network using a generic network skeleton that has slots for net
tasks. Each slot is filled by a code fragment for a net task. The network is
compiled directly by a C compiler or native code assembler.

DISCUSSION

CASENET is in use to generate working neural networks in EEG spike and seizure
detection applications [1]. Ways to optimize code for numeric and other
co-processors are under development. Once debugged, the code generator can
reliably and quickly generate different kinds of network architecture to suit
researcher's needs. This approach can easily be lxtended to radically different
neural network paradigms.
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ABSTRACT
Using the CMOS threshold adjust circuit recently presented in

[1], this paper develops an adaptive analog neural-type junction. The
junction itself is based upon the circuits presented in [2] and works
according to charge control theory discussed in [2].

DEVELOPMENT
Current research trends concentrate upon means of adapting

weights in analog neural networks. The main problem facing hardware
designers is the feasibility of large scale implementations when adap-
tation is incorporated. Here we present a system which readily lends
itself to simple VLSI implementation.

Figure I shows the input weighting stage including threshold
adjustment where V. is the threshold adjust parameter. This weighting
stage is the three terminal device labelled G-D-S. The circuit of Fig.
1 is inserted into the neural-type junction of Fig. 2 at the corre-
spondingly labelled points. It is noted that D, G, and S represent the
drain, gate, and source of the input transistor being replaced in the
original junction of [2].

The threshold -djust circuit accomplishes threshold voltage
adjustments in order to modify the connection weights which determine
the level of transmission from one neuron's output to another neuron's
input. As discussed in the paper of 1987 [1], double gate MOS struc-
tures can be used to capture the adaptive properties of biological
neurons. However, in present day technology the double gate transistor
is relatively inconvenient to use. The circuit of Fig. 1 avoids this
inconvenience by expeditiously employing the charge control concept. In
Fig. 1 charge flows into the gate g and via the parasitics fixes the
amount of charge on the right hand transistor. This right hand transis-
tor acts as a normal transistor but with its characteristics controlled
by VC. This is to say, the I-V characteristics of the three terminal
device labelled G-D-S are the same as those of a normal MOS transistor
but shifted through the threshold adjust parameter V,.

* Research supported by NSF Grant MIP 87-19886
** Research supported by NSF Grant MIP 88-08292
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Abstract
This paper describes an intetconnection scheme for the neural network which is implement-
able in current technology. The connection is made by projecting a light pattern onto a photo-
conductive layer (PCL), thus creating low-resistive paths on the layer. The connection Pat-
tern can be changed by modifyiig the LCD mask positioned between the panel light source
and the PCL. The proposed implementation is extremely flexible and highly texpandable,
consumes very little power, and is insensitie to manufacturing variations.

Introduction

Two major implementable realities required by neural network paradigms, whether
supervised or unsupervised, are a learning model/algorithm and a massive interconnection
sche••e. TO date the impleuneniations of aruificil" neural networks are mainly confined to
small scales using software simulation because the implementation of the interconnection
scheme has been regarded as a bottleneck which prevents the large scale realization of the
neural network in hardware. The basic problems include a large number of paths; large fan-in
and fan-out requirements, the variability of the weights, the training procedures, and the
power consumption.

This paper attempts to address the issue of the interconnection scheme. We propose
an implement-ation which is flexible, expandable, and feasible under the current technology.
In addition, it is highly insensitive to manufacturing variations and requires relatively low
power consumption.

I Ue basic construction consists of a plasma light source, a pixel-addressable spatial
light modulator (LCD mask), and a photoconductive layer (PCL). The light source, when
modulated by the mask, projects a light pattern on the PCL. The light on the photoconductive
layer is absorbed by the photoconductive material, and generates carriers in the PCL. When
external electric field is applied to the layer, electric current is produced by the motion of the
carriers, and a connection between two points is established.

The Photoconductive Neural Network Interconnect
Most of the electronic implementations of the modifiable synaptic weight have been

evaluated and reported [1,2,3] using lumped circuit approaches. But according to the De-
fence Advanced Research Projects Agency (DARPA) Report on Neural Networks [4], zhe
potential solution to the interconnection problem is in optics and electro-optics. It offers the
advantages of higher speed and higher density of the interconnection process over the elec-
tronic (silicon or galium arsenide) implementations.

Figure 1 shows the construction of the proposed Photoconductive Neural Network In-

"tPart of the work reported in this paper was carried out in the tCE Department, Clurkson Uni, ersity, PoLsdam, New York,
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terconnect (PNNI) scheme which utilizes conventional optical and electronic hardware. A
simple planar light source. illuminates a photoconductive layer. This illumination is modulat-
ed by a planar spatial light modulator. This corstruction allows any arbitrary two-dimension-
al interconnection pattern to exist on the PCL. Furthermore, if the SLM is allowed to have
shades of gray (as opposed to only the binary settings of opaque and translucent), we have
another degree of control over the connection strength.

Light panel power

Outer opaque casing x-y pixe! coordinate
information

Light panel Edge connection
bundle. (Same

Spatial light modulator L_- structure or
Saalht t ,opposing side)

Photoconductive
layer

Outer opaoue casing
Repeated ,tructure for
greater interconnect density
per module

Figure 1.Photoconductive neural network intercorn-
nect (PN•NI) siructure

The edge connections along the edges of the PCL are simple wire bonds. These wire
bonds could either be brought out or connected to a string of internal thin film integrated re-
sistors to form the passive summation (see Figure 2). No implicit interconnection paradigm
is assumed here. Only the generally required massive interconnection needed in any neural
network implementation is considered.

From PNNI
output

Thin film R To other summers
resistor , (clustoring) ar NI,,,

output (high fan-out)t ýhr summers 0Y= --

Possible summer
implementation

(unity gain) Figure 2. Passive summation for the PNNI OutpuL

The light source, the SLM and the PCL are contained between two outer opaque cas-
ings. This structurt, could be repeated several times, thereby greatly increasing the intercon-
nection density on a per-module basis.

Analysis of the Phutoconductive Layer

When light is absorbed by the photoconductive material, electron-hole pairs are gen-
erated. This happens because the light quanta ho) > c, where h is the Planck constant, o) is
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the wavelength of the light, and EG is the gap energy of the material.

The injected pairs will gradually diffuse throughout the material. If we assume that
we have a point light source projected onto the surface of the material for a short time, the
concentration of the carrier can be characterized by a Gaussian-shape function under the
point source. Since equal amount of electrons and holes are injected, the differential increase
in the carrier is much more prominent in the minority carriers. In the following description, we
will consider the minority carriers only.

When we applied an external electric field E0 on the material, we have both the diffu-
sion and drifting of the minority carriers. The differential concentration of carriers can be dt-
scribed by [5]:

An0 exp(-t/'tn) exp(-x 2/4Dt)
An-=

24-

where An0 is the number of injected pairs per sample cross section, D is the ambipo-

lar diffusion coefficient, x' is defined to be x-ýtEot, in which .t is the ambipolar drift mobility,

and tn is the lifetime of the carrier. TIbis equation shows that while the carriers diffuse, the
pattern is drifting in the direction of the electric field. Thus if we have a path not totally in line
with the field, the pattern will translate in the direction of the field.

To control the path width, we need to control the width of the Gaussian-shape func-
tion. The parameter related to this is D. The half-width (full width at half maximum) of the
Gaussian-shape function is

A!/2--4D'--l-n2 = 3.33Z't .

Suppose the light source is steady, then the injection of electron-hole pairs continues.
A steady state of the path width may be reached. More analysis is needed to determine this
steady state path width and the optimum energy input from the light. Since both doping con-
centration and material will affect D, the effective path width depends on the material used in
the photoconductive layer.

Spatial Light Modulator
The spatial light modulator is a pixel-addressable LCD mask. On the mask patterns

can be created so that specific paths between the edge connectors can be formed in the PCL.
Initially, the conventional nematic type LCD could be used because it is inexpensive, readily
available and of low power usage. It also has numerous 'off-the-shelf' geometries avail-
able. The contrast ratios are in the order of 100:1[6].

To avoid the problem of cross-over paths, the SLM paterns can be time-multiplexed.
The response time of the nematic-type LCD is approximately 25 msec [6]. If faster SLM re-
sponse times are desired, the use of a ferroelectric LCD can be utilized. The ferroelectric
LCD has its opacity related only to the electric field applied across the device. However,
speed in this initial study is not as importmit an issue as the development of a modifiable 2-
D interconnect scheme in the PCL.

A trade-off also exists between the photoconductive diffusion and optimum SLM res-
olution. The nematic-type LCD has a medium resolution of 20 lines/mm [6]. When the de-
velopment of a 1-2 mil wire bonding process is considered in the future, the issue of LCD
resolution will become important. But at this moment, depending on the neural network para-
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digm and training algorithm used, a sparse interconnection scheme may be sufficient, thus ob-
viating the need for higher cost PCL and SLM devices.

Discussion
The proposed scheme is a first attempt to ease the bottleneck which prevents the

large scale implementation of neural networks. It offers some immediate advantages:
1) Simple construction with existing technology

2) Extremely easy to expand -- the interconnection density is doubled just by repeat-
ing the interconnect construction layers vertically

3) Low power consumption -- the only major power needed is in the light panel source

4) Highly insensitive to manufacturing variations in processing

5) The binary bit-map of the SLM patterns can be stored in conventional digital formats.

A number of issues need to be adchessed before this scheme can be fully implement-
ed. When a connection network is specified by the participating network in either the training
stage or the operation stage, the specific paths between the two banks of connectors repre-
senting two layers have to be computed. Since crossover of the paths is not allowed, sched-
uling of paths in the time-multiplexing scheme is the major task in the path computation.
The covariant neighboring effects [6,7,8,9] observed in the biological synapse interconnec-
tions in tulle coilex xuay prove to be effective in reducing the crossovers needed, and thus re-
ducing the computing time. Finally, the effects of this interconnection scheme on the learning
algorithms have to be investigated.
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Abstract

A highly flexible simulation environment based on object-oriented software techniques was developed
and successfully used to implement and test novel neural network models. The architecture of this system
is based upon the objects the simulation is intended to manipulate - the neurons in the network. This is
in contrast to the prevailing procedure-oriented approach in which the software architecture is based upon
the functions the system is intended to perform. The benefits obtained from using such an approach,
which are presented in this paper, are a direct result of the methods used to encapsulate the data
structures. This method of data encapsulation allows a flexible system architccture to be constructed in
which one can edsily extend or modify the functionality of the software product to simulate any neural
network model.

1 Introduction

Artificial neural network research is largely dependent upon the use of computer simulation. However, the
appropriate tools for the development and simulation of neural network models and learning algorithms
are currently lacking. A recent study comrnmission-ed by the Defense Advanced Research Projects Agency
(DARPA) [1] found this issue to be of critical importance to the development of neural network theory.
This report stated that much of the research in the field is inhibited by the lack of inexpensive and easily
accessible simulation facilities.

Recently, a number of neural network simulation systems have been developed that make use of object-
oriented programming techniques [2,3]. There are a number of benefits obtained from using such an approach.
The method of daa encapsulation provided by an object-oriented language allows the development of a
flexible simulation environment in which one can easily extend or modify the functionality of a neural
network model. Furthermore, this extension can be accomplished without knowledge of the inipleiientation
details of the original neural network software product, The manner in which these benefits can be achieved
are presented in this paper. A brief introduction of the fundamental concepts involved in object-oriented
programming, and the philosophy of their use are discussed. In addition, the ability to specify and simulate
arbitrary neural network models using these concepts is addressed. It should also be mentioned that the
method of communication used by the objects of an object-oriented neural network software systern facilitates
their mapping onto parallel processing hardware. This is an area in which we ale actively pursuing research.
However, the topic of implementing these simulations on parallel computer architectures is not addressed
here.

2 Object-Oriented Progralmming Languages

The design of an artificial neural network software simulation involves a mapping of the objects and actions
occurring in the problem domain to a corresponding set of operations on data in the computer domain of the
software system. II the design of such a system, a decision must be made whether to structure the software
architecture around the Junctions the system is intended to perform or the objects that these functiomins
manipulate. The classic design approach is based upon the decomposition of the functional requireimenits
of the system. '.l'his is embodied in the practice of top-down functional design. It is widely acknowledged
that the major difficulty encountered using this approach involves dealing with changes or :nmodificatiOns
to the system [4,5,6]. That is, the ability to evolve into a more useful product is lnot inherent. in systems
designed using classical software design methodology. Objec,-oriented design, on the other lhand, :.for,ls th,
opportunity to greatly reduce the diflicultis involved with the introduction of change. It bases tIec syst,'mi
architecture on the classes of data (i.e., objects) the system maniplates as opposed to the fhmmnetion.5 th,1
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system is required to perform. The rationale for this approach follows from the observation that as software
system requirements change or evolve, the furictions that the system performs may change drastically;
however, the classes of data that the system manipulates tend to remain much more stable [6]

In the object-oriented design of a software system, one strives towards retaining as much flexibility
as possible in the system architecture. The goal of this approach is to allow the software system to be

easily extended to improve its functionality, or reused in other systems that require its services. Ideally,
the extension or reusab'lity of the software product does not require a knowledge of the details of system

implementation. The ability to develop software in this manner enables software components to be packaged
in such a way that others are able to modify and incorporate them into their products as needed. This ease

of reu~sability is currently lacking in traditional software technology.
A class in an object-oriented system is considered a n-means of packaging the implementation of arn abstract

data type. A class contains all the information necessary to construct separate instances of itself, these

instances are the objects that the software system will manipulate. If the objects are chosen to represent
objects in the real-world (e.g., the neurons in the network) a more natural mapping of the problem domain
to the software system can be obtained.

Every object contains its own set of data elements, instance variables, that determine the individual state
of that object. In addition, a class may store information that is common to all instances of the class in class

variables. The instance variables are private to tile object and may only be accessed through the accessing
routines provided by the class. The class also provides accessing routines for manipulating the class variables
shared by all objects of a particular class. In the terminology of object-oriented systems, these accessing

routines are called meihods.
An object-oriented programming language must support inheritance. This concept enhances the ex-

tendibility of the system as well as the reusability of system components. Inheritance gives the user the
ability to create a new class that is an extension or specialization of an existing class by sim.ply specifying
the differences between the new class and the existing class. In this case, the new class is said to be an an-

cestor of the class from which it was derived, the parent class. Many object-oriented programming languages
also support multiple inheritance in which a derived class can inherit more than one parent class.

An ancestor inherits instance variables, class variables and methods from the parent class. The ancestor
may also add new instance variables, class variables and methods that are necessary for its specialized
functions. Additionally, an ancestor of a class may redefine any method provided by the parent class by
simply supplying a new method that has the same name as thc old method in the parent class. In this
case, the new method in the derivwd class is said to overload the method with the corresponding name in

the parent class. This allows different meanings to be attached to the same method name; which method is

invoked when the name is called in a program depends upon the class being used at that particular time.
Computation in an object-oriented system cefiters around messages. Objects in the system manipulate

other objects by sending messages requesting them to perform specific actions. These messages invoke the

appropriate methods in the object's class, or possibly a method in a class from which the object is derived.
This model of computation maps well to loosely coupled multiprocessor computer systems.

There is a fundamental distinction between message passing and the conventional procedure calls used
in procedure-oriented systems. A message can be viewed as a request of an object to perform some action.
How the object responds to this request depends upon available methods. This approach allows objects from
different classes to respond appropriately to the same messages, a trait known as polymorphism. When an
object receives a message, it is up to the object to decide what to do. If a new response needs to be added
to the system, then an appropriate method can be incorporated into the systeiim while inheriting a class. An
object of this derived class will now use the new method if an applicable message is received. The important
aspect of this approach is that time original code does not have to be modified. Therefore, aim additioui to the
system requires just that -- addition and not modification [4].

Using traditional software technology, the developer is responsible for systeim modification. By allowing
the objects to determine how a message should be interpreted, the responsibility of inmplemeitiiig system
modifications and additions can be shifted away from the developer of a class to tile user of a class. Such a
fundamental change in focus supports time notion that software can be developed amd packaged ftr lat(,er use

just as hardware components are packaged for convenient use ini iutegrated circuits (ICs) [.1].
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3 Neural Network Simulation

As mentioned previously, artificial neural network research is largely dependent upon the use of computer
simulation. Consequently, numerous neural network simulation languages and environments have been de-
veloped to help meet the needs of researchers in this field [7,8]. These simulation systems require the user to
specify the neural network architecture and learning rule through the use of a network specification language
which is then translated into a lower-level implementation language (e.g., FORTRAN, C or LISP). The
specification language normally allows one to simulate some of the more popular neural network models;
however, if the user wishes to simulate a novel learning algorithm or activation function, he must provide
the system with a procedure written in the appropriate implementation language that performs the desired
function. In order to do this, the user must be familiar with the implementation details of the network
components being simulated.

However, if an object-oriented approach is used, the developer is able to supply the user with a generic
base class patterned after a general neural network model. This base class may then form the framework
for simulations of specific neural network models. The details of the particular architecture or learning
algorithm can be incorporated into the system through the use of inheritance. Instead of writing a new
procedure using a low-level implementation language, the user can add additional functionality to a neural
network simulation through the incorporation of new methods defined in terms of the high-level methods
provided by the base class or classes derived from the base class. Therefore, the inheritance mechanism
now allows system modification to be accoinolislied in a more abstract fashion. Such an approach was used
to develop a general purpose neural network base class using the C++ programming language. This base
class provided the scaffolding upon which more complex neural network models were built. The hierarchy of
classes created through the use of inheritance is shown in Figure 1. In each case, a new model wa-s specified
by inheriting a previously developed class while prnvidirhg methods necessary for the specialized functions of
the new neural network model. For example, the Hopfield [9], back-propagation [10] and ARI [11] networks
were all simulated by first inheriting base class, and then adding specialized methods that implement the node
activation functions and learning rules required by the specific model. These additions were accomplished
in a straight forward manner through the use of the methods provided by base class. In addition, a network
that implements the delta-bar-delta learning rule [12] was simulated by inheriting the back-prop class while
providing a new method for implementing the weight update rule required by that algorithm. The classes
shown in Figuie 1 represent a small portion of the neural network models simulated. A number of novel
models were also simulated using some of these classes as a starting point.

base class

L :hcp~fielId back-prop AýRT_

dela-bar-de~f

I"igurc 1: Hierarchy of object-oriented neural network clasc.s created.
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4 Conclusion

The recent resurgence in neural network research has resulted in the development of a wide variety of neural
network models. All of these models are similar in that each contains a collection of nodes connected via
adjustable weights. The issues that differentiate the various models are: the manner in which the nodes are
interconnected, what type of function each node computes, and how the network weights are adjusted. An
object-oriented design allows the software simulation system to capture these simiiarities while maintaining
the ability to easily add distinguishing network properties. The significant contribution of this approach
is the manner in which these distinguishing properties are added to the system. The ability to inherit the
functionality of a generic neural network base class circumvents the need for writing the low-level routines
that directly manipulate the computer representations of the network elements. Thus, developers of a
novel neural network models do not have to understand the complex issues involved in implementing these
routines - they only must understand what the routines do. This object-oriented approach allows the
design of specialzed neural network models to proceed from a higher level of abstraction than is possible
in simulation systems using a procedure-oriented methodology. This gives neural network researchers the
ability to rapidly implement and test new ideas.

Acknowledge nients

This research was supported in part by grants from PM Trade (contract #N61339-88-G-0002 order 0009)
and The Institute of Simulation and Training at the University of Central of Florida.

References

[1] "DARPA neural network study," B. Widrow, Study Director. AFC-EA International Prcss, 198).

[2] G. L. Heileman, H. R. Myler, and M. Georgiopoulos, "An object-oriented approach to the simulation
of artificial neural networks," in Progress in Simulation, (G. W. Zobrist, ed.), Ablex Publishing Corp.,
1990.

[3] T. Kraft, "Anspec language definition," Tech. Rep., Science Applications International Corporation,
August 1987.

[4] B. J. Cox, Object-oriented Programming: An Evolutionary Approach. Reading, MA.: Addison-Wesley,
1986.

[5] R. E. Fairley, Software Engineering Concepts. New York: McGraw-Hill, 1985.

[6] B. Meyer, Object-oriented Software Construction. Englewood Cliffs, N.J.: Prentice Hall, 1988.

[7] C. L. D'Autrechy, J. A. Reggia, G. G. Sutton II, and S. M. Goodall, "A general-purpose simulation
environment for developing connectionist models," Simulation, vol. 51, no. 1, pp. 5-19, 1988.

[8] D. Zipser and D. Rabin, "P3: A parallel network simulating system," in Parallel Distributed Processing:
Explorations in the Micros-ructure of Cognition, Vol. 1: Foundations, (D. E. Rlumelhart and J. L. Mc-
Clelland, eds.), Cambridge, MA.: MIT Press, 1986.

[9] J. J. Ilopfield, "Neural networks and physical systems with emergent collective computational abilities,"
Proceedings of the National Academy of Science USA, vol. 79, pp. 2554-2558, 1982.

[10] D. E. Rumelhart, G. E. Hlinton, and R. J. Williauut, "Learning internal representation by error prop-
agation," in Parallel Distributed Processing: Explorations in the Microstructure of Cognzbton, Vol. 1:
Foundations, (D. E. Rumelhart and J. L. McClelland, eds.), Cambridge, MA.: MIT Press, 1986.

[11] G. A. Carpenter and S. Grossberg, "A massively parallel architecture for a self-organizing neural pattern
recogiition machine," Computer Vision, Graphics, and Image Processing, vol. 37, pp. 54-115, 1987.

[12] R-.. A. Ja:obs, "Increased rates of convergence through learning rate adaptation," Nettral Netwvorks,
vol. 1, no. 4, pp. 295--307, 1988.

II- 136



A two level pipeline RISC processor array for ANN

Atsunobu Hiraiwa

Shigeru Kurosu

Shigeru Arisawa

Makoto Inoue

Sony Corporate Research Laboratories

Sony Corp.,4-14-1,Asahi-cho,Atsugi-shi,Kanagawa-ken,243,Japan

ABSTRACT

We describe mapping a fast back-propagation algorithm[l] onto a GCN(Giga CoN-
nection) and the architecture of our GCN.
This architecture is a two level pipeline processor array. In the first level, a.Cray-1

like intra-chip pipeline is used and in the second level,the inter-chip pipeline is a sys-
tolic (Wavefront) array[2][3][4] with asynchronized communication.
We propose the Net-Data Partition method which is tailored to the mesh array proces-

sors and Copy Network method which reduces inter chip communication cost. These
methods improved the performance of a large multi-processor array and just fitted for
the back-propagation algorithm of large scale network used for learning .
From results of our computer simulation, we get one Giga connection per second using a
one hundred twenty eight processor system (GCN-128).

1. INTRODUCTION

The artificial Neural Nets (ANN) model is useful in a number of applications, such
as speech recognition, image processing, robot control, etc.
In order to improve ANN capability, many learning data and a large scale network are

demanded.
First we describe the architecture of the GCN and how the back-propagation algorithm

can be mapped onto the GCN which has mesh interconnected PEs (Processing Ele-
meuts). Then we describe the performance of the GCN which was obtained by executing
a back-propagation program on software simulator.
Finally planned extensions and improvements to our GCN system are discussed.
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2. THE ARCHITECTURE OF GCN

Fig.1 shows the mesh architecture of our GCN. Each PE has an 80860, local
memory (4 Mega byte), and 2 FIFOs(first in first out memory, 64bit x 256W) for mesh
connection. The 80860 is designed by Intel Corp. as a 64bit General purpose RISC pro-
cessor. The 80860 obtains high performance with three parallel units (integer core,
32/64bit floating-point multiplier and adder), pipelined processing mode, 64bit external
and 128bit internal data busses, 12kbyte large on-chip data/instruction caches, pipe-
lined external memory access, and a full customized VLSI chip using CMOS 1.0 ptm
technology.
A our GCN is a two level pipeline processor array.
In the first level, the intra-chip pipeline is implemented by the 80860's pipeline mode

which floating point operations can be executed in a three stage pipeline units.
In the second level, the inter-chip pipeline is a Systolic array like Warp [2].
Since the adjacent PE can be asynchronously communicated to using a very high

bandwidth FIFO (160M bytes/sec,if cpu clock is 40MHz), the GCN avoids synchronous
overhead. Then the 80860's dual instruction can execute FIFO load/store instructions
and floating-point instruction in parallel.
The local memory is used for storing weights, data, and intermediate results.

P PE

-v 80860 FFD 80860 LFI F0

4MB4 PAM 4MB RAM

Fig1 1 Th-rhtctr fP

'F ~ ~ I - 130 FF

FIFO] •8' 80860 I

L 4 M B IRA M" 4 M" B IR n _,,

Fig 1 The architecture of PE

11-13



3. MAPPING A BACK-PROPAGATION ALGORITHM ONTO THE GCN

In systems over one hundred processors, the linear ring connection has a large
communication time, while the mesh connection has a much smaller communication
time.
Fig.2 shows the Net-Data partition method which maps the back-propagation algo-

rithm onto the GCN.
In the vertical ring, each PE is used for the Network partition [5], has different weights,
and transfers hidden output values and intermediate results for delta hidden at every
forward and backward computation.
In the horizontal ring, each PE is used for the Data partition [2], has different data and

same copied weights to reduce communication time (we call this the Copy method), and
transfers delta weights and updated weights at every cycle of all data presentations.

-I•

I-"

P• E-- PL P---
... .. .... .. .. . ........ .. .-....

ý---The horizontal ring -_for the Data partitioni--

Fig 2 The Net-Data partition on the mesh connected GCý'•.
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4. SIMULATION OF PERFORMANCE

Speed evaluation of our GCN was obtained by executing back-propagation on the
Sim860 which is a software simulator of the 80860.
In the three layered Neural-Net, the input layer has 256 units, the hidden layer has 80
units,and the output layer has 32 units. There are 5120 input data points and the GCN
has 128 PEs. Each PE executes calculator with 32bits of floating point accuracy. The
network is partitioned into four parts and data is distributed into 32 PE groups.
We get exactly 6.4 machine cycles required per connection in each PE.
This includes the forward and backward computation time and the communication

overhead.
If the clock of each PE is 20ns (50 MHZ),the speed of the GCN-128 will be over one

giga connection per second.

5. CONCLUSION

We conclude that two level pipeline R1ISC processors in a mesh connection confi-
guration can obtain good performance in a large scale Neural Network simulation.
Our next plan of the GCN is to integrate each node (core like 80860 ,2 FIFOs,4Mbyte

Memory) into super-chip by 1992.
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ABSTRACT
Parallel algorithms for implementing the Kohonen Self-Organizing Feature Map (SOFM) are

presented in this paper. The algorithms can maintain a high degree of load balancing and minimize
the communication overhead. We have implemented the algorithms on a linear chain and a
two-dimensional mesh of transputers. Significant speedup has been achieved. In addition, models to
describe the performance of the algorithms are also presented. The performance of massively parallel
parallel processing systems is predicted from the models.

INTRODUCTION

Kohonen's Self-Organizing Feature Map (SOFM) is a reliable and widely accepted vector
quantization algorithm. A drawback to Kohonen's algorithm, is the increase in computation time
associated with an increase in the number of node elements. Depending on the particular hardware
arrangement on which the Kohonen algorithm is implemented, there is a maximum number of nodes
which can be used for real-time vector quantizatior.

A possible technique that can be used to overcome this drawback is to use a multi-processor
machine[3-5]. The nodes of the SOFM can be distributed across the processors with the corresponding
computations likewise distributed. The mu!ti-prZ eesor scheme lallows mare nod, elements to , a ddcd
to the SOFM while maintaining the real-time vector processing. A sufficient mmber of processors can
be added to ensure real time vector quantization with the addition of the extra nodes.

The goal of this paper is to develop parallel algorithms for the SOFM so that it can be adapted
to any number of processors running simultaneously. For the modification of Kohonens's algorithm
two, guidelines will be followed. These are :

1.) Develop an algorithm to maintain a high degree of load balancing
2.) Keep communication time to a minimum.

The structure of the SOFM makes it easily adaptable to a parallel processing environment. The
nodes can be divided equally among the processors of the system. Each processor is responsible for
updating the weights connecting the input nodes with the corresponding set of output nodes.

IMPLEMENTATION OF THE ALGORITHM
Linear Processor Arrangement

The first implementation of Kohonen's algorithm is carried out on the processor arrangement
shown in figure 1. A node arrangement that maintains a high percentage of load balancing is shu-wn in
figure 2.

'-Li--Li--LI ----
NX

fig. 1. Linear processor chain fig. 2. Node arrangement for figure 2
The numbers within the nodes correspond to the particular processor to which the node is

assigned. This node arrangement allows for a high percent of load balancing while minimizing

I1- 141



communication time. One-hundred percent load balancing is maintained while the neighborhood radius

is greater than or equal to N . As the neighborhood size decreases below N the percent of loadp P

balancing is approximately ((2[R(k)]+ i)/Np ) X 10o%, where [R(k)] is the integer part of the

neighborhood radius for iteration number k. When a training vector is applied to the processor
chain, each processor calculates the minimum node distance and determines the coordinates of this
minimum distance node in the complete feature map. The coordinates of this node are determined by a
mapping array that is generated by each processor during the initialization phase.

Once each processor has calculated the minimum node distance and determined the node
coordinates, a global minimum must be determined. A global minimum can be determined by rotating
each set of values N times clockwise or counter-clockwise allowing each processor to have a copy of
these values to determine the minimum node. The time required for communication is therefore
independent of the number of nodes and depends only on the number of processors in the chain and the
number of iterations for each t~aining vector. The computation time per processor will be a functiun
of the number of nodes per processor and the number of iterations per training sample. The
computation time should therefore decrease as 1/N . The communication time increases as the numberp

of processors and the number of iterations per training sample. The total time to process a training
sample can be derived as follows :

The time required to process a training sample can be broken down into the sum of a computation
time and a communication time. The computation time can be divided into three parts; a time required
to determine the closest node to the present input; a time required to determine the new
neighborhood, and a time required for updating. Communication is carried on only while R(t) 2 1.
Using a rotation method to establish a global minimum node requires the data to be rotated around
the processor chain twice to ensure each processor has a copy of the necessary data.

Define the following values :

t = time required for a multiplication

t = time requiied for an addition or subtraction

t - time required to evaluate the expression C112 for some constant Cs

NI = number of input nodes

n= total number of iterations per training sample

T time to transfer 12 bytes of information between processors

TTo,,Ltotal time to process an input vector
N = Number of nodes in the x-direction

x

N = Number of nodes in the y-direction
y

T= = (2N + 3)ta+ (NI+ 2)t + t
m S

T 2 = 2NlIt + Nitm

y = Neighborhood contractiou rate

The total time required to process a training sample is then calculated to be,
n N N x 0 * I e-2yn' + )

T - ix =T + -L- R(O)T 1- +(2N2-)Tznn(
TOTAL N N N 2 1 1 -- 2y

It is obvious from the above formula that there is an optimal number of processors such that
adding more processors to the chain results in an increase in the processing time for an input. This
optimal value can be calculated by differentiating (1) with respect to N and setting the result

P

equal to zero. Note that the processorchain requires that the number of nodes in the x-dircction be
divisible by N . Figure 6 shows the

p
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results of the simulation for the processor chain.

2-D Mesh Processor Arrangement

The second implementation of Kohonen's SOFIM is carried out on the 2-D processor mesh as shown
in figure 3.The corresponding node arrangement is shown in figure 4.

.. _ __i_.. . . .. _ _ _ _

e 1'

C 2.) --[CfeeY (23
,1 

~ 0 2,.. 
(2,3 

1).....

e .... "- "9 ...

fig. 3. 2-D procesor mesh fig. 4. Nodc arrangement for 2-D processor mesh

The ordered pairs within the nodes correspond to the particut.r processor to which the node is
assigned. One-hundred percent load balancing is maintained while the neighborhood radius is greater
than or equal to M. When the neighborhood radius is less than M, the percent of load balancins is
approximately (('2[R(k)l+ )IM)xloo% for the k'th iteration.

The 2-D prooessor mesh allows for many more degrees of freedom in communication than the
pro-.xssor chain does. Similar to the processor chain, the computation time per processor will be a
function of the number of nodes per p~ocessor and the number of iterations per training sample. The
computation time should decrease as M = N The communication time increases with thc, dimension

of the processor mesh and with the number of iterations per training sample. The total time. tn
process an input vector can be obtained in a similar manner as before. The result i,,-

nTOT nN xN y ;+ .! R(0)T.t__________ + (2)2 2T
'OTA L 2 2 21 -2YI M ) (2)

As before, there is an optimal size processor mesh for implementing the SOFM. This can be
calculated by differentiating (2) in a similar manner as 2 before. For the 2-D mesh arrangement,
communication time is decreased by a factor of (2M -2)1(2N -1). For large n1, the decrease in

communication time becomes a noticeable effect.

The following figures show the results of the simulation for the linear processor chain and for
the 2-D processor mesh for N = N =10. Figure 7 shows the projected speed up for a massivley parallel

implementation of %he SOIA based on a 2-D model as in equation (2).Note that the model agrees well
with th- measured speedup in Fig. 6. Significant speedup can be observed in the figures. These
results indicate that Kohonen's SOFM is suitable for parallel processing by the algorithms presented
above. Moreover, on-lige learninig for the SOFM is feasible for practical applications,

II - 143



Speedup .VS. Number of Processors Speedup .VS. Number of Processors
Normalized to Total Time Required for 1 Processor Normalized to Total Time Required for 1 Processor

To Process a Trainmq Vector To Process o Trairwnq Vector
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fig. 5. Speedup for the linear fig. 6. Speedup for the 2-D
processor chain, processor mesh.
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fig. 7. Projected speedup for a lO00x1O00
system of nodes distributed across
1000 processors.

CONCLUDING REMARKS
There is significant speedup for the simulation of Kohonen's SOFM by the parallel algorithms

presented above. The model further predicts that the algorithms are applicable to a massively
parallel processing systcm. The algorithms optimally balance the load among processors and minimize
the communication overhead. The 2-D mesh architecture has a better speed up over that of a processor
chain. This indicates that a higher-performance interconnection network, such as a hypercube, is
able to further increase the speedup of the parallel simulation of the SOFMl.

The results have demonstrated that the large-scale real-time applications of the SOFM are
feasible by utilizing the parallel algorithms.
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OPTICAL ASSOCIATIVE PROCESSORS WITH ADAPTIVE
LEARNING CAPABILITIES USING VARIABLE
NONLINEARITY IN THE FOURIER DOMAIN

Bahrain Javidi
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Recently, we have introduced a nonlinear class of processors for pattern
recognition, inverse filtering, and image processing [1,2]. The nonlinearity is
used at the Fourier plane to threshold the joint power spectrum of the input
signal and the processing function for various types of operations. The binary
nonlinear optical processor has been used to implement a programmable
optical associative memory for two-dimensional associative retrieval using
binary spatial light modulators [3]. We have shown that binary nonlinear
associative processors can produce will defined correlation signals, low cross-
correlation sidelobes,, and high optical efficiency. As a result, the need for
employing nonlinearity at the correlation plane may be eliminated.

The nonlinear processor has been investigated for a general type of a
nonlinearity at the Fourier plane. It has been shown that the correlation signals
produced, by various types of filters can be produced simply by varying the
severity of nonlinearity and without the need to synthesize the specific type of
the filter. The discrimination sensitivity, peak size, and peak height of the
processor can~ ue aUJLAtLU uy LUottrOlhig the severity or the nonlinearity of the
Fourier plane [4].

In this paper, we present a programmable optical processor that can perform
associative retrieval using a variable nonlinearity in the Fourier domain. The
nonlinearity is varied to reduce the correlation sidelobes and to improve the
correiation performance at the output plane. We show that the selection of the
nonlinearity is dependent on the associative signals employed in the processor.
Statistical analysis of the nonlinear processor will be performed to study the
effects of the Fourier domain nonlinearity on the performance of the processor.
Experiments using the nonlinear associative processor for different degrees of
the nonlinearities will be presented.
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OPTICAL FORMATION OF INTERCONNECTION WEIGHT MATRIX FOR A
NEURAL NET USING ELECTRON TRAPPING (ET) MATERIALS
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Electron trapping (ET) materials are capable of
performing multiplication and storing optical information in
memory. The stored information can be summed and subtracted
optically. The interconnection weight matrix of a neural net
can be formed optically and stored in an ET device.

1,• Introduction

There are two major options to implement a neural
net - namely electronic and optical. The paper will describe
the use of ET materials to implement optical neural
networks. A neural network for associative memory can be
represented by a matrix vector multiplication [1]. The
matrix vector multiplication can be easily performed
optically utilizing the interconection capability provided
by an optical system using two orthogonal cylindrical lenses
[2], where the vector and matrix represent a ID input and
the interconnection weight function, respectively. Hcwever,
the interconnection matrix cannot be formed optically from
the given iD memories. Instead, another means such as a
serial electronic computer has to be used to do calculations
for forming the matrix. The mathematical formation of an
interconnection matrix from given memories is known as
prescribed learning.

Many optical architectures for implementing neural
network models have been demonstrated. In these
architectures, an optical mask which might be an
electronically addressed spatial light modulator (SLM) is
used to display the matrix formed by other than optical
means. The electron trapping (ET) device developed by
Quantex as well as other SLMs can be used to perform matrix
vector multiplication with a classic arrangement (3], in
addition to 2D associative memory [4,5]. Furthermore, the ET
device has an inherent capability of summing, subtracting,
and storing optical data. This extra capability, which is
not commonly found in SLMs, will be utilized for the optical
formation of an interconnection matrix or prescribed
learning (i].

The ET materials are IIa-Vib compounds with two
specific rare earth dopants added. Both ground and excited
states of each impurity exist within the band gap of the
wide-band-gap host material (Eg > 4 eV). Visible light
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(e.g., 488 nm) excites electrons from the ground state to
excited states of one of the dopants from whence the
electrons transfer over to the second dopant. The electrons
remain in the ground state of the second dopant for very
long times. Subsequent exposure to IR light (e.g., 1064 nm)
excites the trapped electrons to the excited states of the
second dopant, the electrons transfer to the excited states
cf the first dopant and return to the ground state of the
first dopant with the emission of orange to red light. At
the present time, the ET materials are mostly applied as
wavelength upconverters and erasable optical memories.
Measure7ents show that the ET materials possess a large
dynamic range covering 4 orders of magnitude.

. QVtI formation " Matr m i

The ET materials are currently used as an erasable
optical memory. Blue light excites electrons in the ET
materials to a higher eriergy state at which they become
trapped. A subsequent IR exposure will release the trapped
electrons to the ground state with an orange emission. The
emission pattern is a replica of the information pattern
that has been stored in memory. Thus, the ET materials can
be straightforwardly applied to a neural network. The
interconnection weight function of the matrix is stored as
an optical memory in the form of a density pattern of
trapped electrons in a higher energy level as a consequence
of the blue light absorption. A subtraction of the weight
function is done by releasing trapped electrons from the
higher energy level to the ground state with an IR
stimulation. The summation is performed by successive
exposures to blue light.

I., Matrix vector multiplication

To explain the interaction between an input and
entire memories, the neural network model assumes that an
associative memory retrieval process is equivalent to a
matrix vactor outer-product. Hopfield's model can be
expressed as follows [1].

N
4 1 if Z Tjj Vj > 0

vi 0 <0 , (0)

where Vr is output, Vj is input. The interconnection matrix
T-1 is defined as

T = (2V.' - 1) (2Vj -1) , for itj

= 0 , for i=J , (2)

where vi' and Vr are ith and jth elements of the mth memory
vector V"

The matrix vector multiplication expressed by
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Eq.(1) can be optically performed using a fan-out and a
fan-in cylindrical lens [2]. The product of each term is
provided by the ET materials. The emission intensity from
the ET layer is proportional to the product between the
intensities of the write-in blue matrix and the read-out IR
vector.

5, Prescribed

The terms of (2V[• -1) (2Vjm -1) in Eq.(2) will be
either +I or -1. Thus, a matrix element is a summation of a
series of +is and -is. The matrix elements of +1 are written
with blue light into the ET device to increase the trapped
electrons. Similarly, the elements of -1 are written with IR
light into the ET device to decrease the trapped electrons.
The contributions of +1 and -i are determined through the
XNOR and XOR between vector elements Vi• and Vjm ,

respectively. A bias level is required to avoid the negative
numbers of trapped electrons in the ET device. After the
matrix has been formulated, an input vector carried by IR
light is incident onto the ET device. Consequently, an
emission representing the matrix vector outer-product or a
ID associative memory will be obtained.

6.. Experimental resulta

An experiment has been conducted to evaluate the
feasibility for the optical formation of an interconnection
matrix. For example, the procedure to obtain a matrix
consisting of elements of -1, 0, and +1 is described as
follows. The ET device is first exposed to visible light to
provide a zero bias level. Then, the elements of +1 and -I
are formed by illumination of visible and IR light with
masks shown in Fig.l(a) and (b), respectively. The resulting
matrix is analytically shown In Fig.l(c). Figure 2 shows the
emission from the ET device with an uniform IR light
stimulation indicating the matrix which has been formed
optically. Three distinctive gray levels show matrix
elements of -1, 0, and +I.

7. Concluding remarks

We have described an optical method to implement
neural networks using ET materials. The advantage of ET
materials over other SLMs is the large dynamic range
provided so that an interconnection matrix with multiple
levels can be constructed. This will substartially reduce
the error of neural nets as compared with binary or ternary
clipped interconnection matrices.

Another feature is the capability of optically
performing a prescribed learning that will preclude the need
to use a computer for re-calculating the whole
interconnection matrix when a memory vector is changed. This
is certainly useful for a learning scheme based on error
propagation as well. We have shown one procedure for the
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formation of the interconnection matrix. Other procedures
are possible for performing XOR and XNOR operations and will
be presented.
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Fig.l. Masks for (a) visible and (b) IR illumination. White
squares are transDarent areas, (c) Resulted matrix

consisting of elements of -1, 0, and +1.

Fig.2. Emission from the ET device verifying the resulting
matrix shown in Fig.1(c).
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A Stochastic Neuron Model for Pattern Recognition
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Abstract

A stochastic neuron used in pattern recognition is introduced in this paper. The motivation is to
incorporate indirect, dynamic neurophysiological activities in the brain. A Monte Carlo technique
is used to cause biased randomness in deciding whether individual neurons should fire, and whether
they should die. The stochastic neuron model is applied to a pattern-recognizing neural network,
which is implemented using a simulation shell. The resulting network is a more realistic model of
neurophysiological activities in the brain.

Introduction

A general, fundamental hypothesis in neural network modcling is that information is transmitted
solely by signal impulses through individual neurons. Following this hypothesis, the basic structure
of a simulated neuron consists of a cell body (soma), a group of fibers (dendrites), and an azon. A
neuron simplified in this fashion receives impulse signals from its dendrites and transmits its output
through the axon, which then splits into branches that connect to the dendrites of other neurons
via synapses. Information is stored in the form of synaptic strengths. Communications among the
neurons are carried by impulse signals that flow via these synapses. A neuron will fire impulses
along its axon only when the sum of the excitatory and inhibitory signals that it receives from
its dendrites exceeds a certain threshold. In this computational model, the products of each input
signal and the corresponding strength are combined to produce one or more activation values for the
neuron. The activation values are theni passed through a function, usually non-linear, to produce
an output value. Subsequently. the decision whether a neuron should fire is made by passing the
output value through a threshold function.

The above computational model ignores indirect neurophysiological interactions resulting from
slowly varying potentials and hormonal flows. Yet clii.ical measurements have indicated that these
communication media display valuable information concerning the activities in the brain [1]. For
example, electroencephalographic potentials (EEG), which are one type of surface potentials as-
sociated with the brain, have been used to diagnose, monitor, and control irregularities in the
brain. To conform a neural network more closel y to neural activities in the brain, there is a need
to incorporate, in some fashion, these other forms of conmmunication.

A major problem with any attempt to incorporate the afore-mentioned indirect corrununication
media is the difficulty in quanitifiing the dynamic and cha(,tic phenmrnena ob:served. A Monte Carln
method used for this purpose is described in this paipr. The technique is applied to a version of
Fukushima's 1984 model [21 for pattern recognition. Using this technique, biased randomness is
imposed oi decisions whether to fire individual neurons as well as whether to allow neurons to die.
The resulting neuron model is termed stochastic neuron. The version of F'ukuslirna's model that
is implemented is called COGNET, an acronym for cognitron network.
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Other stochastic methods, such as a Boltzmann machine [3], have been used to model neural
networks. The purposes of these stochastic methods, however, are to derive a measure of the
learning mechanism and to improve this mechanism rather than to quantify activities in the brain.
The stochastic neuron model is able to incorporate indirect neurophysiological activities in the
brain.

Rationale for Stochastic Neurons

The main motivation for using a stochastic neuron is to incorporate dynamic neurophysiological
phenomena into a neural network. The brain consists of about 1011 neurons connected in a dense
network. A variety of characteristic local changes occur at each neuron. These changes sometimes
cause a rapid increase in the electrical potentials of the neurons. In addition, there are slower
electrical potentials at the surface of cerebral hemispheres. These potentials, known as the EEG,
often occur in characteristic patterns, and are detectable on the surface of the scalp. Some patterns
are rhythmic; they change depending on the state of consciousness, awareness, and the activity of
the brain [1]. Several kinds of periodic waves, such as alpha and beta, have been identified. Certain
circulating hormones and metabolites in the blood also influence the behavior of the neurons in the
brain.

From a computational viewpoint, the use of stochastic neurons increases the random charac-
teristic of the neural network model. Thus the output of the system is less predictable than when
deterministic neurons are used. A neural network made up of stochastic neurons is a more realistic
model of the brain.

Application

The structure and implementation of COGNET are briefly reviewed here. The central components
of Fukushima's network include the multi-layered, hierarchical structure, self-organizing property,
and bidirectional flow of information. The network consists of four-layered modules. Within each
module, the neurons are further divided into subgroups. Each subgroup of neurons is arrangeed in a
two-dimensional array called a cell plane. In each layer, except for the first, there are two inhibitory
cell planes and nine cascaded excitatory cell planes. For the first layer, also known as the input
and output layer, there is only one excitatory cell plane.

A simulation shell, called SUMMERS (acronym for Simulation Utilities and Monte Carlo Models
for Event-driven Research Studies), was used for the implementation of COGNET. SUMMERS
was first conceived by Seaholm [4] and has subsequently been signihlcantly improved [5,6]. The
simulation shell is composed of routines and utilities coded mainly in VAX VMS FORTRAN.
The shell facilitates simulation of epidemiological models, especially those of the discrete-time and
irucropopulation types, using Monte Carlo techniques. The main distinction between a simulation
shell and a utility package (e.g., IMSL) is that the shell provides not only re-usable code, hut also
conceptual conunonalities, that can be used to develop different models. The concept of a cluster,
for instance, is used commonly in stochastic micropopulation studies to represent interacting groups
of elements, see for example [7]. This concept can be used in rneural network models to, describe
interconnected groups of neurons. Furthermore. functinal pro-,granirrning te-chniques, similar to
those in a LISP environment, have been employed to help achieve explicit and clean coding as well
as the ease of adaptation of new models.
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Monte Carlo Method and Examples

A Monte Carlo technique is used to emulate the neurophysiological phenomena in the brain. This
technique has been used in epiderniological simulation studies [7] to allow for random variation of
the input parameters and to compute the average outcomes of repeated simulations. The choice
of this method for modeling a neuron stochastically arises from the ease of implementation using
observed or fabricated data rather than rigorous mathematical and statistical formulations.

The technique first involves determination of the cumulative probability distribution for a se-
lected parameter. This probability is obtained by initially sampling data, such as EEG potentials,
which correspond to one or more characteristic patterns. The magnitude of the sampled data is then
normalized to an appropriate rangel A cumulative probability distribution graph is drawn based on
the number of occurrences of the sampled data that fall within the selected range. (See Figure 1.)
Subsequently, a pseudo-random number generator that follows a predetermined distribution, such
as, a aniform or normal distribution, is used to pick a probability value. Last, a corresponding
value for the selected parameter is derived from the cumulative probability distribution. In this
manier, the parameter is estimated stochastically at each time interval of the simulation.

Using the Monte Carlo technique, the decision whether to fire individual neurons can be biased
stochastically. For example, let ýo and f be the threshold and non-linear activation functions,
respectively, of the neuron. A parameter, say 0, is then combined with f to bias the activation
value, u. This results in

The cumulative probability distribution for 0 can be determined empirically as described in the
preceding paragraph. Similarly, the decision whether to allow individual neurons to die is ran-
domly determined. Tit- generic processes in using the Monte Carlo technique are illustrated in
Figure 2. In conclusion, the Monte Carlo technique offers a simple means of incorporating indirect
neurophysiological activities in the brain into a neural network.
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Abstract
In this paper, systolic implementation of a multi-layer feed-forward network

together with the back-propagation learning algorithm is presented. In this
design, the network and the learning algorithm can be implemented separately
or together. The resultant arrays are regular and of nearest neighbour inter-
connections which are attractive for VLSI implementation.

Background Theory
Consider a L-layer ( layer 0 to layer (L-1) ) feed-forward neural network

consisting of Nk neurons at the kth layer. Define the input of the ith neuron
at the kth layer

i'i for k = 1
L Oik-1] for 2 : k 5 L-1

where i'i is the ith element of the input vector I'; and oj[k] is the output
of the jth neuron at the kth layer.

The recalling of such a L-layer feed-forward neural network can be described
by (2)-(3). For k=1 to L-1

Nk-1
neti(k] = xi[k] wijEk] - ti (2)

i=I1

and

ojEk] = f( netj[k] ) (3)

where wijik] is the element at the ith row and jth column of the kth layer
connection matrix ( from (k-1)th layer to kth layer ) WCk]; ti represents a
threshold value; netj[k] is the activation of the jth neuron at the kth layer;
and f(.) is the activation function (e.g. sigmoid function).

In the learning phase, according to the back-propagation learning rule [1],
the weight change from the ith neuron at the (k-1)th layer to the ith neuron
at the kth layer following the presentation of input pattern p is defined as

1pWij[k] = a 6pj[k] Xpt[k] (4)

where a is the learning rate parameter; Xpi is the ith element of the input
pattern p; 5pj[k] ( which is defined by (5a-b) ) is the output error of the
jth element in the presentation of the pattern p.

For the output layer, k = L-1

( pOpj - opj[L-1] ) f'( netpjELl] ) (5a)
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where o'pj is the jth element of the target output; f'(.) is the derivative of
the activation function.

For the hidden layers, 1 5 k 5 L-2

Nk+l
6pj[K] = f'( netpj[k] ) I apj[k(lJ wijEk+l] (5b)

i=1

Systolic Implementation of the Multi-layer Feed-forward Network
The resultant systolic implementation is shown in Figs. 1-2. The implementa-

tion is composed of (L-1) arrays of basic cells. Each array represents a con-
nection between two adjacent layers in the feed-forward network. The kth array
( connection from (k-1)th layer to the kth layer ) is composed of Nk by Nk-1
basic cells. Defining a clock cycle as the maximum time between the time
required by one real multiplication and one real addition, and the time for
thresholding and quantization. The input is fed into the network from the top
of the 1st array. During the 1st clock cycle, the 1st element of the input
pattern enters the basic cell at the 1st row and 1st column of the Ist array.
The next element will enter the next right cell at the top row of 1st array at
next cycle. Similarly, the remaining elements of the input pattern will enter
the top row of the 1st array sequentially.

After receiving the input from the top, each basic cell multiplies the input
with the weight stored and adds to the accumulated value which flows from left
to right. Therefore, in the next clock cycle, the basic cell will pass the
previous input and accumulated value, respectively, to the next cell below and
in the next right cell. As the accumulated values flow from left to right, '0'
should be fed into the left boundary ( at the start of the accumulation path )
of the array at all time.

After No clock cycles, the activation of the 1st neuron at the 1st layer is
known. This activation is required to pass through the thresholding and ac-
tivation function ( elements 'Q' at the right boundary of each arrays in the
Fig. 1 ) in order to obtain the output value, before passing to the next array
of the feed-forward network. The output of the remaining neuron at the 1st
layer will pass into the next array ( i.e., 2nd array ) sequentially, The
whole process is repeated for tLe next array, and so on, until the final out-put is obtained. After i(Nk+1) ( from k=O to L-2 ) clock cycles, the first
output of the network is obtained at the 1st element of the right boundary at
the last array ( i.e., the (L-1)th array ). The remaining outputs can then be
obtained sequentially.

Systolic Implementation of the Back-propaqation Learning Rule
Figs. 3-4 show the systolic implementation of the learning rule. In Fig. 3,

the kth learning array accepts sequential input of the error of jth neuron at
the kth layer, apjCk] at the right boundary of the array and outputs the com-
puted error, 5pj[P-1], of the jth neuron of the (k-1)th layer at the top of
the array sequentially. The operation of the learning basic cell is to carry
out multiply and add operation in (5b). As the accumulation goes from bottom
to top in the learning array, '0' is needed to feed into the array at the bot-
tom at the start of each of the accumulation path. Before the accumulation
output is fed into the next array, the accumulation output is multiplied to
the derivative of the activation function. As seen from (1) and (3), the lat-
ter can be obtained from the original input, Xpi[k]. For many activation func-
tions, such as thi" sigmoid function, the hyperbolic tangent function, sine
function etc, the d(.rivative of the activation function is related directly to
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the antivatioo function itself. This implies that once xp;[k] is known,
f'(netpitk-1]) of (5b) can be computed. we represent this computation by a
block denoted by Q' in Fig. 3. As the original input exists and passes out at
the bottom of tLq feed-forward array, a series of delay elements (1(2Ni+3)
from i=k+1 to L-1 excluding the triangular synchronization delays ) can be
added to the bottom of each of the feed-forward arrays in order to obtain the
proper synchronization with the learning array. In doing so, the original in-
put at the kth layer ( Xpilk) ) can be input to the learning array from the
bottom sequentially. In this learning phase, this original input ( Xpijkl ) is
also used to calculate change in weight according to (4). The change in weight
is aJded to the instant weight immediate before the calculation in (bb).
After a basic nell has carriad its multiply and add operat'on, it passes the
original input ( Xpirk] ), the accumulation value, and the error of thc: neuron
( 6pj[k] ) to its appropriate neighbouring cells. Its neighbouring cells ac-
cept all inputs and update their weights within the same clock cycle. This ac-
cumulation and update process is repeated for the next clock cycle. After the
input signal passes th'ough the array, Xpi[k] will appear at the top of the
learning array at the same timo as the accumulation output. The derivative of
the activation function can be computed using xpick]. The accumulation output
is then multiplead by the derivative of the activation function to obtained
the error of the jth neuroiis k 6pj[k-l] ) of the (k-1)th layer. All these
outputs ar'e fed into the (k-1)th learning array to calcdlate the errors of all
the neurons at the ik-2)th layer and also the changes in weights of the (k-
l)th layer. The whole process i!s repeated for the next array, and so on, until
the error propagate bacK to the input of the network. The maximum limit of a
clock cycle is equal to the maximum between time of one real r•ltiplication
and one real addition, and the time for comput3tion of the derivative oF the
activation function, Fo'r synchronization, the clock cycle of the learning
phase can be made equal to thac of the feed-forward phase.

Combinated Array for Both Recalling anu Learnirg
The implementation of the two phases can be combined to a combined aray as

shown in Figs. 5-6. Switches are added tri the resultant array tu cope with the
differences between the two phases. Besides trese switches, an additional
switcn is added to the update path of ';-- weight. !his switch is used to avoid
undesirable update of the ieight dur,.., ecalling. In che recalling phase, all
switches are at the position as shown. The network accepts the desired input
pattern and calculates the output of the network. After all the outputs are
obtainea, target output pattern is fed into tho network to calculate the er--
t-crs at the output layer ( Epj[L-1] ). At the same time, all switches switch
to the other pcsitions. The errors at the output, layer is fed back into the
right bounaary of the last array ( (L-1)th array ) in proper timing. Learning
phase is then carried out as described in the previous section. After all the
weights are updated, all the switches switch back to the original posit;cns.
The recalling phase -s carried out again.
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Abstract

In order to simplify neural network design we consider the processing of analog signals by setf operations

rathier than by arithmetic operations ;e.g. by replacing the rnost comnmonly used sumn-of-products formula

by a generalized Boolean operation. A well-suited tool for implementing this idea are the socalled t-norms,

wellkt~own from the domain of fuzzy logic. They offer a higher degree of freedom for hardware design thani

commeri Boolean operations and by exploiting this viewpoint of higher variability all to-day known fuz~y or

stochas'.ic hardware implemrentations can be treated under these norms. The sum-of-products formula turns

out to be a subset of these generalized set operations.

l.Fuzzy Logic and Neural Networks

For direct implementations of neural networks it would be wishful to get large mat~rices of computational

elkments onto the chip; therefore designs with high regularity and as simple as possible processor elements

have to be preferred. Regarding one matrix colunmi (neuron) of a. simple neural network model (tgIit is

the implemnentation of the sum-of-products of input signals zi and weights wjij that has to carry the largest

computational burden and therefore is in the focus of VLSI design.

In this article wve concentrate on the sum-of-prodi'cts function sji, leaving out the sigrnoid function 9(s,)

which is important for the feedback in connection with an individually chosen learning rule, and we also look

rather for function than for accuracy. Following this path we emphasize the processing of analog signals by

set operatioiis rather than by arithmetic operations; and by using triangular norms as mathiematical tools

that are wellknown in fuzzy set theory (1].

To handle new developing fields (like neural networks) with methods taken from other fields (like fuzzy

logic [1-6] or probabilistic logic [7-9]) is an attractive task, leading to new insights for both areas. From the

phenomnenological point of view the relationship between neural networks and fuzzy logic is based on the

fact, that both use approzzmatzve approaches in their models (learning steps vs- membership functions) and

furthermore, that these models arc built up rather implicitcly, e.g. applying expecimentally verified learning

rules, than by algorithmic formulation of the problem.

2. Sumn-of-Products For-mula

In our network model one matrix column is representing one neuron. Usually the product of weigth wij and

input signal xj of the different matrix points of one column j are summed up in some kind of sum-of-products

rule si = Eriwii before feeding the sigmoid output stage.

Wjif

t-t-ornor

IN,01.f~l 
-T=

/ AW

k + A ILI k )

*I ~ZdtIvy j f(Xj,Wij)

Fig I Simple neural network mnodel Fig.2 Sumn-o(T-roducts and Fig.3 Adaptation of weights Wil

and matrix column (neuron). generalized B~ooleanu operation. asi a learning curve.

From the circuit designers point of view this stim-of..produCts formula deserves some attention. Surniria-

tion and multiplication are Well accipted concisie and siimple arithmetic operations; but what is regarded as

simple by the arithmnetician not necessarily has to be regarded as simple by the circuit designer and vice

Versa. (Siiuct! uiost simulations of neural networks are done. onl computers this problem usually gots un-

detected). To bring one example: multiplier and adder circuitry, wet~her in analog iem digital formn, seemns to

be rather costly in comparison to anialog maximumi and rnininium circuitry built up e.g. by diode gates (6gW)
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Therefore we may ask: Is the sum-of-products formula sj - iwi which is used in a variety of neural
network structures, replaceable by a more generalized form si = f(xi, wi'), built up from arbitrary approri-
mation functions? (fig-2) - For example, can we replace arithmetic operations by set operations in order to
perform a logical processing of analog signals in neural networks?

Two observaLions are pointing into this direction:

"* The sum-of-procucts formula is a composite formula characterized by integral and averaging features,

thus being less dependant on local deviations. In principle, neurons may be vegarded as analog or

infinite-valued logical devices.

"* The adaptation of the matrix point weights is following a learning curve (fig.3). It seems to be relevant

to reach the final level in asymptotic approach; but it seems to be not so much relevant what size of

steps is chosen.

These viewpoints are supported by similar approaches in the field of fuzzy logic where for example along
with sum-of-products rules also other functions like max-mm-operations [4) are used. As an example of a

neuronal-network- like structure built up by max-rmia-functions see [5].

3. Generalized Dooleaa Operations
In following this approximative approach one has to look for generalizing functions. By applying set operations
we assign to the task of a neural network two different characteristics in a very general sense:

", AND-like (conlunctive) operations characterize cooperative events where different influences are acting
together and in parallel [10]. A typical example for this case is the Hebb-rule, represented by the product
xiwij.

" OR-like (disjunctive) operations characterize the collection of separate and serial events in order to form
a resulting aggregate action, preferrably if the events itself are disjoint (10]. Examples f0 • tlis case are

the adaptation of the weight parameters and the summation of the different products of a matrix column;
the preferrable conditior, of disjoint events however is not fulfilled by most models of neural networks
where the sum-of-products is computed rather simultaneously (exception: stochastic processing [8,9)).

A well-suited tool to match these Boolean-like statements are the triangular norms (t-norms) [7] which are
wellknown in the domain of fuzzy logic [1]. These norms range over the interval [0,1] and therefore are valid
expressions for probability values or scaled analog values, in contrast to Boolean operations which are confined
to the set {0,11.

The t-norms and the corresponding t-conorras may be regarded as generalized Boolean conjunction (AND)
and disjunction (OR). Ii comnparisoii to Boolean operations (fig.4a) these norms offer a higher degree of free-
dom by different possible surfaces inside the skeleton (fig.4b). Apparently there &te different possible ways
how to get from the z = 0 level to the z = 1 level. This viewpoint is important for hardware design, thus

opening a variety of design options and strategies. M-norm U-norm W-norrn

Z = min(Z,y) X =XV • maz(z-'+ y -- l

a)b) F__1
Boolean AMD .- norn (akei.*on) / ,l

A A

AP"tolorm O*.conorln W-conorm

Bool..,, OR t-conare (skite•ton) maz(x, y) X = y- z~, x = Irnin(z + y, 1)

LAJc

a /
A I A aA d

Fig.4 Boolean operations and corresponding t-norirs. Fig.5 M-, II-, W-norms and corresponding co-norms.
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The t-norms are defined by the following cartesian mapping:
t. [0, 11 x [0, 1] - (0, 11 with
t(O,Z) = 0; t(1, X) = z (boundary conditions)
t(z, y) <_ t(il, y) for x < z', y < y' (monotonicity)
t(t(x, y)Z) = t(x(y, ZO) (associativity)

The corresponding t*-conorm is a reflection of the t-norm in the center of the unit cube:
t'(x, y) = 1- t(1- z, 1- y), and is conform to the DeMorgan-rule z V y = T A y, if the fuzzy notation F" = - x
and V = 1 - y are applied.

The most important t-norms: Corresponding t-conorms:
M-norm miu(x, y) MA-conorm maz(z, y)
II-norm xy IP'-conorm z + y - xy
W-norm niaz(z + y - 1, 0) W'-conorm min(x + y, 1)

These norms are sketched iu fig. 5 and demonstrate the relation: W < 1I < M < M, < If" < w"

A relation between set operations and arithmetic operations already has been stated by Kolmogorov[1O]
x A y = •-(¢(x) )
x V y = 0"*(0(.) + 0(y)) , for any strict monotone function 0

4. Hardware Implementations of Generalized Boolean Operations
The following examples demonstrate the applicability of t-norms to any fuzzy or stochastic hardware imple-
mentation [3,4,6,8,9].

* M-norrn and M'-cono.rm: Simple devices following this norm are diode max- and min-circuits. The
error caused by threshold voltages can be eliminated by use of operational amplifiers [3]; though in the
case of cascaded max-rain or min-piax circuirs this errcr is partly compensated (see fig. 9).

i.-norTm and E1'-conor'm: In stochastic (probabilistic) computing [8.91 signals are coded into series
of statistically indepe.dent pulses with the number of pulses per time interval representing the analog
value. This statistical puls frequency coding makes it possible to ise digital gates a- processing elements
(fig.7).

W-nornn and W* -cono-m: Current mode fuzzy logic circuits developed by T.Yamakawa (61 are based
on the bounded difference which can be used aa a building block for the W-norm and W'-conorm (fig.8)
as well as for the M-norm and M"-conorm.

+

V=m,,n(V., V,) + Vd.,. V, .m (V.. V) -V*•..

Fig.6 M-norm and MA-conorm +
implemented with (ideal) diodes.

,[_ ' L j'-H - --- l._f-I• , k

0 bounded d(bferenc W-normr bounded pro.durL,

.6a= = f. + n,

FrLFT7 nW-Conoc= Mdijtjoo

Fig.7 II-noim and I[-conorm: Fig.8 W-norm and W -conorm
stochastic computing with AND- and OR-gates. in current mode fuzzy logic (6].
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5. Examples of Neuron Implementations
in fig.9 some examples of different possible implementations of a matrix column (neuron) are presented. It

can be seen that inside the interval (10,11 the arithmetic sumn-of-producrs implementation b) is a compost-

tiort of the M-norm. and the W"-c-onorm. The implemnentation in Doolean algebra e) may be regarded as

a. degenerated sum- of-products solution. The fl-norm and conorm, though as circuit design identical with

case e) follow a completely different behaviour, because of stocha.9ticai coding. Fig.1O shows simulation results.

a) -norm b) ri-norm - d) W-norrn Boolean AND IOR.
VV'" 1Icnrn -- Vconorm

M~cor~om W-conrm .. o 1 II -

*.c.... I,

P6..

-r p(rj',p(wij + aý

-- 0'

Fg9dilfcrient ecai-fiplce principies of thle generajized sumn-of-products for mula of neuzral networks. For better
clearness the diagonal sections A-C are shown too, a) M-norrn and coniorm, b) arithmetic sum-of-products
formula (combination of M-norm and TV--conorm inside the interval [0, 11), c) fl-norm, and conorni (xi and wii
are given as probabilities (pulses)), d) W-norm and conorm, e) Boolean circuit (degenerated sum-of-product's
rule, operation not idenitical with c)!)

63.Outlook

Though implementations within this framework may be done in any analog, digital or stochastic form, the

advantage of direct fuzzy hardware design is marked by functional transparency and conciseness which is es-

sential for miniaturization of ueurA networks and fo-r gaining high circuit denisity through regularity of design.

- In general the processing of analog signals by set operations is offering ticw prospects in signal processing,
demonstrated e.g. by rising attention in the. related arrea of filtering (morphologic~al fliltezs) [I11.!,
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ABSTRACT

The sy-napse of a neural system is analyzed, and a hardware model is presented for so-
called "weight" storage. This unique hardware model consists of a bipolar transistor with
an $102 layer applied to the base-emitter junction of the transistor. It is postulated
how charge, representing a weight value, is stored beneath the oxide layer. Model
equations are formulated, with parameters including insulating (SiOn) capacitance,
depletion layer capacitance, trapped charge capacitance, resistivity of the oxide layer,
etc. From these equations, the storage time for this element is determined and compared
to an actual measurement of a fabricated device. This element, and its placement and
function in an analog model of a neural system, is then discussed.

PROPOSED MODEL

For neural systems, it is desired to store the changing synaptic weight, and at the same
time, have this weight affect the output signal of the modeled postsynaptic membrane. In
order to do this, a semiconductor weight storage and active device needs to be designed.

Consider an NPN bipolar transistor (Fig. 1) By changing the bias,, the quiescent point (Q
point) can be changed. Changing the Q point will result in a corresponding change in the
current gain of the device, given the semiconductor characteristics of the device. Thus,
if this property (changing the Q point) can be utilized, it will meet the requirements,
namely, that the output signal from the modeled postsynaptic membrane can be influenced by
* another variable.

It is recalled that for a MOSFET, the conductivity of th,_ channel is affected by the
voltage on the gate. In fact, for an N channel MOSFET, the effective area where carriers
reside can be increased by changing the gate voltage, increasing the conductivity of the
channel.

CGivei this property, it is prop that an sin2 layer be added between the base and
emitter of a bipolar transistor. connected to this is a metal contact, a so-called gate.
Care must be taken that the insulating layer and contact are appropriately aligned, with
regard to the contact, such that the device operates properly and fringing fields are
minimized (i). From Fig. 2, it can be seen that for proper operation, the Si02 layer must
extend from near the boundary of the emitter to a portion of the base region.

MODEL OPERATION

By applying the proper voltage to this new terminal, a portion of the base region becomes
an N region. Thus, the emitter area has enlarged, and therefore, the distance for
electrons to travel from the emitter to the collector has beent shortened, This implies
less recombination of carriers and thus, increased gain. Positive voltage on the gate
attracts more electrons beneath the surface of the insulating layer, increasing
conductivity (2).

For proper operation of this device, the appropriate connections must be made as shown in
Fig. 3. Here a resistor is added to the socalled gate terminal of the transistor to allow
for "memory loss". Further, since the neural signals are of low frequency, bias is
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obtained by using a modified DC amplifier configuration (1,4). For proper phasing, an
additional stage is added. The operation Is such that, from a previous circuit, ()

the signals are filtered and accumulated at the presynaptlc
junction, Then, this signal is routed to the base lead of the memory transistor for
amplification, in addition to the new terminal, the so-called gate. Amplification,
however, is a direct function of the gate bias, and thus, the charge retained near the
insulating SiO2 layer. This charge deposition is a direct function of the filtering that
takes place at the terminal of the axons or dendrites, which determined whether the
synapses were excitatory or inhibitory. Thus, the output of the modeled postsynaptic
membrane varys, depending upon whether the activity at the synapse was mostly excitatory
or inhibitory.

hiEORETICAL FOUNDATION

The storage element functions because of the deposition of S1O2 on the semiconductor
surface. Charge storage exists because th.I. layer functions as a capacitance. In fact,
the insulating layer is composed of a number of layers of various forms of SiO2 (5).

These include, at the semiconductor surface, a layer of incompletely oxidized silicon,
SiOX, Then, a strained region of S 00 followed by a strain free layer of SiO2. Thus,
interface traps and oxide charges witl[exist. Specifically, interface trapped charges are

located at the Si - SiO2 interface, and fixed oxide charges are located near the
interface, in addition to mobile ionic charges within the SiO2 . The equivalent

capacitance of this configuration is given in Fig. 4. Ci and CB are the equivalent
insulating capacitance, and semiconductor depletion layer capacitance which depends on
voltage, respectively. These capacitances exist even in the ideal metal insulator
semiconductor modlel. What is added is the capacitance of the interface traps, CS, which

is a function of surface potential.

Given the SiO2 layer, there can, in actuality, be some current flow due to ionic
conduction. When the electric field is removed, some ions can flow back to their
equilibrium position. Thus, the equivalent circuit for the new "gate" system is shown in
Fig. 5. Therefore, the charge on the gate can leak off over time, even without the
resistor for so-called "memory loss."

For the equivalent system,

MIN G i + CBEQ

where CBEQ -C8 + CS

and the minimum value of capacitance is that where there is no further change in the
depletion region.

Now the capacitance per square centimeter, in general, is given by (5)

C. - " (2)1. d

where e is the permittivity and d is the S1O 2 layer thickness. CBEQ is a fUnction of the
geometry and the width of the depletion layer, as alluded to above.

Given a width of ,7im, a depth 33.3pm, wirh an Si 2 layer of 1000 A 0

Ci - .0101 pf

and 
GBEQ - .0236 pf

CMIN - .0071 pf
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For the resistance of the insulating layer,

R AP (3)A

where p is the resistivity, and I and A are the thickness of the insulating layer and the
cross-sectional area, respectively.

For the previous geometry with a resistivity of llxl0 1 6 ohms-centimeter for the SiO2-SiOx
insulator (5)

R - 4.92(1018) ohms

Now for the circuit of Fig. 5, the charge Q, at any time t, is related to the initial
charge on the gate Q0 , and the parameters R and CHIN by

Q - QOEXP[-t/RCMINI (4)

Assuming no real degradation of charge after time t', when Q/Q 0 - .9, it is found, using
the values of R and CMIN

t' - 3496 sec

EXPERIMENTAL VERIFICATION

The analog storage device described was fabricated, and the charge xetention noted (2).
It was found that the charge was rctained for approximately 1 hour, or 3600 seconds,
before significant degradation began to take place. This value compares favorably with
that derived in the previous section.

CONCLUS ION

From the desired characteristics for a neural synapse, especially the excitatory and
inhibitory behavior, the design of a transistor system for modificatir,, of amplification,
as a function of analog weight storage, was postulated. In addition to the requirement
for passing all frequencies, D.C and above, and having high inpot resistance,
necessitating the use of a D.C amplifier configuration, the system had to retain charge
for a significant period. Thus, the semiconductor physics of this new device was
analyzed, a model Proposed, and the charge storage time found. This time compared
favorably to the storage time for a similar transistor without the DC configuration,
originally fabricated for use as a correlator: or adaptive equaliter weight storage device
(2).

This new element is significant, in that it permitl on-line learning to take place in real
time, with the option of monitoring weight vs'lues, stored as charge ort the so-called gate.
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A Hybrid Architecture for the ART2 Neural Model

William R. Miehalson and Peter Heldt

Raytheon Company
1001 Boston Post Road

Marlborough, MA 01752

1. Introduction

This paper describes a hardware implementation of the ART 2 neural network mnodel[l]. This
implementation addresses the problems associated with massive interconnect, variable synaptic weights,
and learning within a hardware architecture capable of supporting many thousands of artificial neurons.
The hardware architecture described retains the ability of the underlying ART neural model to use top-
down learned expectations to focus attention on bottom-up information in a way that protects previously
learned memories from being destroyed by new learning. Thus, at a hardware level, learning may proceed
without compromising the synaptic plasticity necessary to admit new learning.

Figure 1 shows a block diagram of ART 1, the predecessor of the ART 2 neural network model[2,3].
Both models contain four basic functional blocks: an F1 feature representation layer, an F2 classification
layer, bottom-up and top-down adaptive filters (labled LTM in the figure), and a self-regulating control
structure. In operation, data is received at %he inputs of the F1 layer where it is noise supressed and con-
trast enhanced. This data is then presented, via the bottom up filters to the F2 layer where a
cooperative-competitive network selects a classification for the input data. This classification is then
passed back to the F! layer via the top-down adaptive filter where it is compared with the input to the
F1 layer. If the top-down and bottom-up data are a poor match (meaning that the distance between the
top-down and bottom-up vectors exceeds the distance dictated by the vigilance parameter p), the control
inactivates the current classification of the F2 layer and the process begins again. If the match is good,
"resonance" commences.

ART 2 is an extension of the basic ART 1 model, the main difference between these models being in
the F1 layer. In ART 2, this layer assumes much of the functionality of the gain control paths shown as
part of the attentional subsystem shown in figure 1. By making these gains continuous, based on the
degree of mismatch between the F2 top-down feedback and F1 layer input, as opposed to simply being
dependent on the presence or absence of signals, the ART 2 model becomes capable of producing
responses to arbitrary sequences of analog rather than just binary valued input patterns.

2. A . . ...... A rchitecture 17-or ..... z- - • n,

\In this section, a hardware architecture which supports the ART 2 neural network model is
described. This architecture, shown in figure 2, consists of four functional blocks: a set of Bottom-Up
Adaptive Filters (BUAFs), a category representation module (the F2 layer), a set of Top-Down Adaptive
Filters (TDAFs), and a feature representation module (the Fl layer). Both digital and analog components
are combined to implement various co--'ponents of the architecture, thus allowing the efficiencies of each
type of technology to be exploited wit .he framework of a single hybrid system.

2.1. The Bottom-Up Adaptive Filter Hardware Module - BUAF

The Bottom-Up Adaptive Filter (BUAF), shown in figure 3, consists of i independent entities which
individually multiply the ith eiemnent of the feature vector Si, received from F1, by the ith element in
each classifying weight vector Zcj, where i implies the jth virtual classifying node . F2. The product
terms Si Zci are then summed to form the vector inner products, Tj = 5 Zcj (I 1 ..N), which are
sent to F2.

Once, all the dot products Tj, (j = I..N), have been computed by the BUAF and received by F2,
F2 selects the maximum inner product and sends the corresponding index 'MAX to a memory address con-
troller and, in addition, applies the transfer function G(T,) to the selected ri.ximum vector inner
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product Ti... to form the classifying signal Uj which is sent to both the BUAF and the TDAF. F2
always makes a single MAX[Ti] selection resulting in a single classifying signal Uj-,1 .

In a single ART 2 system, there are a total of M BUAFis, (i - 1..M). Each of which contains N
modifiable-weight synaptic connections to F2. In the hardware architecture, these modifiable-weight con-
nections are implemented as a lxN vector in digital memory where N is the number of inputs presented
by the Fl module. Using digital storage in this manner provides a cost-effective way to store many con-
nection weights over long periods of time.

The outputs of c h BUAFj are connected to a single output conductor which uses current summing
to implement the sum±ýation needed to form a dot product. Thus, only a single connection between the
M BUAFis and F2 is required. Since every node in the F1 module must effectively connect to every node
in the F2 layer, there are a total of O(MxN) inter-layer connections needed. By using current summing to
form dot products, the total number of required connections between F1 and F2 is reduced to O(M).

Operation of the BUAF is as follows: During the hypothesis-testing phase, the external memory
address controller steps through all N memory locations in each of the M lxN memory arrays, at each
step, simultaneously selecting the same memory location j in each memory array. As shown in figure 4,
each BUAFj uses its currently selected digital synaptic weight zc•, where J is the same for all the
BUAFis, together with its analog input signal ai from the corresponding output node in F1, to control a
programmable current source, the analog output current of which is proportional to aizcij. During the
filtering phase, the analog output current from the programmable current source is connected to the out-
put of the BUAFi through a switch set to "Filter", by the external controller. The analog output currents
from all M BUAFjs are collected (summed), at the junction where the output wires from all the IUAFjs
are connected to form the resultant vector inner product T1 = S • Zcj which is passed to F2.

During the bottom-up learning of classifying vectors, each BUAFi applies its currently selected
synaptic weight zcý;. converted from digital to analog by the DAG, together with the analog input

signal a, from its corresponding output node in F1, to a variable-gain amplifier, the gain of which is con-

trolled by the classifying signal LT. ,, from F2, to derive a new synaptic weight zci in accordance

with the specified learning law. During the learning phase, the output of the variable-gain amplifier is
connected by the external controller to the ADC which performs the conversion of the new analog synap-
tic weight zij to digital form for storage in memory location ij. The contents of the currently selected

memory location (ij) are thus updated with the new synaptic weight zei'i*,,.

2.2. The Category Representation Module - F2

The F2 module converts the sum of currents received from the BUAFjs, to a digital form which
represents the vector inner product T. of a feature vector S and a classifying weight vector Zej, and com-
pares T; with TA (k # 5) in the register. If T4 > T,., then F2 stores T: in the register and sgonals the
external memory address controller, which controls both the BUAF and the TDAF, to select the next
address in the memory arrays which hold the synaptic weight values.

After the memory address controller has completed a scan of N memory locations (which is
equivalent to completing the processing of N F2 classifying nodes), it signals F2 to pass it the index 5
associated with the T1 currently stored 'In the register. This j becomes IMAX , used by the memory con-
troller to tell the BUAFis and the TDAFis which weights to select for modification during their respec-
tive learning phases. In the case of the TDAF,s, JMAX also serves to select the top-down expectation
weight vector ZeiMA1 I .

2.3. The Top-Down Adaptive Filter Hardware Module - TDAF

Similarly to the Bottom-Up case, there are a total of M TDAFs, (i I 1..M) which constitute a
top-down adaptive filter. These TDAF; hardware modules are similar in form and function to those
which constitute the BUAF. However, unlike the BUAFis, the analog current outputs from the indivi-
dual TDAFs are not wired together, instead, the output of each TDAF, is connected to its corresponding
output node ai in Fl.
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As can be seen in figures 2 and 4, during the derivation of a top-down expectation, each TDA.F
uses its currently selected synaptic weight , where j is the same for all the TDAFis, together with

the classifying signal Uj, , to control its programmable current source, the output current of which is

proportional to ze,, U . The output from each TDAFj is connected to its corresponding output

node in Fl. Collectively, the TDA.F, generate the top-down expectation vector Vj.6  - Zej. , Uf6 Af.,X
which is presented to Fl.

In figure 2, F1 matches the top-down expectation vector V.,, with the feature vector S. Depend-

ing on the degree of mismatch relative to the chosen vigilance level p, Fl signals the BUAF and F2 to
remove the current JMAX from their respective pools of valid node indices j.

The learning of top-down expectation weight vectors proceeds in a similar fashion as the learning of
bottom-up classifying weight vectors.

2.4. The Feature Representation Module - F1

F1 accepts an analog input pattern vector I and separates signal from noise through subjecting I to
a combination of normalization and nonlinear feedback processes to produce a contrast-enhanced
corresponding feature vector S at the output nodes of Fl.

For ART 2 to match and learn sequences of analog input patterns in a stable fashion, its feature
representation field F1 includes several processing levels and gain control systems. The basic concepts for
reducing the necessary numbers of interconnections between the Fl and F2 modules can be applied to the
intralayer connectivity required in the Fl module. The main difference is that rather than implementing
an underlying learning law equation, in the F1 module normalization constants are exchanged and filter-
ing operations are performed. Therefore facilities, such as ROM lookup tables, must be provided to pro-
vide the correct transforms on the intralayer normalization constants.

3. Conclusion

The basic framework of a hybrid hardware system which implements the ART 2 neural network
model has been described. Based on this framework, ART 2 systems containing many thousands of
artificial neurons may be constructed, the main limitation being the resolution of the analog to digital
converters. As is the case with the total number of artificial neurons, the primary limitation to processing
speed is also the analog to digital conversion since tVis conversion will tend to be quite slow compared to
the time needed to access memory. Even with these limitations, however, it appears to be possible to
implement systerms containing thousands of neurons which perform classification at rates on the order of
tens of milliseconds using current technology.

In summary, the proposed architecture provides the features needed to implement variable-weight
connections while maintaining the stability and plasticity needed to support learning. By using current
summing techniques, the number of interconnections has been reduced from O(Nx.M) to O(M) with a
minimal impact on the parallelism inherent in the ART 2 model thus making the system a viable alterna-
tive for implementing systems containing several thouaand neurons.
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INTRODUCTION OF NEW ANGLE MODULATED ARCHITECTURES
FOR THE REALIZATION OF LARGE SCALE

NEURAL NETWORK HARDWARE

By Patrick Nunally and Brian iIallse

General Dynamics Corporation, Pomona Division
P.O. Box 2507 MZ 50-28 Pomona, CA 91769

Abstract&

This paper introduces new principals of 'implicit' hardware structures which operate under the constraints of neural
mathematical theory but do not rely on direct correlation between function and structure. This paper discusses
specific research, innovations and results in the development of advanced hardware structures (AnalogDigital &
Optical) utilizing the now principals introduced.

Developments in neural science have been primarily focused in the development of mathematical theory and ihs
verification/validation in software. The software developed to execute ncural structures has been, and continues to be.
ingenious in its utilization of Von Neur,-an serial/parallel processors. However, it has become clear that neural
processing must begin to directly compete with classical algorithmic methodologies. The lack ot neural hardware
has been well documented as the major stumbling block in neural technology [1-3] and its importance has been well
documented and is not included here for brevity.The design of large scale neural network hardware is a massively
complex problem which has curcently been addressed with electrical and optical devices which implement
mathematical functions directly (i.e. one synaptic weight one dendritic interconnection).

The two most basic requirements of neural hardware structures is a bounded function of thresholding and an ideally
unbounded function of weighted (synaptic) interconnect. Currently in analog hardware a voltage or current
(voltage/current) threshold, of a sigmoid form, is used as a bounded threshold and an analog potential voltage/current
is used as the semi-continuous synaptic weighting mechanism. The advantage of analog hardware is clearly the
direct implementation of sigmoidal model theory and straitforward continuous potential weights. However, the
disadvantages of 'direct' analog hardware have recently begun to emerge [4]. The structure of weighted
interconnection is generally the dominant limitation in the development of large scale analog, digital or optical
neural devices. These interconnect strucZures tend to be area intensive, unexpandable and limit the feasibility of the
large neural hardware stiuctures needed in modern systems.

"Tlhs research addresses new and innovative neural architectures appropriate for future compact, low-power systems.
These architectures accommodate the high fan-out/high fan-in properties characteristic of artificial neural network
systems with high density interconnects, and have the high throughput capability to achieve rapid processing of large
volumes of data.

Theory to Hardware:

Neural hardwam structures currently fall into three main categories: analog, digital and optical. Analog structures use
voltage/current as the weighted variable between neurons and multiple interconnects for rou.;ing potential to the
neurons of the next layer in the system. Digital arcu'.tectures use counting structures as the weight variable between
neurons and multiple interconnects busses for routing values to the neurons of the n~ext layer in the system. Optical
si)uctures use holographic refraction as the weight variable between neurons and multiple light interconnects for
routing values to the neurons of the next layer in the system. This new frequency based neural architecture is
independcnt of thlese technologies yet gcncraily applies to them all. The architecture uses offsets of frequency as the
weighted variable between neurons and a single collective interconnect for routing neuron contributions to the
neurons of the next layer in the system.

This technology is a combined analog/digital device architecture, using silicon or other materials, and is based on
devclopments currently in work as part of this research. The architecture is designed to be robust to mimufacturing
,nd environmental variability. The goal of this new architecture is to optimize usage of interconnect strnctures
which account for a majority of device area consumption and processing "bottlenecking". The architectur: is
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designed to be flexible and modular to accommodate evolving neural network system architectures and allows for

scale..up to large-sized systems through assembly/interconnection of smaller subsystems.

Neuron Structure:

The structure of the neuron processing unit is design such that th.- summation of the synnptic weights over time is
performed, instead of the summation of voltage/current typically used in analog neuron structures. The neuron is
driven by two signals, an excite and inhibit. These signals are driven by the synaptic weights were the synaptic
weights are represented as frequencies, with a smaller weight being represented by a larger frequency offset from the
carrier and a larger weight represented by a smaller frequency offset. The purpose of the excite and inhibit signals is
to increase or decrease the internal sum of the neuron. The internal sum of neurons are thresholded using bandpass
thresholding method. The correspondence between the theoretical synaptic summation and the summation performed
within the netuon is:

Theory Hardware
N t

s Nj= IWIjXj Si 1 f(le+li)d(t)+V(0)

j=1 0

le = sin[tan 1 (E(t))] x'X(Vs-Vp V2 ds
to WJ gs tp)Vds2 i

i = sin[tan"1 ( I(t))] - ' (Vgs-V n -V2
lio

Where,

t)= N C• ifc Wc(t)+ t) Wij Xj<0
E(t) 8 L DE ii ) !Eij(t) = COS w ij Xj >! 0

r llq(t) = COS Wc(t)+.. t) W ij Xj > 0F -Nq

Zd'O = ) LL.W i)=CO = (onW) v ,j x. 0o

Synaptic Structure:

The use of analog voltage/current for weighted interconnect has been explored as a primary focus of much of today's
current. research. This storage of variable weights in analog formats has proved to be a superior structure for data
storage. The development of initial functional devices has been completed and the development of expandable
concepts must now be initiated. The critical aspect of system structure expandability is the development of weighted
interconnect structures which will allow for a maximization of area utilization and flexibility.

By interconnecting multiple synapses on single interconnects they would typically interfere with each other because
all signals would interact directly. By utilizing frequency directly as a synaptic weight they would still interfere with
each because the spectra of all the signals occupy more or less the same bandwidth. By utilizing synaptic weight to
modulate different carrier frequencies, it is possible to translate each signal to a different frequency iange. T[his
principle is fund;imental to the high density interconnect and expandability requirements of all analog, digital and
optical neural systems. Figure 1 shows the power of interconnect scheme versus current methos.
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Voltage/Current Count Based Holographic New Frequency Based
Based Analog Digital Optical Analog, Digital or Optical

Figure 1. - Comparison of conventional neural structure's
connectivity to frequency based neural networks

Frequency is a continuous function which can equate to a large continuous variation of weighting. This weighting
function can be achieved by varying the excite carrier frequency in proportion to a modulating signal. The frequency
of a particular exponentially modulated frequency ;an be shifted by this variation. A frequency shift of w0 in the
frequency domain is equivalent to multiplication by ciWOt in the time domain. The significance of this variation is
that the demodulation of multiple frequencies on a single line is performed with bandpass filters. These filters can be
wall filters which transition from a signal of full amplitude to no transmission emulating a step function. This is of
course an ideal condition; real filters tend to role off at some given rate. Using a typical filter represented by the
following transfer function:

1
IH(o))l =[Equation 1]

we can represent a number of different transfer functions through controlling the order of the filter (n) as shown in

Figure 2.

t
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Figure 2 - Typical filter characteristics

By using this principle we can vary a particular neurons cuoitribution to the next layer in the network by simple
varying its modulation slightly. The role of of the sw'tch capacitor filters constitute the threshold response of the
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previous layer. These filters can enulate common activation functions typically utilized in neural network

paradigms [5] shown in Figure 3.

Wci Wcj

AWm AWi

Ak.:: AWi

-v,!j Awj

Figure 3 - Neuron c mntriition to the next layer as a function of filter structure.

The modulation variation is a functios "-]he switch uapacitUr filter network and the constant amplitude of angle
modulation make this system less susccp.ibule to nonlinearities.

Results And Future Work:

This research has resulted in the development of technologies and integrated circuit structures for frequency based
neural networks. The primary focus of this research has been geared towards the design and fabrication of a 1.6
micron CMOS silicon analog/digital 40 neuron integrated neural network. This is not meant (nor should it be
perceived as) a limitation of this architecture's application to other implementation technologies or larger neural
networks (it is merely an economical test vehicle). Higher end limits of device bandwidth have not been reached
however, ground work has been established for the expansion of future bandwidth capability. The positive results of
this research has led to the initiation of a 256 neuron dual layer fully interconnected analog/digital self configuring
neural network proiect scheduled for fabrication late in 1990.
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A Multiple-Bus Network for Implementing Very-Large

Neural Networks with Back-Propagation Learning

D. K. Panda and K. Hwang
Dept of EF-Systems, Univ of Southern California

Los Angeles, CA 90089-0781

Abstract: A multiple-bus network incorporating only two types of building blocks is proposed.
The architecture, with its built-in features, provides an integrated solution to the ever-demanding
high-speed, modular, reconfigurable and VLSI implementable hardware platform to implement
back-propagation neural networks(BPNNs). The programmability features provided by software
simulators are embedded into the architecture and hence, make it, suitable for high-speed real-time
implementation of very-large BPNNs.

I. Parallelism in Back-Propagation Neural Networks
Multilayer neural networks using back propagation learning [2,3] are extensively used by neural
network researchers. The back-propagation learning algorithm(BPLA) dictates data dependencies
in computations (computing outputs of neurons in forward pass, error vectors and weight updates
in backward pass) between different layers of neurons. Hence, irrespective of serial or parallel
implementation, the parallelism is restricted only to computations involving adjacent layers of
neurons.

First, we analyze the computational overhead associated with scaling up a BPNN. Figure 1 (a)
shows a three layer BPNN with m, n, and p neurons in input, hidden, and output layers. Assuming
full connectivity, the number of computations involved in adjacent layers are 0(rnn) and 0(np)
respectively. By scaling up the problem x times (figure 1(b)), the number of computations increases
to 0(mnx2 ) and 0(npx2 ). This O(X2) overhead slows down the serial implementation time by O(X 2 )
and makes the software simulation scheme unrealistic for real-time large scale BPNNs.

The best parallel implementation is to have a hardware featuring dedicated point-to-point (PTP)
interconnections, where the computations between adjacent layers can be carried out in 0(l) time
step. But, the present-day technologies (digital/analog/optics/analog-hybrid) are not matured to
implement full PTP connectivity between large number of nodes. Hence, a technologically feasible
scheme, demonstrating maximum parallelism with limited PTP connectivity, is ideal for efficient
implementation of large scale BPNNs.

The back-propagation learning algorithm uses the following computational steps:

u(k,I + 1) = w (k).aj(k,1) + o(+1) (1)

ai(k,i+1) = f(ui(k,I+ 1)) (2)

wi/(k + 1) = wqy(k) + bi(k, I + 1)- f'(ui(k, I + 1))- r7- aj(k,1) (3)

,j(k,1) = Z-bi(k,Il+l).wi,(k) if 1 JL (4)

= 0j(cI)-ay(k,1) if ¼=L

where k = iteration number, I = lth layer (1 < I < L), L = total number of layers, 1 < i < NJ and
N1 -- number of neurons in the Ith layer.

Steps (1) and (4) are of matrix-vector multiplication type and hence, can be implemented in
parallel by assigning a processing element (PE) for each neuron. Efficient distribution of synaptic
weights among the PEs is required to minimize interprocessor communications. Step (3) is of
array-updation type and hence, can be implemented in parallel. Step (2) can also be implemented
in parallel by using a table-broadcast approach instead of a table-lookup approach as mentioned
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Figure 1: Computational overhead in scaling up a back-propagation network.
in 14]. So, overall, the computational steps in a BPLA exhibit inherent parallelism. In tli, next
section, we propose a multiple-bus network to exploit this parallelism.

2. The Multiple-Bus Network Architecture

Steps (1) and (4) of BPLA belong to different passes(forward and backward) and the matrix-vector
operations are carried out on weight matrices Wij (weight matrix between layers i and j) and WT
respectively. To exploit full parallelism, we designate one PE (Synaptic Neuron Element or SNE)
per neuron. The synaptic weights are duplicated among these SNEs to provide fall parallelism in
both passes. SNE (j,k) (kth SNE of the jth layer) stores the kth column of the weight matrix W%-_,j
in a column memory and kth row of the weight matrix Wj,j+1 in a row memory. Figure 2 shows
the mapping. The group of SNEs in adjacent layers are connected to a common bus controlled
b- - Layer Bus Controllcr (TLB01. The ,NE suppor, u•, al-pur~ue control and addressing. A (in)., ,. j T h7 "" _J . ..... ..
layer BPNN is mapped to a (m+l) layered bus structure. LBC(j) is capable of addressing the
row(column) memories of SNEs in jth ((j+].)th)) layer. The SNEs in layer j operate in SIMD
mode under the control of either LBC(j) or LBC(j-1). All LBCs together with the host share a
common message passing communication bus and implement the computational steps of the BPLA
by message exchanges.

Initially, the host distributes thL synaptic weights of SNEs to the respective LBCs using high-
speed message passing. All LBCs work in parallel to store these weights in respective SNEs. During
the forward pass, LBG(O) commands the layer 1 SNEs (from left to right sequentially) to broadcast
their output values on Bus(l) in consecutive clocks. During this broadcast, all SNEs on layer 2
listen to the broadcasted value and perform a multiply-accumulate(MAC) operation each using the
desired weight from the column memory. The weights in column memory are serially addressed in
consecutive clocks. After all SNEs of layer 1 have broadcasted their values, the SNEs of layer 2
are ready with the step (1) operation. A table-broadcast approach is used to carry out step (2) in
parallel. The non-linear activation function f, stored inside LBC (1) by the host, is broadcasted
on Bus 1. All SNEs of layer 2 compare the broadcasted value with the step (1) result in parallel
and determine the output of the neurons in 0(1) time step.

Steps (1) and (2) are repeated for subsequent layers. At the end of the forward pass, each SNE
of the output layer computes the error and broadcasts it to lower layer SNEs. During the backward
pass, the SNEs in destination layer use the weights stored in their row memories for computing
the back-propagation error and updating the weights. While the backward pass operation between
layer j and layer (J-1) SNEs is carried out, LBC(j) copies the weights from row memories of layer j
SNEs to column memories of layer (6-Fl) SNEs. This ensures that the modified weights are used
during the forward pass of the next iteration.

The present architecture exploits full parallelism of a BPNN in each of the 4 computational
steps. It takes O(m+n) and O(n+p) time steps respectively for forward and backward pass for the
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(a) A back-propagation network (b) Multiple-bus network
with weight matrices

Figure 2: Mapping of a back-propagation network onto a multiple-bus network (LBC= Layer Bus
Controller and SNE=Synaptic Neuron Element).

BPNN shown in fig 1(a). Since a shared bus is used, scaling the problem size by x times has only
linear effect (O(z)) on the computing time. Since the bus technology allows only a finite number
of nodes to be connected to it, we provide a multilayer bus structure with repeaters (Fig 3) for
implementing very large scale BPNNs. The LBCs on a horizontal bus perform themselves the bus
repeater operation by receiving a broadcasted value from left(right) bus and re-broadcasting it on
right(left) bus with 1 clock delay.

SNE(1,1) SNE(1,64) SNE (1,256)

Figure 3: Multitayer-bus network with repeaters for a 256 neurons 3 layer back-propagation net-
work(LBCR=Layer Bus Controller with Repeaters, SNE=Synaptic Neuron Element).

3. Programmability, Modularity and Expandability
The multiple-bus network, providing flexibility at the hardware and firmware level, incorporates
the following programmability features:

1. Reconfigurable Interconnections: Any arbitrary interconnection between adjacent layers of
neurons is supported. A tag bit of 1(0), associated with each weight, indicates the pres-
ence(absenice) of an interconnection. The MAC hardware of SNE uses this tag bit to bypass
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"a MAC operation in the absence of an interconnection. This tagged memory feature allows
"a smaller size problem to be mapped to the architecture. By disabling selected repeaters,
multiple smaller size problems or different instances of a smaller size problem can also be
implemented on a common hardware in parallel. This multitasking feature results in full
resource utilization and fast turnaround time for algorithm development.

2. Neuron parameters: The table-broadcast approach allows dynamic allocation of non-linear
function to a group of neurons. The neurons of a single layer can also have mixed parameters.

3. BPNN parameters: Different parameters of a BPNN like number of hidden layers, number
of neurons in a hidden layer, gain constants, etc are easily programmable on the architecture
by downloading appropriate control program to the LBCs by the host.

4. Downloading/Uploading synaptic weights: Precomputed weights can be downloaded to the
memory to run the BPNN with/without learning. The whole computation in the system can
also be frozen after a predetermined passes to debug/alter the synaptic weights. This internal
visibility feature [1] makes BPNN aigorithm development much easier.

Besides programmability, thL architecture uses only two types of building block VLSI chips:
SNE and LBC. Due to the bus oriented structure and message passing communication between
LBCs, the architecture is expandable and provides modular growth in both dimensions: 1) in-
creasing the number of neuron layers and 2) increasing the number of neurons in each layer. In
the present design, the size of the column and row memory restricts the growth of the system in

the second dimension beyond certain stage. This restriction can be alleviated by providing a SNE
source address field against each synaptic weight [51.
4. VLSI Implementation and Technology Requirements

The multiple-bus architecture uses the technologically proven bus-oriented interconnections. Fully
digital implementation using only two types of building block modules make the architecture suit-
able for VLSI implementation. The local bus controller with repeater (LBCR) is functionally equiv-
alent to the currently available message passing coproce,.sor chips (MPC chip for MULTIBUS-II for

example). A small portion of the synaptic memory element (SNE) is dedicated to simple processor
logic. A major portion of the SNE is dedicated to mc.nory cells for storing the synaptic weights.
From the integration and functionality point of view, LBICR stands in par with commercially avail-
able medium-level microcontroller and SNE with high density memory chips.

The sophisticated processor technology and high density memory technology of the prescnteday
VLSI world promises high density SNEs and high performance LBCRs. Similar to the available
memory chips, SNEs can be fabricated with different word widths and storage capacities to im-
plement different hardware implementation for different sizes of back-propagation network. The
architecture, using the VLSI technology, allows implementation of very large BPNNs consisting of
10r neurons/layer. Due to the regular bus-oriented interconnections, wafer scale integration of this
architecture is also technologically feasible 15].
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Parallelized Back-Propagation Training and Its Effectiveness
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Training back-propagation neural networks for real-world, real-time problems involves managing
large quantities of numeric examples and piping those data through a computationally intensive
learning algorithm. In response to this need, a parallel back-propagation (BP) training tool has
been developed. The approach used for parallelization is coarse-grained. Training patterns are split
among the various processors, gradient estimations are computed in parallel, and then a central
copy of the weights is updated. This approach results in a nearly linear relationship between
computation speed-up and the number of processors (Chart 1). However, the reduction in
training time (defined as time to reduce total sum of squared error to a specified level) is not linear.
This is due to the fact that this parallel approach effectively computes a more accurate gradient
estimation. It does not necessarily allow more weight updates to occur. Therefore a limit exists to
the amount of actual training time speed-up achievable using this method of parallelization. The
exact amount of parallel processing power that is useful depends heavily on the nature of the
training data and the problem being solved. Two different back-propagation networks have been
considered: a simple sum of sine functions and a target detection problem with actual imagery.
Based upon evidence gathered from these examples to-date, a relationship exists between the epoch
or batch size specified when running the parallel BP training tool and training performance.

Parallelization is only one option for improving training performance. Other options include new
or modifiv.ued leaning algiuIt' Panis [ , Sio8o, Denn757, Sama87, Shep88], learning rate
changes over time [Cate87, Hush88], momentum adjustments [Gogg89], and parallelization of the
network model itself [Wata89]. Because the current range of application sizes (1,000 - 5,000
intercomniections) and div inherent difficuity in parallelization of the network itself (due to 3-D
interconnections on 2-D real estate) - a parallel implementation of the training phase only and not
the entire simulator was selected as a starting point. An eighteen-processor Encore Multimax was
used for this study. This machine is a bus-based parallel processor with 32 MB of shared main
memory. Each processor has a floating point co-processor and 64 KB cache.

TooQDl x2IuogiLenland Test Results
There are several possibilities for segmenting the BP training problem. One of the simplest
approaches is to divide the training patterns into n' sections, where 'n' is the number Of
processors. Each processor contains a complete copy of the neural network simulation and trains
using its subset of the training patterns. The back-propagation algorithm that executes at each
processor was adapted from work at the University of California San Diego [I ume86]. The issue
of weight coherency quickly becomes a problem with this approach. In order for the individual
processors to collectively work on t solution, they need to operate from the same weight matrix.
Otherwise, each processor would work toward a solution for its peculiar subset of training
patterns, not the global solution. This coherency requirement causes the training to become
"epoch" training, i.e. - several training patterns are presented to the retwork before weight changes
are made, Figure 1 shows an overview of the tool's operations.

Epoch training produces different effects on different training pattern sets. Each pattern
presentation during BP training is used to compute an estimation of the steepest descent gradient -n
the error surface. By collecting multiple gradients and averaging them (epoch training), more time
is spent computing the gradient, but it is theoretically more accurate because of the larger sample
size. Thus, for a given amount of time, a trade-off exists between time spent computing the
gradient and the number of weight updates possible. The two extremes are con ?uting the gradient
over a) the entire training pattern set, and b) a single training pattern.
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I Pattern 1. Compute error on individual training pattern subset.

Matrix- subsets 2. Wait until all processes are done computing error,
sl 3. Controlled simultaneous update weights.

4. Wait until all error contributions are complete.
5. Using new weight set, go back to step !.

Figure I - Parallelization Approach

This trade-off is certainly not unique to the
parallel processing paradigm, but it directly
affects the parallel training tool's efficiency. Beyond this point,
If the quality of the gradient estimate improves -parallelism yilds
only slightly using more training patterns, the Y little/no benefit.
parallelized training procedure described will
not decrease the learning time. Parallelization
is only helpful where gradient quality increases
with Tespect to epoch size remain significant. In

thcr words, oji the LypodhutiLA curve shown in V
Figure 2, useful work is done as long as the 0 Epoch Size
slope does not level off. After that point, one is
only "polishing the stone." More processors can Figure 2 - Gradient quality as a function of
work on the problem, but the total error epoch size (Hypothetical curve)
reduction over time will not increase.

For optimal learning efficiency, parallelization among training patterns requires careful attention to
the epoch size (ES). Bigger is not necessarily better. See Charts 2 and 3 for graphical summary of
results for the object detection example problem. This training set contained 4156 samples and the
network was 30x30x10. Table 1 summarizes the environment for each trial used as a data point.
In ordcr to gcnerrate certain epoch sizes, different numbers of processors were used as listed. Tne
interesting point on Chart 2 is that increasing the epoch size produces lower error up to epoch size
of 18. After that point, even though more efficient parallel processing (less synchronization, more
number crunching) is occurring, error is not further reduced because the additional time refining
the gradient estimation is wasted. Thus, fewer weight updates are made in a given time. Since the
gradient estimates are not more accurate, total error is higher. Chart 3 summarizes the twenty test
trainings examined. A single learning rate did not perform well for all cases. To negate any
advantage, the learning rate is individually specified (Table 1) inversely proportional to the epoch
size [Kung88, Juri88]. We discovered empirically that a learning rate of about "5 / epoch size"
worked well for nearly all cases.

This paper reports incremental results to-date. Several areas require more analysis: (1) the effects
and size of parallelism overhead, (2) further evidence for predicting the gradient quality vs. epoch
size curve, (3) optimizing the contribution of learning rate and momentum to reduced learning time,
and (4) use of different training sets and types of data.

The results presented are specific to the data set studied. We fully expect different results for
different problems, sample sets, and types of data. On some data sets, using even more than one
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pattern to compute the gradient may be a waste. Parallelism would not help reduce training time
and would likely prolong it due to overhead. In other instances, the gradient quality curve might
be linear. Linearity and increased utility of the parallel approach might occur where the samples
constitute a spanning set for the total input space, and there is, thus, no redundancy in the training
set. Other types of data sets need to be studied to allow any general conclusions to be drawn.

The simple empirical evidence presented herein shows the benefit of measuring the quality of the
gradient estimate as a function of epoch size for a given problem. The analogy can be drawn
between the use of gradient quality through multiple weight updates (time) and forces applied
through distance to create work in mechanical systems. Conservation and flow of information
from the sample set to the neural net weights is similar to conservation of energy between potential
to kinetic forms. In creating a better weight update in parallel, one is increasing the potential
"information" energy of the system. To do work and reduce errors, that potential must become
active, i.e., iterative weight updates must be applied. The tool described can produce statistical
results for finding the optimal epoch size for a given problem, in addition to increasing the
efficiency of the training for larger back-propagation neural networks in complex domains of
interest.
References

Cate87 "Successfully using peak learning rates of 10 (and greater) in back-propagation
networks with the heuristic learning algorithm," J.P. Cater, Proceedings of the IEEE
First International Conference on Neural Networks, 1987.

Denn87 "Accelerated learning using the generalized delta rile," E. Denning, Proceedings of the
IEEE First !nrternationnal Conference on Neural Netivorks,, 1987.

Gogg89 "Primacy and recency effects due to momentum in back-propagation," S.D.D. Goggin,
K.M. Johnson, K. Gustafson, Proceedings of the International Joint Conference on
Neural Networks, 1989

Hush88 "Improving the learning rate of back-propagation with the gradient reuse algorithm,"
D.R. Hush, J.M. Sala, Proceedings of the IEEE International Conference on Neural
Networks, 1988.

Juri88 "Back error propagation - a critique." M. Jurik; Digest of Papers: COMPCON, 1988.
Kung88 "An algebraic projection analysis for optimal hidden units size and learning rates in back-

propagation learning," S.Y. Kung, J.N. Hwang, Proceedings of the IEEE International
Conference on Neural Networks, 1988.

Park87 "Optimal algorithms for adaptive networks: second order back propagation, second
order direct propagation, and second order Hebbian learning," D.B. Parker,
Proceedings of the IEEE First International Conference on Neural Networks, 1987.

Rume86 Parallel Distributed Processing (PDP): Explorations in the Microstructure of Cognition
(Vol. 1), D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, MIT Press,
1986.

Sama87 "Refining and redefining the back-propagation learning rule for connectionist networks,"
T. Sarnad, Proceedings of the 1987 International Conference on Systems, Man, ant
Cybernetics, 1987.

Shep88 "Fast learning in artificial neural systems: multilayer perceptron training using optimal
estimation," J.F. Shepanski, Proceedings of the IEEE International Coafrence on
Neural Networks, 1988.

Simo89 "Back propagation learning equations from the minimization of recursive error," W.E.
Simon, J.R. Carter, (to be presented) IEEE International Conference on Systems
Engineering, August 24-26, 1989.

Wata89 "Neural network sirnuiation on a massively parldlel cellular array processor: AAP-2," T.
Watanabe, Y. Sugiyama, T. Kondo, Y. Kitamura, Proceedings of the International Joint
Conference on Neural Networks, 1989.

I1- 182
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Bidirectional associative memories (BAM) [1] are mainly designed to allow heteroasso-
ciation between pairs of patterns. The first studies of these systems were very optimistic
because they seemed to show excellent results not only because of the high number of pat-
terns that could be encoded but also by the rather easy implementation in VLSI. However,
more accurate analysis showed that the performance of a BAM cannot improve that of other
well known models of associative memory [2,3,4]. This fact caused an oblivion of the BAM.

The goal of these notes is to renew the interest on BAM by presenting two different
results. From one side we present a new form of the matrix of connections which has the
advantage that together an architecture suitable for VLSI purposes, allows to increase the
effective capacity of the system respect to a. general autoassociative network. The point

is the reduction of the number of physical connections. As a complement we introduce a
method able to codify very efficiently patterns with low le,.cls of spatial activity, i.e, sparse
coded. This method is particularly interesting for the architecture presented in this paper.

A BAM is composed by two layers with n and mn neurons respectively. Both layers are
completely interconnected but there are not connections between neurons of the same layer.
The goal of the system is to codify a set of pairs of patterns ((X1, Y 1 ) ...... (XP, YP)) through
of the following matrix of connectiohs M = X xi 2'Y". The dynamics of the system is simple.

Taking as initial condition a corrupted version of a pattern, for instance Xk, one evaluates
the product XkMl obtaining as a result a version of 1'k. Then, one evaluates MTY& leading
to X" and so on till one arrives to a stable state.

The learning rule that we propose is aimed for autoassociative purposes. Its adaptation
needs a modification of the basic structure of the system in order to make profitable the
features of the standard BAM. Let's suppose that a set of vectors Z = (Xi...X,, Yi...Y,,)
, 'cngth n+m, built up from the composition of vectors X and Y, must be codified. We
construct a matrix of connections M' through the following learning rule

lIij = 0 1<i(n, K<_J<_m

W MT <<i<n, m+ • <_j<m+n

SAl n+I<i<n+m, I_<_j rn

- 0 n+1<i<n+ n, m+I<j<_m+in (1)

where M is given by (1). With such structure our system behaves as a one layer autoasso-

cdative network for vectors Z. The dynamics of the model is the usual one. Each element of
Z evaluates its state in the next time step from the product ZNM', however the structure of
N•" causes somie interesting effects which deserve special attention. The components of the
vector Z aft-er ere iteration are

II- 183



m-- 7"

X1 = YtM:I + ..... +Y,•Mml

r T

Ym = X1M .+ + ...... + X M;,m (2)

Therefore, the dynamics of the standard BAM is preserved. The subset X of Z is recalled
through M whereas Y is recalled through MT. Notice that the new dynamic process is

composed by two independent steps. First, we evaluate X(t+l) •.rom the initial values of
Y(t). If the initial version of Y is, for instance, very corrupted, then the retrieval of X(t+i)
will be very poor even if we begin the process with a correct version of X. The same reason
leads to a very good retrieval of Y(t+l) because it comes from a good version of X(t). In the
second s•,ep we find opposite behaviours. If the initial X was good the retrieval of X(t+2)
is expected to be good (if there are not problems of saturation) and consequently bad for
Y(t+2). Therefore, we have to difference two cycles, each with its own features which depend
on the initial overlap of the two subsets ot Z, X and Y. The reason for this effect born in the .__
structure of M'. One observes two submatrix with no links between them which causes two
independent processes. In this way we have introduced partitioning.

VLSI analog neural networks implementing associative memories, have been built follow-

ing different design methodologies [5,6], ma.in!y with architectures based on the Hopfield-
model (Fig 1). The results obtained in terms of silicon area are hils.fly dependent on the /
number on interconnections, n2 in a Hopfield net, rather than on the number of the neurons

n. Our system behaves • an autoassociative one-layer network for vectors of length n+m.
Because of the symmetry and of the dilution our matrix is composed by two zero sub-matJ ix
plus two sub-matrix, one the traspose of the other. This structure can be profitable from an
architectural point of view, to reduce one halt' the number of irnl)lemented synapses.

One can obtain autoassociativity on vectors Z=(XY) by multiplexing the calculation.
To achieve that, we use a "programmable combinational resource", composed by the inter-
connection matrix and the neurons. !n this sense programmable means not a new load for
RAM but a control of the direction of the process or, in other words, to transpose the matrix
M. In odd cycles, the resource implements M matrix, so Y' is cotnlmt.ed from the product of --
X by M, whereas in even cycles, alr is implenleltc•l aml X' is computed from t.he prtduct
of Y by MT. So every two clock cycles we have an updated valm' of Z.

In terms of architecture one needs, for each intcrconncction:
A number of RAM cells which depends on the \'ilhlcs that \vcights til.ll take. aud its

associated circuitry.
- One device simulating tl:e synapse.
- One device and I/0 and control lines, l'or bidircctionality.

Additionally, two layers of neurons with programIiud•h' threshold for sparse coding, and two
registers per neuron, to store X, X', Y, Y'.

The design (Fig.?) is composed by an external bus (an usua! eight or slxtccu bits bus),
used to load the weights into the RAM cells ol" the int.ercollmction matrix and also for data,
through a register in a ,nultil>h:xed way. llll.crnally each register is split in two parts of
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Fig I :Architecture based in the tIopfield model. Fig 2:Architecture based in our BAM.

lenghts n and m. BAM is showed as a programmable (X to Y, Y to X) resource, controlled
by the same line that controls internal multiplexers.

Evaluating our architecture in terms of devices we have the same number of neurons
n+m, whereas the number of interconnections is nm ,instead of the expected 2nm for this
type of system without multiplexing. The stable state condition not ensures an error-free
recall becuase of the existence of two independent processes which produces two different
values for each register part, X and Y, for even and odd iterations. This additional condition
can be used as an error-free test, for fault tolerant computing purposes. Otherwise one must
take a decision about taking values associated with even or odd cycles for vector Z.

This process can be expanded towards a great number of parts, using more BAM re-
sources, and using different fault tolerant conditions (two of three, two of four, etc.). It is
a very powerful method of partitioning, not possible with autoassociative memories because
of the independence of different parts.

We also present a BAM capable of codifying in a very efficient way sparse coded patterns.
The strategy that one has to adopt goes through the study of the non-homogeneous BAM
whose most relevant feature respect to the homogeneous BAM is the effect caused by non-
zero thresholds. Let's consider a set of p pairs of patterns (X,Y) with ii arid m neurons
respectively. We assume that (1+a)n ncurons ate active in each X and .l..21 neurons are2 2

active in each Y. This new BAM has the following energy function

E = -XVI y7' +XS' + 7' (3)

where S = (S1...SO) and 7' (T' ...T,,) are the thresholds. We propose for each M in (1), S
and T the following expressions [7]

AI - (X'' a)(I" - b)
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ST = aM + S'T

T = bM+T' (4)

We observe that the first term of S is correlated with the pairs of patterns (X,Y) learned
by the network. We also observe a prefactor (a or b) related with their level of activity. Both
elements are fundamental in our analysis. Moreover, we introduce another factors S', T' that
we will consider as a constant thresholds. We are now interested in the evaluation of the
number of patterns p which can be stored perfectly (no errors in the retrieval process) by
our BAM. We consider as a simplification that the number of neurons in both layers is the
same n=m, and the level of activity is also identic (a=b). The basic idea is to analyze the
stability of a pattern through the study of the dynamics of the system. Following a standard
process [4] (no explained here because of the brevity) we have found

N

2(1 - a2 )[21n(N) - n(1 - a 2)] (5)

We observe that if the patterns are highly correlated,(a --* 1), p increases notably. it
is of in';erest the study of some limit cases. For instance, when a = 0 the expression (5)
reduces to p ; 1V-- This well known result [4] shows that the BAM cannot overreach, for
unbiased patterns, the capacity of the Hopfield model. If a scales with N as N a (1 --

p 1P- = a ;ý - - (6)
N 6(1 -a 2 )ln(1-a 2)

This is also a well known result found by Gardner [8]. It is interesting to observe that the
process followed in this notes causes the performance of the BAM tc be nearly optimum
since the functional form of (6) is.an upper lirmit for associative networks. Moreover, we
have found a relationship between the sparseness and the size of the network, which can
be of interest for finite systems. From expression (5) we extract additional properties of
the BAM. The storage capacity of a standard BAM is determined by only an element, the
number of neurons of the smaller layer. However, when sparse coding appears :n t, he scene,
there is a competition between two elements, the size of the layer and the level of activity
of the patterns encoded. This fact could lead to interesting effects useful for applications.

References

[1] Kosko B., IEEE Trans. on Systems, Man and Cyber. 1.8 (1988) 49
[2] Hopfield, J.J., Proc. Natl. Acad. Sci USA 79 (1982) 2554
[3] Amit D.J., Gutfreund H. and Sompolinsky II., Ann. Phys. (NY), 173 (1987) 30
[4] Mceliece R.J., Posner E.C., Rodemich E.R. and Venkatesh S.S., IEEF, Tian;;. on infor-
rnation theory 33 (1987) 461.
[5] ll.1". Graf and P. de Vergar, Proc. of the 1987 Standford Conf. on Advanced Research
in Vi,SI, MIT Press 1987, pp 3.51-369
[6] M.A. Sivilotti, M.Rt. Emerlirg and C.A. Mead, AllP Conf. Proc. 151, pp 108-4413, 1986.
[7] lPercz-Vicente C.J. and Arnit D.J.,J. Phys A,22 (1989) 559
[8] Gardner, E., .J. Phys. A, 21 (1988) 257

II- 186



QDIGITAL IMPLEMENTATION ISSUES OF

, TQOCASTIC NEURAL NETWORKS

E. E. Pesulima*, A. S. Pandya§*, and Rt Shankar*

*Department of Computer Engineering

§Center for Complex Systems

Florida Atlantic University, Boca Raton, FL 33431

I, ABSTRACT.

Recent reports have shown t0e feasibility and advantages of implemeuting stochastic nets in digital
hardware. W-. propose a sim., ie digitally implementable formulation of a smooth sigmoidal transfer func-
tion for the probability distribution function. Simulation results are briefly described for the implemen-
tation of the sigmoid in a Boltzin.man machine architecture. The T raveling Salesman Problem was selected
as a benchmark simulation p,'c4 :iem.

It. INTRODUCTION.

Several attempts have been made to implement the neural network computational paradigm in hardware
Analog ýmplementations suffer from the problems of the implementction of variable resistances and the
interconne:tion complexity. This has led re•.earchers to frid alternative approaches, such as implement-
ing stochastic nets in digital Uardware [2]. An added benefit of the stochastic approach is that it provides
an avenue for simulated annealing [1]. We propose a stochastic al p oach to digital hardware implemen-
tation of neural networks. Essential to the implemeuta.ion 3f stochastic digital nets is the availability of
a simple, effective, hardware implementable random number generator that can generate random num-
bers with a Gaussian probability distribution, which in turn will give the needed sigmoidal cumulative dis-
tributi on function. We will now describe a digital architecture for neural networks that addresses these
issues.

III. GENERAT[NG A USEFUL SIGMOIDAL TRANSFER FUNCTION.

The most widely used sigmoid function is the Boltzmann distribution function. The method used to get a
cumulative distribution function of that form is to ge!nerate a uniform rand6nr number and compare it with
the output of the Boltzmann distribution function and pulse the output iV the random number is smaller.
It is, however, difficult to approximate the smooth sigraoidal Boltzmann eistribution function in digital
hardware. An alternative approach is to generate random numbers with a Gaussian distribution and com-
pare that directly with the input. Simple digital hardware designs, however, can only generate uniform
pseudo-random numbers. Obtaining a Gaussian from the uniform distribution usually involves a large
sample of uniformly distributed random numbers and application of the Central Limit Theorem to get the
Gaussian. Both methods thus require complez, random munubr generators, implemented with a special
unit or with software methods via a host computer connected to th,'- digital hardware. We pi opose here
a different sigmoidal function, g(x), that will br much easier to implement in digital hardware:

g(x) = 2(x-t)/T . 2(x/T)/2 =" 1/(2"2('x'j)) x :_z 0

g(x) = - 1/( 2 '2("'T)) x > 0
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Our Sigmoid
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Figuure :.

where T is the temperature and x is the input. Figure 1 shows our sigmoid in comparison with the
Boltzmann distribution function. Both were drawn with T == 1. T would be varied to incorporate simu-
lated annealing in the network.

The function is easily implemented in hardware by using a Pseudo Random Binary Sequence
Generator(PRBSG) implemented using a Linear Feedback Shift Register(LFSR). Each bit in the LFSR
of a PRBSG has a probability of 0.5 of being a 1. Logic gates can be used to generate different probability
values; two signals with probabilities pi and p2 of being a 1 would, for example, result in a signal with prob-
ability p1*p2 of I if put through an AND gate and a probability pt + p2 - pt*P2 if put through an OR gate.
Similarly, for an inverter, if the input has probability pi the output has a probability value of I - pit 3]. The
characteristic of the inverter allows us to generate only half of the sigmoid function, say [0,0.51, and put
that output through the inverter to get the other half. In our sigmoid above, the sign bit will determine
which half to use. If the input (I x I/T) = 0 the probability value is 0.5; to get this we could just use the
value of one LFSR bit. In figure 2 the register shown contains the magnitude of the input after

Window of Conrputation

Integer Bits FractionaL bits
I II

Reg. M--- Decim Poin' Reg. LS8

±-4 2L 1
42.4 4 bits 2" 12, x bits

2 2 bits 2 1, x bits

2 1, 1 bit 2-1/8, x bits

Figure 2
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division by T. Each bit represents powers
of two, integer and fractional, of the sig.
moid. Also shown are the number of bits MS

used for each power.. For integer powers, 2'

the bits are simply AiNDed together. For
fractional powers, the number of bits could
be varied according to the desired accuracy. a.

Calculating 2"112 with 4 bits would ap-
proximate it with 11/16; this could be
generated by the use of AND and OR gates.
To obtain the sigmoid simply AND the 24

probability values of all the bits that are on
together with an extra LFSR bit. We ob-
serve that for large negative integer powers ,.

of 2 the probability is close to zero, while for

small negative fractional powers of 2 the
probability is close to 112. This would sug- - _.. ...

gest using some cut off point implementing a a . no am 33 40 44 4

a "window" of computation that includes T,,,r Lm.,,th , Fig.re
both integer and fractional powers o( 2. Figure 3
Figure 2 illustrated a six-bit window. The

wider the window the better the approximation. This sigmoid is part of a digital architecture that will

operate wholly in integer arithmetic, thus resulting in a faster and much more space efficient implemen-
tation in hardware.

IV. SIMULATION RESULTS.

We implemented the sigrunoid in a Boltzmann machine architecture and performed simulation on the

Traveling Salesman Problem. We chose to use the original 10 city problem used by Hopfield and Tank

[4] transposed to a 64 X 64 squre area from the original 1 X 1 square area, a necessary step forced by the

use of integer arithmetic. Figure 3 shows the minimum path solution that was found by the network on
several occasions. The performance of the network was as expected: at highi temperatures there is a large

degree of randomness, and as the temperature is reduced the network converges to o stable state. The

cost function proposed by Hopfield [41 has parameters that are not easy to establish and their values do

not scale easily with the size or the spatial configuration of the problem. We propose a cost function with

parameters that are easily established for a given problem and do scale well with the size of the problem.

We define the connection weights between the neurons i and j in a matrix configuration for the neurons
[4] as follows:

Dx(D - dij) for neighboring cities
Gij--

-D ax for row/column inhibition

Parameter dij is the distance between the neighbors. Parameter D plays an important role similar to the

biasing current iai Hopfield's formulation. Larger values of D gi.ve longer tours but more valid convergen-

ces; while smaller 1) values give better tours at the cost of more invalid convergences. Parameter Dx could
be varied to control the level of the critical temperature during annealing; while Dmax should be set large

enough to precvent more than one neuron on in a row or column. Note that in this formulation the scaling

related to the spatial configuration is dealt with in a straightforward manner. Also, scaling the number of

cities does not complicate matters. Gutzm0ann proposed a similar cost function that also scales well but
often leads to less optimum and more invalid solutions [5]. The scaling properties of the Hopfield cost

function compared to ours is analogous to that of the a portable versus a nonportable program in conven-

tional computers. Table 1 summzirizes the results of preliminary simulation runs on the 10 city TSP.
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F _ Table 1

Exp. # # of Tries # of Valid Cony. D Dx Tour Length

Avg. Min.

1 10 9 45 2 209.54 188.21

2 20 20 45 2 203.97 172.31

3 10 7 35 8 199.39 176.96

4 50 20 30 4 191.45 172.31

The results were obtained with the following anneawing schedule:

T(i) = 2 To" (/30)

where 2T° is the initial temperature, with To initially set to 5, and i is the iteration number; iM30 was ob-
tained in integer arithmetic. Note that even for this very rough schedule (chosen for its simplicity, since
changing temperature just involves a shift operation in hardware) the network still performed well. The
minimum tour length of 172.31 shown in figure 3 and table 1 is the same one found by Hopfield (172.31/64
= 2.69 • 2.71, their optimum tour)[4].

In conclusion, we have proposed a different sigmoid and showed how that sigmoidal cumulative prob-
ability distribution function could be realized with simple digital hardware. This would in turn allow the
placement of these PRBSG in each VLSI chip or several PRBSG's on each VLSI chip that implements
the network instead of the one random number generator per circuit board to be shared by several chips
as suggested by [21, thereby resulting in a reduction of the complexity and an enhancement of the speed.
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ABSTRACT
This paper presents a computer architecture based on the integration of digital

and artificial neural neiworks. The goal is to demonstrate the opportunities that
an effective connection between neurocomputing and conventional computing mtight
offer. A small instruction set computer (SISC) was designed using a hardwired
controller and A Hardware Programming Language (AHPL). The hardwired
controller was replaced by a neurocontroller that utilizes several artificial neural
networks in order to achieve speed and possibilities of modifiable behavior.

I. INTRODUCTION
Computer architecture is a universal concept that integrates hardware and

software to perform a variety of processing activities. These processing activities
usually have different natures that affect the strategy utilized in order to provide
an efficient computing process. Consequently, functional models of computa-
tional systems should be developed. 4

This research studies a computer architecture based on the integration of dig-
ital and neural networks to provide an effective connection between
ncuflcomputing and numerical computing environments. In order to accomplish
our goals a small instruction set computer (SISC) was designed. Originally, this
computer was designed using a hardwired controller and AHPL.3 This computer
was redesigned, replacing the hardwired controller by a neurocontroller that uti-
lizes several artificial neural networks (ANNs) to achieve various characteristics
including the speed of hardwired controllers and possible modifications in the
processor's behavior as microprogramming does.

This computational scheme will provide a powerful interface to other com-
puting environments such as neurocomputing and symbolic processing. This
scheme also provides the opportunity for a futuristic hierarchichal parallel dis-
tributed processing architecture (HPDP). The high level elements of a IjPDP
architecture will distribute the tasks to perform to the appropriate computing el-
ements. HPDP could take advantage of the natural characteristics of ANNs in
order to utilize metalearning' procedures and become an evolvent computer.
2. DESIGN OF A SMALL INSTRUCTION SET COMPUTER USING AtIPL

For this research, a 16-bit small instruction set computer (SISC) was designed
and simulated.2 This design created a simple architecture, with the required
functional capabilities. These capabilities should demonstrate the adequacy of a
general purpose digital computer for certain kinds of computing environments
(e.g. numerical computing). The system configuration of this particular design
has a collection of registers and busses to allow the necessary data transf-
ormations (See Figure 1). The set of instructions is classified by the following
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groups:
a. Fifteen memory reference instructions with four addressing modes;
b. Thirty operate instructions;
c. Eight input/output (1/0) instructions.

The nature of the operations in this
computer is cyclical, and consists of the
sequential fetching and execution of
instructions --the degree of parallelism I INAL

was kept to a minimum at the instruc-
tion level to reduce the complexity of IN

design. Consequently, a control strat-
egy was incorporated to perform these L
operations in the registers. This con- s - O

trol strategy was implemented using a pc
hardwired controller.

The design phase involved the utili-
zation of AHPL. The AHPL se- "-

quences provided a complete M A-_"___
description of the sequential digital
network required to control the com-
puter. The detail of this hardware de-
scription language allowed the I g. SMALL INSTRucTrON ST COMPTER.
simulation of the computer and a clear
picture of the digital network realiza-
tion.
3. DESIGN OF A NEUROCONTROLLER FOR A DIGITAL COMPUTER

ANNs have commonly been applied to control the behavior of robotics sys-
tems and manufacturing processes. 9 Their characteristics of graceful degradation,
real-time learning, and massively parallel-distributed processing make ANNs
candidates for controlling the sequential actions required for certain computing
tasks. ANNs might provide a control with a fast decoding of machine language
instructions and flexibility to be modified.
3. 1 Archite-cture

Based on the factors mentioned above, the hardwired controller was replaced
by a neurocontroller in the computer designed. The neurocontroller utilized is
composed of several ANNs(see Figure 2). These ANNs decode instructions and
generate time sequences. The ANN A is a three-layer feed-forward network that
was trained using the Back-Propagation learning algorithm. This network de-
codes the instruction stored in the instruction register(IR) and feeds the ANNs
B, C, and D.

The ANN B is a three-layer network that assisted by the ANN C reproduces
the Jordan's network architecture. 5 The structure formed by the ANNs B and C
allows the generation of time sequences and inclusive loops and jumps in the se-
quence of patterns of a specific plan. These loops and jumps are needed to im-
plement certain hardware algorithms such as multiplication. The output of ANN
B is fed to the ANNs C and D.

The ANN C is a three-layer feed-forward network that was trained using the
Back-Propagation algorithm. This network receives the output of the ANN B,
fed by the decoded contents of the IR, and the thresholded output of several
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registers and status flags. ANN C is responsible to copy back the output of the
ANN B to the current-state units of the ANN B. This process is modified if the
contents of a register (involved in the execution of a instruction) trigger a different
response to feed to the current-state units of the ANN B. This "new" output
pattern will force a change for subsequent patterns in the sequence, of the current
plan.

The ANN D is a three-layer feed-forward architecture that was trained using
the Back-Propagation paradigm. This network receives an input pattern from the
ouput from ANN B and the decoded contents of the IR, and then generates the
corresponding control signals.

IR REGISTER

[FaM1 9,. NEUROCONTROLLER ARCHITECTURE.

3.2 Training
The Back-Propagation algorithm was utilized. Dynamic node creation,' dy-

namic learning rate adjustments, and combined subset training7 were used to as-
sure an accelerated and efficient learning process in each of the networks
described.

Dynamic node creation (DNC) was utilized to achieve accuracy in the input
to output mapping and an efficient size for the hidden layer.

The learning rate and the momentum xvcrc adjusted dvnamically. The learn-
ing rate was sometimes incremented to accelerate convergence and decreased to
avoid oscillations, and divergence.

To accelerate the learning and increase the efficiency of the learning process,
combined subset training (CST) was utilized in some of the learning sessions.
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ISZ (USING DIRECT ADDRESSING)
DESCRIPTION: Increment the contents of the
memorg location by I and skip the next instruction
in sequence if the result is zero.

ANN A ANN a ANN C ANN D
OUTPUT OUTPUT CURRENT U. OUTPUT AHWL STATEMENT

11001 00001 00000 00001 BUS2=MD; BU1311:161 =fCel O:1S](IUS2);
Ml - SUS3[I :161.

11001 00010 00001 00010 MtDCD(MA) 4= 'D;

UUS2 [6 :13 =PC*(V(+/HD));
BUS3[7 :1 61 ] C2I 0:91 (RUS2[ :I •51) *('(+/ ID));
PC*((+4MD)) It BUS317:16•.

11001 00011 00010 00011 8US2[6:15==PC;
BUS3[7:16],INC2[0 .-9 (uRS216 -.151);

PC 4-BtS3I7:16,.
11001 10000 000| 10000 RUS3[7: 6 I-PC;MAH -IUS3(7:I 6].
11001 11000 10000 11000 MD(-PUSFN(H.DCD(HA)).
11001 11100 11000 00000 BUS3[I:1 6]-M0;IRC-BUS3I1 :16 1.

•rL!,II U]. EXECUTION OF ISZ.

3.3 Simulator
A simulator of the computer using the neurocontroller was made using C

programming language in an IBM 6152 workstation. As an example, the exe-
cution of an instruction is explained in Table 1.

4. CONCLUSIONS AND FURTHER RESEARCH
The design and simulation of a SISC computer using a neurocontroller has

demonstrated the possibility of an effective connection between neurocomputing
and conventional computing environments (when the necessary hardware be-
comes available). Also, more powerful ANN architectures are required, specif-
ically those needed for sequential formalisms.6 Further research is needed to
develop hybrid hardware description languages. These hybrid hardware de-
scription languages should have primitives to identify parallel and sequential
hardware patterns. This development will lead to optimum hardware imple-
mentations.
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Abstract

Neural nets have been shown to have the capability to learn and to remember. As more and more
supporting theory and applications for neural nets are being explored, the hardware implementation of
neural nets becomes more important. However, most of the existing hardware implementations of neural
nets suffer from various weaknesses. This has led to the design of a dataflow-based multiprocessor system
for efficiently simulating asynchronous, highly parallel neural nets.

This paper presents the architectural requirements for a suitable neural net implementation. The
organization of the proposed design is outlined. A neural net-dataflow graph transformation technique is
introduced which guarantees the executability of neural nets on the proposed dataflow-based system.
Simulation results show the validity of this approach. A speedup method is also presented for increasing
the parallelism in neural net operations. The scheme is based on dataflow's coloring mechanism which
allows parallel execution of network iterations.

1. Introduction

Contrast to advances and developments in theory and applications of neural nets, hardware support
for these networks has been sporadic. Although analog VLSI and optical approaches are attractive means
for implementing neural nets and a number of circuits for this purpose have been developed, current
microelectronic techniques face severe technological restrictions. Therefore, almost all current neural nets
implementations are still emulated by either software simulation on conventional computers or using
special-purpose neurocomputer coprocessors [1-41. However, these approaches suffer from inadequate
parallelism and/or high communication overhead and/or restriction to only small-to-medium neural nets,
and being unable to perform truly asynchronous neural operations. Based on these observations, a dif-
ferent machine architecture and technology suitable for neural nets becomes demanding.

The dataflow model of computation offers an effective approach for achieving parallel computation
and may serve as a good engine in the neural net implementation. The basic idea of dataflow model is
that data flows from instruction to instruction directly rather than via a shared variable and rather than
a program counter or other central control mechanisms, instructions may execute ("fire") any time after
arrival of the data they require 15]. We found that neural nets and dataflow model have many charac-
teristics in common: i) they are represented by directed graphs with nodes and links; ii) in both models
each node functions as a simple processing element and operates asynchronously with other nodes; and iii)
both models execute value-passing computations. These findings have motivated us to design a dataflow-
based multiprocessor as an effective engine for neural nets implementation.

2. The Proposed Approach

The ideal architecture for neural nets must i) contain many simple, yet massively parallel, process-

ing elements which are able to be asynchronously operating; ii) have adequate local memory in each pro-

cessing element to hold the states of neurons the weights , and the program itself; iii) consist of process-

ing element(s) capable of handling I/O activities; iv) provide a high communication bandwidth between

This research is in part supported by a grant rrom DARPA.
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processing elements; and v) be cost effective.

To satisfy the above requirements, we propose a fine-grained, loosely-coupled, dataflow-based mul-

tiprocessor design where each computing node is a dataflow processor (in current design they are static
architecture) connected through a point-to-point link interconnection network. A noticeable point is that

the loosely-coupled processors can have a separate I/O system from the interface of host computer. This

feature enables a particular sub-set in a large neural net to take specific I/O data, which is of no concern

to other portions of the net, without overloading the host interface and routing the message throvgh the

interconuection network. In such an architecture, the communication between neurons in different proces-

sors is asynchronous. In addition, neurons within the same processor also communicate in an asynchro-

nous fashion due to the dataflow operations.

2.1. Neural Net - Dataflow Graph Transformation

A dataflow program is described by a dataflow graph, and a specific neural net model is also

represented by a topology graph plus its operation algorithm. Though both graphs constructed by nodes
and links, they stand for different meaning. Hence, a method to transform a neural net to a correspond-

ing dataflow graph is required such that neural operations car. be executed on a data flow-based machine.

Our transformation method is essentially a disassembling procedure which disassembles complicated

operations in the neural net into several simpler computations that are executable on the proposed

dataflow machine. For example, in a typical neural operation, a node sums N weighted inputs and passes

the result through a nonlinearity. We can disassemble this operation into N multiplication nodes, one

node which sums these N products, and follow it by the activation function fT. Figure 1 presents this
transformation for node N4 with three inputs (N =- 3). Here, circles denote nodes and boxes denote input

pools. Noto that N additional zodu are generated in order to hold the corresponding weights. The

transformation for those nodes which reside in the same level and perform the same operation, such as
N1, N2, and N3 in the example, are identical. The relative positions among these nodes in the
transformed graph also remain the same. Thus, adding or deleting nodes on the original graph later does
not necessarily require an overall retransformation. In fact, to reflect the modification, only attaching or
removing the corresponding subgraph on the transformed graph is sufficient. For a given learning algo-
rithm, the transformation can be modularly constructed on a neural function to neural function basis.
This is because only a few neural functions are involved in any artificial neural net and there is no depen-
dency among those functions except the data dependency.

A

N4

wNiw w2 w3

S N2 N3

before transformation

node N4 after transformation

Figure 1. A simple neural net-dataflow graph transformation example

Figure 2(a) presents a topology of a simple three-layered back propagation [6] neural net where the

backward links used for propagating errors are not always shown. The neural functions in this neural net

can be grouped into four classes of modules. They are (ml) summing the we;ghted inputs, (m2) updating

the weights according to the error signal, (m3) supplying input data, and (m4) supplying target data,

respectively. By employing the modular transformation technique, the corresponding dataflow graph can
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(a) the original neural net

Node Operation: /
* multiplication m4I target pool \

fTE activating the sum -

f, generating the error signal
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m2l

'input pool 11 onput pool 21
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(b) the transformed dataflow graph

Figure 2. A transformation example Ow a complete neural net with back propagation algorithm
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be obtained as shown in Figure 2(b) in which only the left half is shown. Note that the right half would
be identical to Figure 2(b) since the network is symmetric. In the transformed graph, the backward error
links appear downward and explicitly, such as LI and L2. Clearly, the whole transformed graph is com-
posed of several subgraphs circled by broken lines in which each subgraph stands for a module and per-
forms a specific neural function. In a similar way, this transformation can be applied to any neural net
model with any number of neurons.

The modular transformation technique has been verified through c, atware simulations based on
several different learning algorithms. Simulation results show that the transformed network indeed per-
forms the functions of the original network and does converge with exactly the same learning performance
as we expect from a conventional implementation of such neural net.

3. Dynamic Dataflow

Based on the transformed dataflow graph, we found that some nodes are unable to fire until the
tokens representing the updated weights and/or the outputs of ccrtain nodes generated from the previous
iteration are present. This fact which occurs in most neural nets would reduce the parallelism to a good
extent and hence results in a speed bottleneck. Those tokens whose absences would cauqp a bottleneck are
called bottleneck tokens.

In order to remove this boatleneck, we slightly modify Lhe firing rule in the static dataflow model
such that those bottleneck tokens will not be consumed even after their destination nodes fire. In this
way, a bottleneck token will always be there until a new corresponding bottleneck token arrives and

replaces it. This modification allows immediate firing of a node with a new set of inputs. Thus, parallel-
is•m ;' highly increased. However, we must keep track of each set of weights as they relate to a new set of
input values. This can be easily achieved through the coloring mechanism of a dynamic dataflow
machine. We have also simulated this environment using several neural networks. The simulation results
indicate that this deviation makes the modified network keep the same learning capability but with a
much smaller number of iterations. In the example of Figure 2, which is used to solve a two-input
exclusive-or problem with 500 presentations of target data , the unit time elapsed is 12000 against 20000
in the unmodified network. This is equivalent to a factor of 1.7 speedup.

4. Conclusion

Due to the fact that both current analog VLSI technology and existing emulation approaches suffer
respective weaknesses, we have presented a dataflow-based multiprocessor prototype system for efficiently
implementing neural nets. A modular transformation technique was also presented to embody the execu-
tability of neural nets on such a dataflow machine. Untii the technology for direct analog implementation
is fully developed, this dataflow approach provides an efficient alternative to realize neural nets.
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Connectionist Production Systems in Local Representation*

Andrew Sohn and Jean-Luc Gaudiot
Computer Research Institute,

Dept. of Electrical Engineering - Systems
University of Southern California, Los Angeles, CA 90089-0781

Abstract: The importance of production systems (PS) in artificial intelligence has been repeatedly recog-
nized in a number of expert systems. We demonstrate in this paper that the connectionist approach can be
applied to the PS paradigm. The three-i'ayers of a ring-structured feedback network with associative mem-
ories is considered as an architecture. Characteristics of production systems are identified, based on
which mapping PS onto neural networks are done along the local representation. Simulation results show
that the proposed approach can be efficient for PS processing.

1. Problems and Approaches in Production Systems
A production system consists of production memory (PM), working memory (WM), and infer-
ence engine (IE). PM (or rulebase) is composed of productions (or rules), each of which
performs predefined actions if all the necessary conditions are satisfied. The left-hand side
(LMS), the condition part, and the right-hand side (RHS), the action part consist of patterns.
The productions operate on WM which is a database of assertions, called working memory el-
ements (WMEs). Both patterns and WMEs have a list of elements, called attribute-value
pairs (AVPs). The value to an attribute can e. either constant in lower case or variable in iip-

per case. The inference engine repeatedly executes an inference cycle which consists of three
steps: (1) matching condition patterns of all the productions against the WMEs to determine
the satisfied productions, (2) resolving conflicts to select one among satisfied productions,
and (3) rule firing to perform action patterns of the selected production. IE will halt the PS ei-
ther when there are no satisfied productions or when the desired solution is found.

The PS paradigm described above presents inefficiencies. The time taken to match pat-
terns over WMEs can reach 90% of the total computation time [3]. Another weakness is in
heavy memory dependency, i.e., all the patterns to be matched must be repeatedly stored
and recalled for a new inference cycle. This in turn gives less-adaptability to complex prob-
lemrs and new environments where , roboustness and self-lcan-ring axe essentiaal.

To solve the above problems, neural network [6,7] and data-driven multiprocessor [4]
approaches have been proposed. The architecture of a neural network proposed in this study
has three layers of neurons which form a ring-structured feedback network. A hardware ap-
proach is to reduce the matching step, which takes 90% of the total computation time. Inser-
tion of Bidirectional Associative Memories (BAMs) [5] between layers substantially reduc-
es the matching time. At the same time, the memory dependency can be flattened by the pro-
posed architecture and mapping strategy.

2. The Three Layers of Ring-Structured Architecture
The architecture proposed for the PS paradigm consists i" three layers, (1) condition, (2)
rule, and (3) action-layers, as well as three associative memories, BAMI, B3AM2, and BAM3.
Fig.l(a) shows the logical organization of the architecture. Neurons in the three layers con-
nected through a ring structure feed information forward. Upon completion of an inference cy-
cle, the newly created state of WM is fed backward for another inference cycle.

* This rcscarch was supported in part by AFOSR #88-0274.
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Fig.1; Three layers ring-strictured architecture. (a) Logical organization, (b) Detailed architecture.

As depicted in Fig.l(b), the con-dition-layer (X-field) which has n neurons Xl, ...,1xn,
xir= {0, 11, reflects the state of WM. If xi=I1, the corresponding WIVE is present at WM. Other- =
wise, tho WNM is absent. An initial state of a PS is presented to this layer in the form of a •

vector X with n elements. The rule-layer (Y-field) has p neurons yl,...,yp, each of which rep-
resents one of several instantiations of the rules. All the possible instantiated rules are rep-
resented in this layer. The activation of a neuron indicates that the corresponding rule is to
instantiate. The action-layer (Z-field) holds a set of WMEs indicating how and what opera-
tions it will enforce on WM.

BAMi holds dependence relations between WMEs and conditions of a particular rule. Giv-
en a set of WMEs, rule(s) will be instantiated, thereby turning on/off the corresponding neu-
rons in the rule layer. BAM2 holds information between WMEs and actions of a particular
rule. Upon selection and firing of a rule, WMEs in the action layer will be changed by tuning
on/off the corresponding neurons. BAM3 holds information between the previous and next
states of WM. When WMEs are changed due to the rule firing, tie neurons in the action layer
will reflect the current state to the previous state of the condition layer.

3. Representation of Working and Production Memories

WM at any point in time holds a subset of all the possible instantiation of condition patterns.
Let pi=[(al vj),...,(an v.)] be a pattern consisting of n AVPs. Suppose that pi has in its n val-
ue-parts m variables, each of which can be bound to d different values. There would be a
maximum of md different WMEs, resulting in md neurons in each X- and Z-layers. A straight-
forward way of representing the state of WM is assigning a WME to a neuron. Assignment of
neurons in the Y-layer for PM is based on how the rule be instantiated, i.e,, information re-
garding as which variables bind what values will establish a basis. An example will clarify
the assignment process.

Consider below a production system with RULEI and four WMEs. RULE1 has two condi-
tion patterns u1, u2 and two action patterns vp, v2. The condition pattern u, consisting of two
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AVPs has a variable F. The condition pat-
Rule I WM tern u2 with three AVPS has variables F
uI: [(a 1) (b F)] w,: [(a 1) (b 2)] and G. Action patterns vi's are proceeded

u,2: [(p F) (q G) (r 3)] w2: [(a 1) (b 3)] by '+' or '-' indicating adding to and delet-

-- w3 : [(p 1) (q 2) (r 3)] ing from WM. Assuming that the variables
v,: -[(a 1) (b G)] w4 : [(p 2) (q 3) (r 3)] F and G can be bound to 1,..,3, each of the

v2: +[(p G) (q F) (r 3)] X and Z-layers can be modeled with 12
I neurons since there can be a maximum of

12 different WMEs for RULE1. Table 1 shown below lists all 12 possible instantiations of
RULE 1 and their assignments to neurons x1,...,x 12 of X-layer and z1,...,z 12 of Z-layer.

Neurons WMEs assigned Neurons WMEs assigned Neurons WMEs assigned
X1,Z1 : [(a 1) (b 1)] x,,z,: [(p 1) (q 2) (r 3)] xg,z9: [(p 2) (q 3) (r 3)]

x2,z2: [(a 1) (b 2)] x6 ,z6 : [(p 1) (q 3) (r 3)] X1oZ1 o: [(p 3) (q 1) (r 3)]

X3,Z,3 : [(a 1) (b 3)] X7,Z7: [(p 2) (q 1) (r 3)] Xllzll: [(p 3) (q 2) (r 3)]

x4,z4: [(p 1) (q 1)(r 3)] XSZ 8 : [(p 2) (q 2) (r 3)] x 12,z12: [(p 3) (q 3) (r 3)]

Table 1: Assignment of all 12 instantiations of Rule I to neurons of X-layer and Z-layer.

An initial state of the WM shown above can then be represented in the X-layer as: X
=(01101000100"09). Given the inidal state, RULE! iz instantiatcd by w1 and w4 with F any G
bound respectively to 2 and 3. Selection and firing of RULE1 affects WMEs [(a 1) (b 3)] and
[(p 3) (q 2) (r 3)] according to v1 and v2. The fact that 2 WMEs are influenced by the rule fir-

ing is represented in the Z-layer by turning z3 off and z,, on, i.e., Z=(000000000010), where
z3 is marked ,(nuil) to indicate its deletion from WM.

To satisfy u, and U2 of RULE1, the variables F of u, and F of u2 must be bound to the same
value v. G can be bound to any value v' such that wv'. For the given four WMEs w1,...,w 4, the

variables F and G are bound respectively to 2 and 3 to satisfy RULEL. The fact that F and G
are bound to 2 and 3 constitutes a particilar state. of the. Y-!aver. For RIT ! there.can be a

maximum of nine different combinations of variable bindings, requiring nine neurons in the Y.-
layer. Assigning variable bindings to the neurons yl,...,y 9 is made as follows: y,:(F=I,G-=I),

y2 :(F=I,G=2), y3:(F=I,G=3), y4 :(F=2,G=I), y5:(F=2,G=2),_.., y9:(F=3,G=3). When the rule
is instantiated with (F=2,G=I), the Y-layer is represented as: Y=(:000100000).

4. Encoding the Three Associative Memories
We shall continue using the above example to show the encoding of three BAMs. Associa-
tions for BAMI is derived from the X and Y-layers. The given four WMEs is represented in
the X-layer as XI=(011010001000). The corresponding instantiation of the rule for the given
WMEs is represented in the Y-layer as YI=(0OlOOOOO). An association for BAMI is then
obtained as: A(XI,Y1t)BAMI = (011010001000),(000100000)). Associations for BAM2 is de-
rived from the Y and the Z.-layers. Given RULEI and w1,...,w 4, the Y-layer will have Y4 turned

on, resulting in YI=(0X)0100000). According to the action patterns, the Z-layer will become:

ZI=(001000000010). An association for BAM2 is obtained as: A(Y1,Zl)BAM2=((OOOlO1

0), (00 10(X)00W010)).
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After firing of RULE1, WM contains the following 4 WMEs: w,, w3, w4, and W0.w=[(p 3) (q
2) (r 3)]. This new state is (011010000010), which must be subsequently represented in the
X-layer. A simple way of doing this update is a combination of AND/OR operations on two
states of Xp,,,= (011010001000) and Z,,,= (001000000010). A combination of AND opera-
tions on the plain binary values and OR operations on the null values gives a new state
X,, =(011010000010). An association for BAM3 is, therefore, obtained as A(Z1,Xl)AM 3 =

((001000000010), (011010001000)). Applying the same procedures, remaining associations
for the three BAMs can be easily obtained.

5. Simulations and Conclusions
Our simulation is on the blocks world STRIPS [2] with two blocks. Assigning binary (0,11 or
bipolar 1-1,+l) values to associations seems straightforward. However, the actual proce-
dure for the encoding of BAMs is a rather difficult task for two reasons: First, the continuity
assumption [5] must be satisfied, i.e., H(XýXj)/n=H(Yi,Yj/p-H(ZiiZ)/m, where H(*,*) is a
Hamming distance between two vectors. Second, H(*,*) for any two vectors of the same lay-
ctv- need be large enough to distinguish each other from the crowd. Enforcing the following con-
dition, H(Xý,Xj)>n/2, H(Yi,Y)>p/2, H(Zi,Zj)>r/ 2 for i~j=l,...,8, and i#j, we were able to suc-
cessfully implement STRIPS with 2 blocks in our architecture.

Three BAMs are not listed in this paper due to the space constraint. For details, see [6].
Usung our architecture antud mnappinig sttgy, xnaiciiin cundimon patterns over W-iEMs reduc-
es to O(1). When the correct initial state is presented to the network, our architecture can
find the goal state in four iterations for the problem with two blocks. When a disturbed initial
state is presented to the network, irrelevant operators are selected and fired, resulting in an
incoirect solution. This is due to the facts that the heuristics which prune the irrelevant
se-.rch paths are not considered in this study and that our study is mainly in reducing match-
in g time in production systems. In summary, the architecture and mapping strategy we devel-
operl in this work substantially reduces the pattern matching time and assimilate the memory
dependency of production systems in parallel processing environment by flattening it into lay-
er5 J neurons.
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Recognition of 26 character-alphabet
using a dynamic opto-electronic neural network

Shuichi TAI, Masaya OITA,
Masanobu TAKAHASHI, Keisuke KOJIMA, and Kazuo KYUMA

Central Research Laboratory, Mitsubishi Electric Corporation
8-1-1, Tsukaguchi-Honmachi,Ainagasaki, Hyogo 661,JAPAN

ABSTRACT
We demonstrate an opto-electronic neural network that can

recognize the 26 characters of the alphabet for the first
time. This success is owing to the adoption of the proposed
quantized learning rule suitable for optical implementation
and the development of the dynamic opto-electronic neural
network.

1. Introduction
Recently, there has been a strong requirement for the high-

speed, low-cost and minituarized neural networks in order to
use them in the practical fields. Among several approaches
including Si--LSI neuro-chips, the opto-electronic approach is
expected to play an important role in the implementation of
neural networks because it allows the use of the innate
parallelism and dense interconnection capabilities of optics
in cjn-unction with the nonlinear processing ability of
electronics.

Up to date, 2 )-4) many opto--electronic neural networks have
been roported. Psaltis and Farhat pioneered this field by
demonstrating the Hopfield a iociative memory using discrete
opto-electronic components.=" We have reported the optical
associative neuro-chip in which light emitting diodes,
synapti, interconnection matrix and photoliodes are integrated
in a layered structure on GaAs substrate.

One of the important features of neural network is that it
autoiiia;ically acquires knowledge through learning. However,
most of the reporte)opto-electronic neural networks are, with
a few exceptions, based on the Hopfield models without
learning mechanism. This is due to the lack of a suitable
analogue spatial light modulator (SLM) as a synaptic
connection device.

In the first part of this paper, we propose a quantized
learning rule which is basically the back-propagation
learning rule but modified for utilizing the binary-operating
SLM. In the second part, we demonstrate the recognition of 26
characters of the alphabet using the proposed learning rule
and the dynamic opto-electronic neural network.

2. Quantized learning rule
The back-propagation learning rule is an error-correction-

type learning ru]e using a set of supervised signals and
training signals.6 ' Although the usefulness of this learning
rule is verified by computer simulations, the weights of the
synaptic connection must be continuously varied in the
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learning process. This requirement makes it difficult to use
the reliable SLMs such as magneto-optic SLMs and liquid
crystal SLMs that operate in a binary digital value. To solve
this problem, we propose the quantized learning rule. The
procedure of the learning rule is summarized as follows.
(1)Start from random-distributed continuous weight Wij. Wij is

a connection strength between ith and jth neurons.
(2)Convert the continuous weight W. into three discrete

levels (-W,0,W). We call this discrlele level wijq quantized
level.

(3)Choose one training signal and the corresponding supervised
signal that the network is required to learn, and present
them to the network. These signals are unipolar binary
vectors.

(4)Calculate the correction signal AWij according to the
conventional back-propagation rule.

(5)Correct the original continuous signal Wij by addingAW
(6)Repeat steps (2)-(5) for all pairs of training and

supervised signals.
(7)Repeat steps (2)-(6) until the connection strength pattern

of the network is converged.
(8)Convert the final continuous weight into the quantized

level if the connection strength pattern is converged.
The computer simulation results for the recognition of 26

characters of the ainhabet are shown in FigAl, by plotting the
recognition rate as a function of the Hamming distance. The
simulation was done using the three layered network where the
number of neurons of the input, hidden and output layers are
30, 32 and 26, respectively. 26 unipolar binary vectors with
30 bit length were rearranged two-dimensionally as characters
"a" to "z". The learning was performed so that one of the 26
output neurons corresponding to the input character was
excited. In the simulation, the connection strength pattern
was converged by 13000 times of learning (500 times for each
character). As shown in Fig.1, there is little difference
between the conventional continuous back-propagation learning
and the proposed quantized learning. Therefore, it is
confirmed that the quantized learning rule is very useful for
opto-electronic neural networks using the binary-operating
SLMs.

3. Experimental set-up
A schematic diagram of the dynamic opto--electronic neural

network developed for the alphabet recognition is shown in
Fig.2. In this system, two optical multipliers corresponding
to the positive and negative synaptic connections were used to
calculate the product of the unipolar binary vector with the
bipolar synaptic matrix. In Fig.2, only one optical multiplier
is shown to simplify. Each multiplier is constructed of an
array of 32 light emitting diodes (LEDs), a binary-operating
"liquid crystal SLM with 32x32 pixels, an array of 32 yhoto-
diodes (PDs). The time-division multiplexing technique was
used to implement the three layered network.

The operation procedure is described as follows. At first,
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the input vecLor v(1) and the connection matrix W(IH) between
the input and hidden layers are addressed to the LED array and
the SLM, respectively. The output vector u(2) from the PD
afray is thresholded by the comparators to obtain the neuron
state vector of the hidden layer v(2). Next, v(2) and the
connection matrix W(HO) between the hidden and output layers
a~eaddressed to the LED array and the SLM. The output vector
U e) from the PD array is transmitted to a maximum-value
selector. The output neuron which takes the maximum-value
among 26 neurons corresponds to the desired answer to the
input incomplete character.

4. Experimental results
For all training set of 26 characters, perfect recognition

was successfully achieved by using the dynamic network
described above. In Fig.1, the experimental recognition rate
is also shown as a function of the Hamming distance d. The
recognition rate was averaged over the randoTmly-selected
signals more than 100 patterns for each Hamming distance. In
response to the almost all incomplete input patterns of d=2,
the correct character could be retrieved. These results agree
with the computer simulations as shown in the figure.

The proccssing time of the constructed network was a few
seconds and it was limitted by the slow response time of the
SLM utilized in this work. However, it is not essential at
present stage. The processing time can be dramatically
improved by separating the optical vector-matrix multipliers
between the input and hidden layers, and the hidden and output
layers.

5. Conclusion
We proposed the quantized learning rule that allows the use

of the binary-operating SLM. Furthermore, we demonstrated the
recognition of alphabet 26 characters using actual dynamic
opto-electronic neural network for the first time. The
experimental results agreed with the computer simulation
results. The optical neural networks reported in this work is
quite suitable for integrating the system in a chip. The
possibility of such optical neuro-chip will be also discussed
at the conference.
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FLETE: An Opponent Neuromuscular Design for
Factorization of Length and Tension

Daniel Bullockt and Stephen Grossbergs
Cognitive & Neural Systems Program, Boston University

Boston, MA 02215, USA

How does the nervous system ensure independent control, or factorization, of the length
and tension of muscles controlling a moving limb? We report simulations that show how
an opponently organized spino-muscular system (Figure 1) may use co-contraction to vary
limb compliance over a large range without causing joint rotations by inadvertently chang-
ing the lengths of opponent muscles. Consider the forces, Fi, i = 1, 2 developed by two
muscles operating on different sides of a joint. In a springy tissue like muscle, force depends
on the amount of stretch beyond the resting length. Because muscle can actively contract,
muscle has a. variable threshold length for force development. Thus we have

F, == g([L, - 1', + c,i+) (1)

where Li is muscle length, ri is the resting muscle length, Ci is degree of contraction, and
o(w) is monotone increasing. Notation [w]+ means max(w,O). Because contracted fibers
yield when the force acting to stretch them is sufficiently large, a simple law for Ci is

W-C = 1i[. - cii- 6Gl- vi- (2)

where 0 < fhi < 1 and Mi is the output signal of the ith alpha-motonieuron pool. When
force Fi exceeds threshold "F, it reduces contraction. By constraint/li, contraction caused
by neural input Mi is slow relative to decontraction by external forces.

At equilibrium, gatC, = 0 in (2), so the equilibrium value of C, is

MiBi - [Fi - FF]+

S=(3)

Given (3), how is it possible to generate and sustain forces much larger than rF at a
fixed muscle length? By (1), greater force at a fixed length Li can be generated only by
increasing C,. However, '*fl, is constant and less than 1, then (3) shows that the negative
force feedback will cancel the effects of increasing Mi, and Ci will not grow large. To
overcome this deficiency, let the contraction rate parameter /i and the number of sites
Bi increase with Mi. Such a relation is called the size principle [31: As total excitatory
input to the alpha motoneuron population grows, it recruits additional, progressively larger
motoneurons which have faster conducting axons, whose collaterals reach many more motor
fibers and whose potentials evoke more rapid muscle contractions. Equation (3) provides
a new, functional, perspective on the size principle.

However, the size principle can pose a threat to stable position coding. If a limb
segment is initially at equilibrium, such that F1 = F'2, then by (i),

ge([et- r + CintA,)] a) =igi([L2 -tF2 + C2 (A ), (4)

t Supported in part by the National Science Foundation (NSF IRI-87-16960).
t Supported in part by the National Science Foundation (NSF IRI-87-16960) and the Air Force Office of

Scientific Research (AFOSR F49620-87-C-0018).
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Figure 1. FLETE model components: Neuron populations comprising two channels control opponent mus-
cles (AG for agonist, ANT for antagonist) acting on a joint. Desrending signal P to both channels allows
co-contraction and joint stiffening. Adjusting the balance between descending signals A1 and A2 allows recip-
rocal contractions and joint repositioning. For clarity, subpopulations of neurons and some signal pathways
are not depicted. Key: Iai = Ia interneuron population in channel i, i = 1, 2; 7, = gamma motoneurons;
MNi = alpha motoneurons; R, = Renshaw cells; + = excitatory input; - = inhibitory input.

where CI(A,) denotes the equilibrium value of C1 when M 1 = f(A,) in (2). Now try to
hold the limb at the same position, but more rigidly, by increasing the level of muscle
contraction on both sides of the joint. To do this, add constant P to each motoneuron
input [4]. Thus M . f(Al + P) and M 2  f(A 2 + P). However, by the size principle, (4)
implies

([LI - ri + c(AI +±P)]+) ([L -. r, + C, (A2 +))()

for arbitrary P and the same initial values of Li only if A 1 = A 2 (Figure 2). Thus a co-
contractive input P aimed at stabilizing limb position could instead cause a limb rotation.
This is a failure to factorize length and tension.

Renshaw cells are well situated to play a compensatory role: Opponent Renshaw pop-
ulations RI and R 2 measure the output of their respective alpha-motoneuron populations,
a-MNI, and a-MN 2 , and compare those outputs via mutually inhibitory signals (Figure
1). A consensus emerges regarding which MN channel to inhibit via Renshaw feedback,
and which to disinhibit via feedback along the Ia interneuron (IaIN) pathway. Suppose
that a co-contractive input, P, to a-MNI and a-MN 2 occurs when input A 1 exceeds A 2
and that the activity of a-MN, is consequently multiplied by a larger factor than that of
a-MN2 due to the size principle (Figure 2). Then R1 also becomnes much more active due
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REcRUrf•MDr THRESHOLD . ...

SMALL CELL
ZONE A, A A2

(B)

BIG CELL F
ZONE

SMALL CELLZONE A A A2

P

Figure 2. When opponent motoneuron populations obey the size principle, a co-contractive signal P sent
in parallel to both populations can disrupt the joint position code. (A) Signals A, and A2 supraliminally
activate only small cells in opposing channels and their relative sizes determine the balance of muscular forces
and thus the equilibrium joint position. (B) With A, > A2, co-contractive signal P causes the total input
A, + P to exceed the big cell threshold while input A2 + P remains below the big cell threshold. Thus part
of the signal P is subjected to greater ... amlification in channel 1 than in rhan..el 2. Unless compensated,
this would create a new balance of forces a-ad cause an unwanted joint rotation.

to a size-correlated synaptic weighting on a-MN1 axon collaterals to R, [2],[5]. Because
the opposing R 2 has not experienced as large an input increment, R, will transiently be-
come more active than R 2 by an amount that scales with the difference between the a-MN
output increments due to the change in P. Thus this system c.iculates an error due to
unequal amplifications of co-contractive inputs. This error signal then directly inhibits
a-MN1 and, by inhibiting IaIN1 , indirectly activates a-MN2 . Both actions work to zero
the error without negating either the shared increment in a-MNi activation required to
increase joint stiffness, or the joint angle setting determined by the difference in descending
inputs, exclusive of P, to opponent a-MN and IaIN populations.

This conjecture has bee. supported by our computer simulations, which assumed a
rotary joint affected by two opponent muscles, each of which is inserted in the moving
segment one unit from the axis of rotation. The distance from muscle origin to the axis of
rotation was 20 units, and the midpoint of the limb's 180' excursion was stipulated to be
at joint angle 0 = 00. Origin-to-insertion muscle lengths, Li, were thus functions of 0:

S= V(cos9)2 + (20- sin )2 , L2 = (cos e)2 + (20 +sin. )2  (6)

Because these simulations concerned only large-scale effects on equilibrium joint angle, we
ignored moment-arm and force-velocity effects and chose the simple force law

F, = k[L- + ci+ (7)

where k = .5, Fi = 20.9 and i = 1,2. Limb dynamics were governed by equation

d2  dO (8)

where m represents mass and n is a damping coefficient.
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Contractile state Ci was governed by (3). Variables ,i and Bi were defined by:

/A =.05+.02(Ai-+ P), Bi=2+20(Ai+P) (§)

Both variables grow as a function of total descending input Ai + P to the MN pools in
channel i, but fli grows with a smaller slope. Use of fli and Bi in Equations (2) and (9)
approximates a-MN recruitment effects that occur in vivo.

Recruitment of larger motoneurons causes larger inputs to the Renshaw cells. In our
lumped model, this effect was absorbed into a single variable, zi, which was a function
of recruitment extent, approximated by Ai + P. The equations for opponent Renshaw
populations were thus

d
- Rj. = (ABi - Ri)ziMi -- R..(1 + Rj) (10)

z, = .2+ .8(A 1 + P) (11)
where {i,j} = {1,21 and A = 5.

We modeled the opponent alpha-motoneuron populations via

d
,= q5 [(ABi - A.1) (A, + P + X-)] - Mi(1 + M%" - Ij) (12)

where {i,j} = (1,2},€0 = .2, and 1 = 0 or 1. Inhibitory innuts T2 come from the la!N-
(Figure 1) aaid excitatory inputs Ei from the muscle spindles. IaIN dynamics were modeled
without direct dependence on Bi, and without a co-activating input P:

d
t ,1 0(10 - 1i)(Ai + xE1 ) - 1i(1 + 17R. + Ij) (13)

Results. In our simulations, variables A1,A 2, and P were constant inputs and vari-
ables Li, Fi, and e were dependent variables. Composite spindle feedback signals E1 and
E 2 in Equations (12) and (13) were gated off in our simulations by setting X =- 0. This
allowed us to test the ability of the Renshaw-Ia-MN feedback circuit to achieve position
code invariance without assistance from stretch reflexes.

When Renshaw feedback was absent (17 = 0), changing P while A1 and A2 remained
fixed ied to large rotations. When Renshaw feedback was present (f7 =- 1), rotations due
to changing P with fixed A 1 and A2 were < 10. This was the invariance property we
sought. A more complete discussion of relevant physiology, of our modeling results, and
their relation to cur model of variable-speed ýrajectory formation will appear in [11.
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A Self-Regulating Generator of Sample-and-Hold
Random Training Vectors

Paolo Gaudiano and Stephen Grossberg
Boston University

Center for Adaptive Systems
111 Cummington street

Boston, MA 02215

The Role of Circular Reactions in Self-Organization
How does ? child learn to produce the sounds that he hears? How does he learn to reach for objects that

he sees? Piaget[1] has provided a useful insight with his concept of a circular reaction. When an infant makes
internally generated movements of his hand, the eyes automatically follow this motion. As he fixates the
hand at a variety of positions, a transformation is learned between the eye-head system and the hand-arm
systerm. As learning progresses, the reverse transformation is also learned, eventually enabling the child to
touch what he sees. Thus the circular reaction is based on endogenously generated actions whose commands
are correlated with sensory feedback by means of an associative transformation.

This article descr;bes a self-regulating endogenous generator of random vectors that can be used to learn
correct sensory-motor or motor-motor transformations during a circular reaction. The generator is bipliasic:
The generation of each vector is followed by a complementary quiescent phase to allow learning, after which
b new vector is generated. Such a sample-and-hold mechanism allows the adaptive sensory-motor system to
learn the correct transformations in a self-regulated periodic environment. Here randomness provides the
substrate for adaptive control of deterministic motor behaviour.

A Self-Regulating Generator of Random Trainable Vectors
The Vector Integration To Endpoint (VITE) model for generation of synchronous multi-joint trajectories

has been described by Bullock and Grossberg[2]. A self-organizing adaptive VITE model that incorporates
the random vector generator is described in Gaudiano and Grossberg[3].

The Zollowing equations describe one generator channel, which is depicted in Figure 1:

Random Input to the Generator

i-= I(constant); J+ = {J E [or - rii , Pi + or ] with probability (1 -ps) (1)

Where pj is thc average input level and a. i6 the maximurn possible deviatioi from p..

Pauser Gate 1 If fEi - > rp
7"= 0 otherwise (2)

where Fp is a fixed threshold, and Yj- is described below (eq. 5 ).

On and Off Channel Activations

dX~ Y dX,-9 P X-
-d' - -AXt + (B - Xt) (I + Jtp)• -- =AX + (B-X:)i (3)dt ' dt

Habituating Translnitter Gates

dZt dZ-

where f(X) = cYX + f3X2 represents a nonlinear habituation law.
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S..... .... ............ ,a se ale ,os tio

Gae iCommand

Z+ + 1+

+ f1: from

•,Paus er Present Poito
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S.............."from F
Endogenous Endogenous Generator ( s )
Generator

Figure 1: The endogenous generator circuit (left diagram). The On channels (+ superscript) provide the
random unbiased test vectors, while thle OFF channels (-) regulate the pauser gate and the phasic input J+.
The right diagram shows the basic layout of the VITE model anid its inputs from the generator.

Opponent Output Signals

Y,+(t = [x,+z? -X.zT] +; Y,-(t) = [xrzi-- xz3] + (5) -
where [WI + Z maJ(W, ).

The above equations describe a gated dipole (Grossberg, (4,5,6]) with nonlinear transmitter habituationii
(the "+" and "-" superscripts refer to the "On" and "Off" channels, respectively, as shown in Figure 1).
With this formulation, the net signal through the gate exhibits a transient response for sufficiently large
input channel activations. As a result, when the On channel receives random inputs J+ it produces a
transient response. As the transmitter Z+ habituates to lower levels, the On channel activation decays,
disinhibiting the OFF channel. Once enough OFF channels are active the pauser gate 7P exceeds the threshold
rp, becoming active. This shuts off the random input 1+, leading to a vigorous rebound in the Off channel
due to the habituated On transmitter gates. When the transmitter in the Onl channel is replenished, the "
pauser g;ite is inactivated. This restores random input to the On channel, and a new cycle begins. -

Fig. 2) illustrates computer simulatioub of- the various levels of a one-channel generator. ].he bottom
row shows a trace of the phasic input (dashed line) and the Xi activations. The middle row represents the -_
available transmitter levels' Z,, and the top row depicts the resulting Y,+~ (left) and Y•'- outputs. Note the
complementarity of the On and OFF outputs, and the quasi-periodic nature of the alternating phases.

Adaptive Tuning of PPC and TPC Coordinates
The VITE model generates synchronous multi-joint trajectory commands [2] by integrating the DifferenceVector (DV) between the limb's Present Position ComPand (PPC) and its Target Position Command (TIC).

The present work shows how signals from TPC to DV are adaptively calibrated during the circular reaction
to be in the same measurement scale as signals from PPC to DV.

The generator output signals are integrated at the PPC. This causes a limb movement which ends when
the pauser gate turns on. Then a copy of the PPC is instated at the TPC through the Now Print (NI') gate,

and learning in the "rPC--.DV pathways drives the DV toward zero until TPC---DV signals and PPC--,DV
signals are in the same measurement scale. PPC integration of endogenously generated signals obeys the -
equation:

tIt sIho'ald he noted that. Z,- rerma~irs constant th,;mugIhout the simulation becatuse it. receives nio phasic input.
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X+ X-

Figure 2: The behaviour of the various layers in the generator. Parameters for this simulation: A=0.1, B=1.0
C=0.1, D=10.0, E=0.5, I=0.05, u=0.05, .j=-l.0, pj=0.5, Fp=0.08, a = 0,/f = 1. Tile Z values are plotted
between 0.0 and 10.0, while all the other values are in the range [0,1].

Present Position Command2

d (1P4  2,+) y ++ 2P1-1;,)6)
dt 23 -1 - I 21' , dr (Y; (6)

Each VITE channel consists of an agonist-antagonist pair, thus requiring input from two generator On
channels. This is reflected in the notation Y2+_ 1 and Y4+, which shows the existence of two generator channels
for each VITE channel.

System 1-6 is capable of generating an unbiased distribution of PPC vectors; as illustrated in Figure 3a.
The abscissa represents the difference in amplitude between the agonist and antagonist side of the first PPC,
and the ordinate that of the other PPC. Each 2-D vector was calculated at the moment when the PPC is
copied into the TPC, where it remains unchanged until the next On phase. All four generator modules were
coupled to a single pauser gate, which guarantees synchronous On and Off phases across generator modules.

Figures 3b and 3c show histograms of the number of vectors within each of sixteen evenly-spaced angles
(-7r, r] and magnitudes [0, 1, with respect to the origin. The curves confirm the unbiased distribution of
the random vectors. Note that the distribution of output vector magnitudes can be modulated by generator
parameter choices without changing the random input J+ characteristics.

Concluding Remarks
We have presented a model that generates unbiased random vectors interleaved with quiescent phases

that allow for complementary tasks-such as learning-which require periodically stationary inputs. The
random vector generator provides the VITE model with a self-regulating mechanism for learning circular
reactions, such that input stationarity occurs when the PPC and the TPC .ncode the same vector. The
model is robust across a wide range of parameters, and allows modulation of the distribution and temporal
characteristics of its output vectors.

The behaviour of the VITE model when the generator is active is functionally similar to the babbling
phase observed in an infant's speech acquisitioi , during which the infant produces a series of endogenously
generated sounds, which are used in learning the transformation between speech perception and production.
An analogous babbling phase may be used to control self-tuning of paraxneters used in trajectory fortmration
for execution of planmud motor tasks.

"2
"'ertis not related to the generator have been omitted for clarity. See[3] foi additional details.
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Figure 3: Random PPC vectors generated by four generator modules: (a) ELch dot represents the pairwise
difference of the four Yi+ responses; (b) Vector distribution at each of sixteen evenly-spaced angles between
-7r and 7r; (c) Vector distribution at each of sixteen eve"ly-spaced titagitudes in the interval [0,.
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MANIPULATOR CONTROL USING LAYERED NEURAL NETWORK MODEL
WITH SELF-ORGANIZING MECHANISM

Shinya HOSOGI
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FUJITSU LIMITED
1- 17-25 Shinkamata, Ohta-ku, Tokyo 144, Japan

ABSTRACT: A layered neural network model is proposed for controlling robotic manipulators. The model has
s'tif -organizing mechanism in the second layer, where the function of cerebellar Golgi cell system is attached.
Connections are formed automatically by modifying both excitatory and inhibitory weights according to Hebb-typc_
learning rule. It is shown that cells in the second layer self-organize into representatives of similar inputs. The
model has been applied to learn to control a manipulator with dynamic characteristics. The ability of generalization
and adaptation to failures of cells (redundancy) is demonstrated by computer experiment.

INTRODUCTION
It is we'll known that neural networks in ccrebellar cortex play important roles in executing movement

smoothly and accurately based on a great amnount of information stored in modifiable synapses [1,2]. Hence, the
cerebeilum can be rogarded as a sophisticated controller which has great ability of learning and of adapting itself to
external ciircimstances.

In the cerebellar neural networks, the layer of granule cell is equipped with the Golgi cell. This layer
corresponds to the second layer of the perceptron model of the cerebellum proposed by Marr [3] and Albus [4].
According to their theory, the role of the Golgi cell is considered to keep firing rate of parallel fibers constant by
monitoring activity cf both mossy fibers and parallel fibers. It is also shown that the second layer is essential to
the ability of pattern separation of inputs. By taking the Golgi cell into account, Fujita [5] proposed the adaptive
filter model of the cerebellum. But these models do not have modifiability in the related synapses.

For an artificial multi-layered notwork model, architecture uf intermediate layer is substantial net only to
pattern separability but also to ability of generalization and redundancy. For an extreme case, if each of input
patterns is separated completely and is represented by a single cell, the ability of generalization and redundancy is
not expected. Learing must be done for all inputs in this case. In order to obtain the response properties adequate
for the above ability, we assume that the weights in the second layer are modifiable in our perceptron-based model.

In this paper, we propose the artificial network model by taking into account the above findings on the
cerebellar neural networks. The model is constructed based og the theory of self-organization [6,7]. Preliminary
results have been given in !18]. The response properties of cells in the second layer and the ability of generalization
and redundancy are studied for tbe. iearning control of a robotic manipulator.

MODEL
The layered neural network miodal1 and the learning procedures ir the second and third layers are described in this

section. The neural network model with one. Golgi Cell is shown schematically in Fig. 1. Mutual inhibitory
interaction is not considered, sint-e the cerebellump has no such connection in the second layer,

The first layer olt the network receives outputs from filters, through which continuous valued inputs (e.g. angle
and velocity 6' each joint of a manipulator)j are transformed into a set of spatiald patterns. Each filter has Gaussian
response prcop -.-y. The width of the response. is taken rather large and they are arranged to overlap each other. The
filters and the cells in the first layor are, of the same number (N1), and are connected one to one by fixed weights

Cells in the se!cond layer receive inruts Vi(l) through excitatory synaptic weights Wij(2) from the first layer
and an input V9 through inhibitory syni~ptic weights Wig9 fromn one Golgi cell. We assume only one Golgi cell in
the network, since one Golgi rcell inhibits a large number of granule cells in the cerebellum. At the start of'
learning, the cells in the first and second h.yer (the number of cells is N2) are randomly interconnected by W1j(2).

A cell in the first and second layers has a sigmoid transfer function. A cell in the third layec (the number of
cells N3 corre:;,ponds to the deg!-ee of freedom of a manipulator) is assumed to have linear charicteristics, since
outputs of the networ-k are considered to be unlimnited, The i- th cell in the third layer and the]- th cell in the second
layer are conriccted by a modifiable synl'ptic weight W11(3).

The equations of the cells in the second and third layers w-e written as
= jWij(2 )Vj(1) . WigVg - @12)),()

V( = y iW ii(3) Vj(2), (2)
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N1  N2  N3  q,•o• ••b desiredd•

P.refilter trajectory T

_d ' d 40 0,.

1: inhibitory
E: excitatory Ei" error signal

" GoC

Fig. 1 Neural network model with Golgi cell. Fig. 2 Control system diagram.

where 0 is a tranfer function and 0(2) represents a threshold.
Since the cerebellar Golgi cell receives outputs from both tie first and tie second layers, and inhibits the cells

in the second layer through an inhibitory weight Wig, the output of the Golgi cell may be written as

Vg = •y(i Wgim Vi(l) + j WgjP Vj(2) _ Og), (3)
where (p is a transfer function of Golgi cell, Wgi m and WgjP are constant synaptic weights coming from mossy and
parallel fibers to the Golgi cell respectively, and 0g is a threshold.

The perceptron model has modifiable weights Wij(3) only in the third layer. In the present model, it is assumed
that the weights Wij(2) and Wig are also modifiable. Therefore, the model has two learning procedures. Learning in
the second layer is accomplished by the Hebb-type rule and these weights are modified according to

,rldWi( 2) / dt = (-Wij( 2) + clVi(2)Vj(1))Vi( 2), (4)
'z2dWig / dt = (-Wig + c2Vi(2)V,)Vi(2). (5)

Here, t1 and x2 are time constants of learning, anQ cI and c2 are parameters related to convergence and velocity of
learning. Self-organizing properties of the above type of equations have been studied in Amari and Takeuchi [6],
where the theory has been applied to the formation of category detecting cells and the analysis is performed under
the conditions of V. = 1 and Vi(2) = 1 or 0. In the present case, Vg depends on the firing rate of input and output,
by which response properties of the cells in the second layer have been improved. The term Vi(2) in the right-hand-
side serves for the cells to fire when new patterns are given. The time constants and the parameters for learning are
.selected so as to fulfill the. ability of pattern separation, generalization and redundancy. From Eqs. (1) and (3), it is
found that the activity of the second layer cell can be regulated by the Golgi cell.

The learning in the third layer is accomplished by the usual error-correction procedure. The weights are

modified by the following relation:

AWij) = c Ei Vj( 2 ), (6)
where . (< 1) is a constant, and the error term Ei (i=l,..,N3) are given by feedback torques described below.

CONTROL SYSTEM
"The present network model has been applied to the dynamic control of the robotic manipulator, which has two

links operating in 2-dimensional vertical plane with equal length L=0.3(m) and mass M=5.0(kg). In general, a
mechanical model of a manipulator is given by the non-linear differential equation:

M(q)i + C(q, q) + G(q) = T, (7)
where M(q) represents inertia terms, C(q, 4) Coriolis and centrifugal terms, G(q) gravitational terms, and T
actuator torques. In the present considerations, joint angles and vejocities of the first and second links are restricted
to the regions of-/t/3 < qI, q2 < 7/3 and -2.87t/s < q1, q2 < 2.87[/s, respectively. If a desired trajectory is given
in joint space coordinate, an inverse dynamic model of a controlled object can be obtained from the control system
with two pathways as shown in Fig. 2. One path is the main path of feedback with a gain K and the other is the
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side path with adaptive elements. Physiologically the lateral part of the cerebellum has the same side path structure
for the major signal flow pathway [1]. In Eq. (6), the error-term Ei is given by the feedback torques:

Tfi = Kp(qid - qi) + Kv(4id - 4l), (i=i,..,N3) (8)
where Kp and Kv are constant gains'for angular positions and velocities, respectively. The manipulator is driven by
the sum of two contributions: T = Tf + Tn. The path of feedback is necessary to sense unexpected changes of
characteristics of the system or of external circumstances.

RESULTS
Four kinds of desired trajectories (T1-T4), each of which is made with a simple combination of trigonometrical

functions and requires the period of 1 s, are used to see the response properties of the cells in the second layer and
the performance in controlling the manipulator. For one trajectory 50 patterns are obtained (sampling time: 20 ms)
by filiering the inputs.

Response proerty, To see how the self-organizing process works and the connections to the cells in the
second layer are formed, 200 patterns (correspond to four trajectories) are imposed on the network repeatedly. The
parameter values used in Eqs. (4) and (5) are c1 = c2 = 20, cl = 1.0 and c2 = 30.0, and the numbers of cells used in
the simulation are N1 = 80, N2 = 100 and N3 = 2. In calculating Eqs. (2) and (3), they are solved self-consistently,
and the thresholds 0(2) and 0. are set to 0 for simplicity.

Initial values of weights, Wij( 2 ) and wig, are chosen randomly between 0 and 1, which cause all the cells
active at the start of learning. As the learning proceeds, the number of active cells decreases gradually and reaches an
equilibrium state. One example of the response property for Ti is shown in Fig. 3, where the abscissa represents
input patterns for one trajectory and the ordinate represents active cells in the second layer, which are rearranged in
order to see the responsibility for a particular input pattern.

The figure shows some features adequate for the ability of gen, ralization and redundancy. The cells in the
sccond layer "If-organiiie into representatives of similar inputs. An input pattern is represented by the plural
number of active cells, the number of which is nearly constant over the sequential inputs.

Note that the cells in the second layer do not have mutual inhibitions. Even with this configuration, good
quality of response properties has been obtained by taking the function of Golgi cell into account in the model.

Manipulator control The task of the network model is to learn to yield desired outputs (torques) so as !o
follow the track of desired trajectories expressed in joint space coordinates (angle and velocity). In the present case,
the gains of the feedback are taken small (Kp = 1.0 and K, = 3.0), so that the control of feedback alone is not
enough to track the desired trajectories. At the start of learning, the weights Wij(3) are taken zero for all the
elements. The constant E of learning in the third layer is 0.02.

In the early stages of learning, the contribution of the network is small ard the object is controlled mainly
with the conribution of the feedback. As the learning proceeds, the error due to the feedback decreases and the
network contributes to most of the desired torques corresponding to the desired trajectory. After 100 trials the
normalized root-mean-square-errors (RMSE) are reached within halves of the overlapping interval of the filter.

JOINT-2
1.0 ]

_"_ 10% 20% 30% 40%

Cd =- 0.5
C:Ko

__ 0.0 ~ I $~?
(.) 0 90 TRIAL 180

own.JOINT-1
_ _ý 1.0

0 - 10% 20% 30% 40%

S_0.5

1 input pattern 50 0.00 90 TRAL 180

Fig. 3 Response property of cells in the Fig. 4 Curves of normalized RMS errors vs. trials
second layer (TI). showing the ability of adaptation.
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Th see the adaptability (redundancy) to failures of the cells in the second layer, 10 % damages (outputs are
forced ýo 0) are introduced additionally to the cells at every thirty trials. The results are shown in Fig. 4, where the
upper and lower curves correspond to the normalized RMSE of angles and velocities, respectively. The learning of
the second layer is not performed when the failures are introduced, since the purpose is to show that the connections
formed by the self-organizing mechanism do have redundancy. The network shows adaptability up to about 30 %
failures of the cells by the learning of the third layer.

To see the ability of generalization, learning of four trajectories has been performed by modifying Wij(3 )
successively. Fig. 5 shows the curves of normalized RMSE of joint-angles versus trials (bold lines), where the
RMSE of independent learning of each trajectory is superimposed on the same diagram as dotted lines. Each
trajectory is learned repeatedly by 30 trials. The figure shows that the effect of generalization is not evident at the
early stage of learnings. But, as the learning proceeds, the performance of T3 and T4 are improved (Fig. 5-a). The
results after 600 trials are shown in Fig. 5-b, where the performance is markedly improved for all the trajectories.

JOINT-2 JOINT-2
1.0 T1 T2 T3 T4 

1"0 T1 T2 T3 T4I o. , ,'
-. ]. 0.0-

0 60 TREAL 120 6U0 660 TRLAL 720

JOINT-1 JOINT-I

Ti T2 T3 T4 T1i T2 T3 T4
o.5 i , £0.5;"

0TRAL 120 0 660 TRrAL 720

(a) (b)

Fig. 5 Curves of normalized RMSE of angle vs. trials showing
generalization. Four trajectories (Tl-T4) are learned successively.

CONCLUSION
We have proposed an artificial network model of the cerebellar neural networks and applied it to the control of a

manipulator. The model is equipped with two learning mechanisms. Especially, the second layer of our model has
self-organizing mechanism. The connections are formed automatically by input data. The ability of generalization
anid redunidauncy has ben, deiuiasutcia. Itf bier was such modifiabifity in the cerebeilar neural networks, even at the
early stage of growth, it would serve for the improvement of the ability. More complex trajectories than tested here
can also be ieamned similarly by the method described above.

The author vwouid like to thank K. Matsuo and K. Asakawa for their encouragement and K. Wada for his
advice. This work was supported by NEDO under the management of FED.
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Abstract: In an earlier paper I51, we reported that it is possible to train a first-order multi-layer feedforward
network with backpropagation to classify raw 8-bit images of vehicles. We concluded that a linear feedforward

net-work is capable of within-class generalization when trained with perspective views taken every 10', but is
incapable of one-class generalization. This paper describes the results of a set of experiments to train afeedforward

network with second-order inputs to perform one-class classification on image data. We compare the results of the
first-order network and the second-order network and show that the second-order network is better able to generalize

as a one-class classifier.

1. Introduction In our previous paper [5], we implemented a multi-layer feedforward network with first-order
inputs to process a 32 x 32 receptive field of raw grey-level data within a 256 x 256 image. Invariance to shift was
achieved by replicating the network for each registration of the receptive field within the larger image. The resulting

feedforward network consisted of the parallel implementation of 50,625 identical receptive field networks, which
collectively process the entire input image and can detect the presence of a target regardless of its position within the
input image. We trained the receptive field network with digitized video images of nine different miniature vehicles
with 10% noise added. Invariance to perspective was achieved by training the network with representative

perspective images taken from three different depression angles and from every 10. aspect as the vehicles were rotated
through 360". To achieve reliable false alarm rejection, we introduced the method of iterative training. For iterative

training, we first trained the network with 800 to 1000 receptive field images representative of the target and non-
target vehicles of interest. We then tested the trained network against large numbers of non-target images. We

extracted those images that generated false alarms and we used them to augment the original training set. We found

that with four iterations of training, the network was able to achieve 91% detection of the target vehicle and 3% false
alarm rate on the non-target vehicles in the training set independent of perspective [5]. The network was shown to
be capable of generalizing the within-class perspective view information.

The iteratively trained first-order network was not capable of one-class generalization. When it was tested with

non-target objects that were net part of the training set, its performance was unacceptable. This experience is

consistent with our intuition about the nature of the decision boundaries formed by a first-order network. The first-
order network has the capability of forming only hyperplane decision boundaries in its first layer of hidden nodes.

The succeeding layers then can form combinations of these linear decision boundaries. In order to form a one-class
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classifier with the fu'st-order network, it would be necessary to completely surround the target class with a closed
decision boundary. For a network with n-dimensional inputs, forming a closed decision boundary would require
n+1 nodes in the first hidden layer [2]. If fewer than n nodes are used in the first hidden layer, a target class cannot

be completely surrounded, and invalid one-class generalization will result. As an example, consider a two-
dimensional problem with only two nodes in the first hidden layer. The two hyperplanes can never completely

surround a finite-size target class, and as a result there will always be an infinitely large part of the feature space

where invalid generalization results.

Maxwell and Giles have shown that higher order networks can generalize more capably and more efficiently than
first-order multi-layer networks [3]. This is consistent with our intuition, because the higher order network has the
capability of forming a closed hyperellipsoidal decision boundary with only a single node. Also, Psaltis has shown
that the storage capacity of an associative memory can be increased by implementing polynomial discriminant
functions of a higher order [6]. We have implemented a second-order network trained with backpropagation to test its

one-class generalization ability. We compare the generalization ability of the second-order network to that for a first-

order network trained in the same way.

2. Training the Second-order Network for One-class Classification Because a full second-order
implementation would require more than one million input connections, the cross terms in the second-order network
were set to zero, and only the squared data values were input to the network. Therefore, the network is limited to

fornming high oider decision boundaries that are aligned with the axes of the input data samples. The network has
2048 inputs, 16 nodes in one hidden layer, and one output node. Higher order terms are generated for the input layer
only, not for the hidden layer. The network contains a hidden layer to account for the possibility that the target class
is multi-modal. The performance of this network with second-order inputs was compared to a single-order input

network with 1024 inputs, 32 nodes in each of two hidden layers and one output node. The sizes of these two
networks were chosen for comparison because both contain approximately the same number of weights. The first-

order network has 33,889 weights and the second-order network has 32,801 weights. Unlike the network in reference

[5], both these networks were trained iteratively using only image data from a fixed training set containing the nine
vehicles; no false alarms from additional objects were included in the training set.

The first-order network was trained for three iterations. For each iteration, the network trained for hundreds of
epochs before it converged. Then, the network was tested and false alarm images were extracted for the next iteration
of training. The training set for the first iteration contained 792 images, and the training sets for the second and third
iterations contained 1411 images. The second-order network was first trained with a special noise addition method

[5]. It was then trained for three iterations, each of which required hundreds of epochs to converge. The training set

for the first and second iterations contained 954 images, and the training set for the third iteration contained 690
images. In each case, the network trained iteratively until it achieved reasonable performance on a number of the

images in the fixed size training set. The detection thresholds for both networks were set to the same value.
3. Results The two networks achieved similar performance on a number of test images extracted from the

training set. Both networks were then tested on new images, not included in the training set. Figure 1 shows Test

Image #1 containing all the training objects in new orientations plus a telephone, an object not part of the training
set. The target object is the tank in the lower right corner of the image. Figure 2 shows the thresholded response of

the first-order network, and Figure 3 shows the thresholded response of the second-order network. The first-order
network generalizes incorrectly because it responds to the telephone image with a false alarm. The second-order

I1 - 222



network generates no false alarms. Figure 4 shows Test Image #2. another arrangement of the objects from Figure
1. Notice that in this figure, the training set vehicles are spaced more closely than they were in Test Image #1.
Figure 5 shows that the first-order network generates a number of false alarms even for the vehicles from its training

set. It responds with false alarms for the following reasons. The feedforward network processes one receptive field

network for each registration of the 32 x 32 receptive field within the input image. When the vehicles are spaced

closely together, there are a number of receptive field images that see a piece of more than one vehicle. Since the
network was not trained with more than one vehicle at a time, the network treats these pieces as unknown objects.

Some of these multi-piece objects fall in regions of the input space which, by default, have been declared to be target
regions. The first-,order network must contain lots of these default target regions because it does not have enough
hyperplane decision boundaries to completely surround and close off the true target regions. Figure 6 shows that the

second-order network does not experience false alarms for the Test Image #2. We also tried a third experiment to test
the ability of the two networks for one-class generalization. Test Image #3 contained an image of a white sheet of

paper. The first-order network responded to the white paper image with a large region of false alarms at the edge of

the paper. The second-order network indicated no false alarms at all.
4. Conclusions We have trained two networks, one with first-order inputs and another with first and second-

order inputs, to recognize a single target vehicle and reject eight non-target vehicles from a fixed training set. While

both networks perform comparably on the training set, the second-order network rejects more examples of new non-
target objects. These preliminary results show that the second-order network generalizes as a one-class classifier

better than the first-order network. References [3] and [5] have shown that higher order networks provide better

generalization for learning boolean functions and better capacity in associative memories. We have extended these
results to show that higher order networks also provide better generalization in networks trained for image

classification. We also plan to test the second-order network on a larger number of images for more statistically

significant results. To do so, we are now implementing the second-order network on the high-speed fcedforward

pipeline which implements the feedforward network at more than 2.5 billion connections per second [1] [5].
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Figure 1. Test Imiage #1i Figure 4. Test Image #2

U---

Figure 2. First-order Network Response to Test Image #1 Figure 5. First-order Network Response to Test Image #2

Figure 3. Second-order Network Response to Test Image 0 1 Figure 6. SecondI-order Network Response to Test Image #2
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Abstract

A neural network for recognizing complex shapes in natural scenes is described. Using an energy function formalism,
a regularization network is derived to extract edges which are consistent with a model representation. Models of
specific shapes are encoded in a parameter network. Top-down feedback drives tie formation of edge boundaries
given they are consistent with model information. It is demonstrated using real images that model-driven, top-
down feedback provides superior performance to a purely data-driven, feedforward network. Because our model is
general enough to admit a wide variety of useful features and shape representations, it is an attractive paradigm for
segmentation and perceptual organization.

Introduction

The recognition of visual objects in natural scenes is a major scientific challenge. Real images may contain a
million pixels of grey level information and a totally connected network process.ing a one million pixel image
requires over one trillion connections. This number of connections is difficult to achieve in a practical system. The
raw images span a feature space of very high dimensionality and the discriminant surfaces in this feature space are
topologically complex. Because it is difficult to achieve learning convergence under these conditions, it is necessary
to systematically reduce the complexity of the image to a point where the recognition problem becomes tractable.

A standard solution technique for reducing the complexity of an image is segmentation. Segmentation divides
the scene into disjoint subregions. Associated with each subregion is the collection of original grey levels defined
over the subregion, the perimeter of the subregion, and a list of features for each subregion. Segmention provides
a simplified dcsc-%,,i on of VhC scenee which greatly reduces the -comlexity of the rpogmnition . rcess.

Unfortunately, the segmentation process is seldom error free in real imagery. Because real images are com-
plicated by noise, occlusion, complex lighting and other confounding factors, it is extremely difficult to reliably
partition the image into segments and accurately assign the correct attributes to each segment. Segmentor error
results in poor classification performance, and whether a conventional or a neural network classilier is used, the
seginentor is typically the bottleneck to the attainment of a high probability of recognition.

Segmentors fail largely because the data they receive is inherently ambiguous and they have no mechanism for
recovering from the ambiguity. For example, it is difficult to discriminate between an object boundary and a shadow
boundary. Shadows and other confounding factors can only be disambiguated by appeal to higher level knowledge
(eg. knowledge of the shapes being sought after). This leads us to the segmentation/recognition dilemma: it is hard
to classify shapes in a scene without segmertation, and it is hard to achieve good segmentation without having
classified the shapes.

A solution to the segmentation/recognition dilemma is to provide controlled feedback from the shape recognition
process to the segmentation process. A conventional approach to this pioblem is to implement feedback using a
hypothesis generation and test procedure, but this approach is far too slow and brittle to be practical on real time
systems working with real images. We suggest that cooperative-competitive neural network models provide the

'Person to whom correspondence should be addressed.
2This work was funded under DARPA contract #DAAA21-88-C-0183
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right conceptual framework for solvipg the segmentation/recognition dilemma and that neural networks derived
from Markov Random Field (MRF) models provide the mathematical and computational tools required to make the
cooperative-competitive computations do their job effectively.

Neural network systems that systematically exploit cooperative-competitive behavior car be derived from
MRFsL4]. In particular, a rich theory for early vision, regularization(7,9,10], can be derived from the MRF
formalism. Koch and Yuille[8] have shown how to derive Hopfield-like neural network models which provide
deterministic solutions to the MRF. Their neural network update equations provide a strictly negative time deriva-
tive for the energy function thus preventing limit cycle behavior. The energy function formalism assures superior
performance over simple connectionist models based upon the ad-hoc linking of cooperating and competing units.

Model-Based Perceptual Grouping: A General Approach

We perform perceptual organization in two stages collectively called Model-Based Perceptual Grouping (MPG). In
the first stage, regulaitzatiou, features and segmentation boundaries are computed. In the second stage, perceptual
grouping, the features and boundaries are organized to form collections of shape and segmentation hypotheses.
These hypotheses, encoded by patterri of neural activity, are formed in parallel and compete for activation in the
neural network. The regularization network receives feedback from the perceptual grouping network to enhance
the formation of boundaries and features given they are consistent with the coexistent perceptual groupings. As the
network converges, only the most successful perceptual grouping survives.

Prototype for MPG: The Weak Membrane Coupled withi a Parameter Network

A prototypical MPG network (Figure 1) is constructed by combining a regularization network which extracts edge
features and a perceptual grouping network which groups the edge features. Edges are extracted using the weak
membrane model[3,8] and the edges are grouped together to form target outlines using a parameter network[2].

The regularization network extracts edge information from the scene by minimizing the following Hopfield-
like[6] energy function:

idj ij ij ~

In this formula, di repiesents the input sensor data, fJi represents the regularized output, and hij and vij,
are continuous variables representing the confidence that vertical and horizontal edges are present at a particular
position. The variables hij and vij are called line processes. The difference terms, A2  (i - f,+ jf )2(, - h,j)

and A2 _(f,. fj÷1)2(l -- v,,), measure smoothness, the term, a -- j ilj(1 - pij), provides a penalty for
introducing edge discontinuities, and the term, -fij(fjj - d,,j)2. measures the least squares distance between the
data and the output. Tih factors 1 - hij and I -- v1, couple th,; eage formation process to the smoothing process,
and the factor 1 - Pi,j couples the model output to the edge formation process.

Following Hopfield [6] we derive a set of neural network update equations:

df= - (fi- - di2) - 2A2 (fij - Si-,j) (1 - hij) + 2A2 (f,,j.- fig) (I - vi,j) (2)

dt Ofid
dVij aE=V~ - = -- (3)

d- = A2(f f) 2

d i -- Oh,_--• -f- --f a (4)

di \JSJ, 2 t

where vj g(4) = -. and hij = g(Hij) =

The values of the pij ar.,L updated using a parameter network. We use a parmneter network which encodes
shapes by a mechanism similar to the Generalized Hough Transform (GHT)[1]. The outputs of the regularization
network, fi,, are passed through a collection of neurons witi' oriented receptive fields[5]. The link weights of the
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parameter network perform a correlation on the outputs of the oriented receptive fields. The neurons of maximal
activity indicate the presense of a particular shape in the scene. This shape is then backprojected as a control signal
to the horizontal arid vertical line process neurons in the regularization network.

F peguiahita-ion Netwmek

fit iayor

L r.* pi<:j s toyer

I n r

Para *I ~ j~ Nr ork

P ar rame ter Netwvt I
L

Edge Netymrk

Figure 1: The MPG network. The smoothing and continuity constraints of the regularization network are coupled
with the shape coustraints of the parameter network.

Experimental Results

Figure 2 shows the results of applying the MPG network to a ve,-y noisy infrared image of a tank. This image is
representative of the images that must be processed by military Automatic Target Recognizers (ATR). The image is
small and the signal-to-noise ratic is low. Substantial blurring occurs around the tank perimeter. The target contains
a hot spot which tends to confuse edge detectors using a global adaptive tIheshold.

The result of applying the SobeX edge operator to the image is shown in Figure 2(b). The Sobel edge operator
is unable to find all of the edge features because the image is very noisy and the image gradients tend to take on
a bimodal edge distribution. Figure 2(c) shows the output of the weak membrane regularization network (without
feedback) on the tank image. The weak membrane recovers more of edges than with the Sobel operator but many
of the edges are displaced due to extreme blurring around the target perimeter. Once the selection of edges is driven
by a shape model (Figure 2(d)), the performance improves dramatically.

Conclusions

We have demonstrated the feasibility of using models to drive the emergence of features and segmentadon bound-
aries. We have sl vwn it is possible to couple model information with the extractiun of oriented edge freatures using
an energy function formalism and that this coupling results in improved recovery of edge information in a complex
image. MPG n;.tworks can be used in conjunction with any early vision prccess based upon a Markov Random
Field (NUF). Since the form of the coupling terms is independent of the model representation, MPG networks can
utilize a wide variety of shape recovery technique,;. MPG networks provide a useful paradigm for solving problers
in segmentation and perceptual organization.
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Figure 2: Edge extraction is improved through feedback from the perceptual grouping network. (a) The input
image to the network - an infrared tank imrage. (b) The Sobel edge operator fails to find all of the edges of the
tank. (c) Regularization using the weak membrane improves the performance slightly, but considerable noise is
introduced. (d) Model-driven fcedback greatly improves the recovery of the target shape and the rejection of noise.
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Abstract
An algorithm using a neural network is proposed for the collision-free path paanaing problem in

which a polyhedral object goes through a set of polyhedoal obstacles. For each obstacle, a collision
penalty function is defined with a three-layer neural network which computes how much a path collides
with that obstacle. Then, energy is defined based on the collision penalcy function and the length of the
path. By moving the path so that energy is minimized, a collision-free path can be obtained at the equi-
librium state, By simulation, the behavior of the algorithm is examined.

1. Introduction
Collision-Free Path Planning is a well-known problem in robotics, Given an object with an initial posi-

tion and a goal position, and a set of obstacles located in space, the problem is to find a continuous path for
the object to move from the initial position to the goal position which avoids co~liding with obstacles along
the trajectory. Many algorithms such as the configuration space approachf.l] and the generalized cone ap-
proach[2], have been developed for this problem, These schemes require some preprocessing and graph search
technique, and thus can be qtute expensive.

This paper presents a new approach to solve the collision path planning problem by utilizing Neural Opti-
mization Network Concept [3, 4]. The idea of most neural networks for optimization is to move in a space of
possible configurations representing solutions so that progress is achieved in a direction that tends to mini-
mize the cost function, and the space and method of moving are smooth enough that a good solution will ulti-
mately be reached. To solve the collision-free path planning problem, we first define the collision penalty
function which is used to determine how much an object collides with obstacles along the path. Next, by de-
fining the energy and then deriving the dynamical equations, the path planning algorithm is developed for 2n
object represented by a point. rhis algoritlm is simply extended to the case of a polyhedral, object. Finally,
simulation results ame presented.

2. Neural Computation for path planning
A typical situation in the 2 dimensional case is shown in Figure 1. Th. initial position and the goaw posi-

tion ame specified as a point, and a set of obstacles ame represented by a set of polygons. To find a feasible path,
we choose representations for initial and goal positions, obstacles, and a path as follows:
- Initial and Goal position: 'The initial point and the goal point can be. represented by the 3(2.) coordinates in

the 3(2) dimensional space.
- Obstacles: The polyhedral obstacle can be represented by a set

of inequality constraints, which are mapped one-to-one to

planes(edgefc) in the 3(2) dimensional sp;-e. With these ine-
quality constraints, it is possible to decide whether any point. _ .

is inside the obstacle or not.
- Path: The path is determined by a set of via points and is ap- . 7

proximated. by the line segments between the adjacert via obstacle
points. Each via point can be specified by the 3(2) coordinates

in the 3(2) dimensional space like the initial/goal point. -.

With these represent ations, the basic procidure in our Y.rithm can be described as follows: a Figure 1. Typic; situation ii the 2-D spac-2

Given coordinates of the initial and goal points and sets of constraints of obstacles, via points of tie path
am arbitrarily chosen. These via points are desired to move in space, and finally to converge to the positions
which make the optimal collision-free path.

Collision Penalty Function
Because the path for an object is represented by a set of via points, its ccilision with obsticles can be con-

sidered as a sum of the collision between its via points and obstacles. To determine the degree of collision be-
tween a point and an obstacle, the collision pena!ty funr:tion is defind as a three layer neural network fo_
each obstacle as shown in Figure 2. Each of tnc h'reev unitsý in the bottoi layer rcrimsents respectively the x,
y, z coordinate of a point. Each unit in the middle laver correspond.; to one inequality constrain( of the obsta-
cle. The commections between the bottom layer and thc middle layer are assigned to the coefficients of x, y, z
in the inequality constraints, and the thresho!d of a middle layc, urnt is assigned to the constant terin in its in-
cquality constraint. Tlhe cofnectiotLs between the top oyer and the middle layer are all assignod to 1 Lnd the
threshold of the top layer unit is assigned to 0.5 less thal the ruinber of constraints.
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When a point is given to the units in the bottom layer, each of
the middle layer units decides whether the given point satisfies its top c
constraint. The top layer unit is "on" only if all of the middle lay- layer fl
er units are "on", i.e. all the constraints are satisfied. This means
that the network outputs "on" only when the point is inside the ob- .
stacle, thus a path collides with the obstacle if any of its via points middl
foice the network to output "on". Therefore, with a set of net- layer
works, we can compute the degree with which the path collides Imi
with the obstacles. By using the sigmoid function w.

bottomf(x) =k( + exp( - x/T) ) (1) tlayer Z
as its activation function, the analysis can be easily done for contin- lae
uous movement. C = f(rT)

An example for the collision penalty function is shown in Fig- IT =
ure 3. The rectangular obstacle in (a) has four inequality con- T j=r,MOMj +
straints as shown in (b). The corresponding network is illustrated on. =f(IMp)
in (c), and the three dimensional view of the collision penalty func- +
tion is drawn in (d). This shape can be changed by adjusting the IMj = xj *Xi + WYj * yi + Wzj*zi Mi
gain. k, or the temperature, T, in the activation function. Since the C: output of the top layer unit
network produces a type of potential field, it can be used for the ar-
tificial potential field approach for a polyhedral object. IT: input of the top layer unit

Eniryrand Dynamical equations OMj: output of the jth middle layer unit
In collision-free path plannin."g problem, there are two sub- In: input of the thniddle layer unit

goals to be accomplished. One is to avoid colliding with obstacles, coefficients in the jth constraint
and the other is to minimize the length of the path. These two fac- WjJ, wy, :,
tots are to be considered in defining the energy function. As for the Figure 2. Network for a collision penalty function
path length, the energy is simply defined as the sum of squares of
all the lengths of the line segmentts connecting the adjacent via
points, Pi(xi, yi, zi), for i=l, 2...., N, as:

EL = 7 Li2  (2) 0.71 0.2 > 0 -- (I)
= . [(x1- xia) 2 + (y, - y-.1)2 + (z, - z] - -x_+0.8 --- (2 )

where Li is the it line segment length and N is the number of via y._. _ y- 0.2 > 0 -- (3)

points. As the path converges to the minimal one, E gets smaller, 0 0.2 0.8 y + 0.7 > 0 -- (4)

"and the via points tend to be equally separated due to the usage of a) b)
its square rather than the line segment length itself. With the colli- C)
siou penalty function, we define the energy for collision as:

EC = %IN Y~=, Cik (3)11

where M is the number of obstacles and Cik is the collision perialty
at the ih via point, P,, due to the kI' obstacle. With those two mea- 0.2 0.8 0. 0.
sures, we define thl total energy, E, as: 1 1

E=EL+Ec. (4) 1 - ..
Since low energy implies less collision and a shorter path, the x

dynamical equation for a via point, Pi(xi, yi, z7), is chosen to make
the time derivative of the energy, E, be negative along the trajecto-
ry. The derivative of E with respect to time is d)

dEIJt = J (VPi E) dP/.dt

= [ 1L/.xa + Zk aCkx] * dx/dt I I
+ D-.yi + F1, aCikf ay ] dy~/dt I'

So y coosng+ [ DL/Dz1 + Y-~CkakaZi] dz/.dt (5) ~~y~I '
So by choosing the time derivative of each coordinate as: --

dx/.dt = - IILi + Xk aqCik/,9xi I
dy/dt = - [aLayi + YI aCk/3yi (6) Figure 3. An example of tie colli-

sion penalty function for a rectangu-

dzi/dt = - [t•)Li/7z, + Y dCik/azi ], lar obstacle, a) Obstacle b)Its con-
straints c) Network d) 3-D shape

the tune derivative of energy bocomes: with T=0.05, k=l
dE/dt - ( { [dxi/dt] 2 + [dy/dt]2 + [dz/dt] 2 < 0
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along the trajectory, and Goal position
dE/dt = 0 if and ony if dxi/dt --0, dy/dt =1, and dz./dt --0. a)

This means that all via points move along trajectories that decrease
the energy, and finally reach equilibrium positions. From Eq. (6) - °bs,
and Figure 2,obtce er

ac/oxi = aC/1IT * Irr/axi

= C/IT * XYt~j DOM.pi'

= c/ITr* Y DOMP-IM .i (7) Initial position

= f '(IT) * 7 , '(-iVM!) *w b)

where J is the number of corLstraints and f '(.) is equal to (k/T) *_
f(.) * [I - f(.) ]. Thus, from equations (6) and (7), the dynamical

equation for xis derived as:dxi/dt = - [(2x i. -x. -xi) + y (k4T) *f(ITlk) *[1-f(rrk)) 
.[I

• XJ (k/T) *f(IMfk) * [l-f(IMjk)] * w k]

dy/dt = - [(2 yi - yi-t -Y+l) + I (kI/) *f(rrk) * [1-f(ITk)] -WA
* 7ý=,,T 0kIr) *f(IMjk) -*[1-f('I~jk)] *Wy~jl] (8) C) 1148*.',.l., I

dz./dt = - [(2zi - zi. -zi+) + Ik (Ic/f) *f(IVk) *[l..f(ITC)] btal
* (k/I') *f(IMk) ¶lJf(IMjk)] * W.k]

¶Ihis analysis for the collision penalty function is similar to that of
the. back-propagation algorithm. "lle ditterence is that the input is
varying in this algorithm, while the connection weights are varying -
in the back-propagation algorithm[5). d)

Path Planning for a polyhedral Object

The above algorithm for an object represented by a point is easi- -m-
ly extended to the case of a polyhedral object. The collision be- obacle
tween an object and an obstacle implies that some points within the

object collide with the obstacle. Thus, the collision penalty of a -
polyhedral object can be considered as the sum of the collision pen-
alties at some of its points which can be placed at the vertices, edg- Figure 4. Path planning for a point object
es, planes, etc. with two obstacles a) Initial path b) 3-D

For a polyhedral object, rotation as well as translation can oc-. view of the C.P.F. c) Trajectories of the
cur along the path. Thus, due to rotation, one or three more inde-
pendent variables are needed to represent via positions in two or via points d) Final path goal position
three dimensional space. And dynamical equations for the rotation- __ ___

al variables are also required. The ith via position irt the two dimen-

sional space can be represented by a reference point, Pi~o(xio yi,)
and a rotational variable, 06 Arid each of the collision test points,
Pý3(xý5, y,.), j=l, 2,._S, can be determined by a fixed distance, d., IObstacle lol-

and an angle, @, from the reference point. based on these observa-
tions, the energy is modified as: _____--

E = EL + Ec =X-i=1.N Li 2 + Y'-=-I.S Xi=t.N 7-k=l.M C,1 k (9) initial position

where L, is a distance between the reference points of the ill, and (i- Figure 5. Path from the vinuabounday

1)th via positions and C._k is the collision penalty at the sth test point of the iil via position due to the kt ob-

stacle. In two dimensional space, the time derivative of the energy is

dE/dt = Xi { aE/ xi'o * dxi.0/dt + DE/ ayio * dyi.o/dt + DE/M0 * dO/dt (10)

FroTm Eq.(10), the dynamical cquatiorn for translation can be derived in a similar way as Eq. (8), and the dy-
namical equation for a rotational variable, 6,, is chosen as

d0/dt = - •E/0 = - Y-, (k/f) *f(1Tk.')*[ I-f(ITk-.)]
* Yj (k/T) *f(lMjl.) *[l-(IM Jk)] *di., *[ - wJk *sin(I + ,) + wYk *cos(0 + ,) ] (!1)

where the superscript, k and s.rcprcsents the kLh obstacle and the s5 h test point.
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3. Simulation Results
Through computer simulation, the behavior of the pro- a)

posed algorithm is examined. Figure 4 shows the results
for an object represented by a point with two obstacles.
The initial path is arbitrarily chosen as a straight line from po"tion

the initial position to the goal position as shown in (a).
The shape of the collision penalty function for the obsta-
cles is shown in (b). At the beginning of the computation, positio

the via points near the boundaries of the obstacles move

much more than the others. This is because the slope of the
collision penalty function of an obstacle is steep at its
boundary. The trajectory illustrated in (c) is obtained by
plotting all the via points which converge to form the col- b)
liSion-free path illustrated in (d).

Because the path is approximated by its via positions, position
the resultant path may collide with obstacles while pass-
ing from one via position to its adjacent via position. This -*.*. -

situation can be improved by increasing the number of via
positions. With more via positions, the distance between initial..--,
the adjacent via positions gets smaller, thus decreases the P.
chance of collision. In such a case, the computation time re-
mains constant, even though the size of the network is in- Figure 6. a) Path for a square object only with translation
creasing. This is because the computation for each via posi- b) Path for a rectangular object with rotation as well as

tion can be totally localized, and thus can be perfonried in translation

parallel. It is also possible to get a safer path by introducing the virtual boundary for the obstacle. The en-
larged virtual obstacle can be placed at the same location as the real obstacle. By using the virtual boundary,
the resultant path can avoid colliding with the real obstacles while it may collide with the virtual boundary
itself. Figure 5 shows that a safer path can be obtained with the virtual boundary.

"The results for a polyhedral object are shown in Figure 6. The path in (a) is allowed only translation
while the path in (b) is allowed rotation as well as translation. The above methods to obtain a safer path can
be applied also to the polyhedral object case. Since the object itself is approximated by a few test points, a saf-
er path can also be obtained by increasing the number of test points.

However, the algorithm does not guarantee a globally optimal path. This is due to the local minima of
the energy. Thus, depending on the initial path assignment, the final path can converge to the locally minimal
path. Moreover, the resultant path may not correspond to the feasible path in some cluttered environment,
while this can be detected using the length of adjacent via positions which tend to be equally separated in the
feasible path- For initial path assignment and path verification, a combination of a higher level planning
scheme with the proposed algorithm is desirable.

4. Conclusion
In collision-free path planning, there are two subgoals to be accomplished. One is to avoid a collision be-

tween a moving object and obstacles, and the other is to minimize the length of the path. To determine how
rituch collision occurs, a collision penalty tunction is presented as a three-layer network. This network produc-
es a kind of potential field around an obstacle, so that it can be easily applied to the artificial potential field
approaches for a polyhedral object. By simply adjusting the gain or the temperature of the activation function
in the neuron, the shape of the field can be altered.

Based on this collision penalty function, the path planning algorithan is developed for an object represent-
ed by a point, and then extended to the case of a general polyhedral object. Simulation results show that the
proposed algorithm finds a collision-free path for both an object represented by a point and a polyhedral ob-
ject. Because the path is approximated as a set of via positions, the object may collide with obstacles while
passing from one via position to its adjacent via position. Such a situation is improved by increasing the nurn-
ber of via positions. Also, with the virtual boundary concept, a safer path can be obtained. Since the proposed
algorithm suffers from the local minima problem, a higher level planning scheme could be implemented in
combimation with it.
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Learning Aspect Graph Representations
of 3D Objects in a Neural Network,

Michael Seibert and Allen M. Waxniani
Machine Intelligence Group

MIT Lincoln Laboratory
Lexington, MA 02173-9108

Abstract. View-based representations, such as "aspect. graphs," are well-suited for recognizing 3D
objects when both the views and the relationships (i.e., transitions) between views are stored and ex-
ploited. Using concepts in neural learning originally developed by Grossberg (1982), we show how an
"aspect network" (based on the "aspect graph" concept of Koenderink and van Doom (1979)) evolves
from an initially amorphous (fully interconnected) adaptive network, fusing sequences of 2D-invariant
views of a 3D object into a coherent graph-like representation. Following learning of the network, we
suggest how this representation can be used to recognize 3D objects from previously experienced or novel
view-sequences. This work extends our neuromorphic vision system for learning and recognition of 2D
shapes (Seibert & Waxman, 1989a) to include the learning of representations for 3D objects.

Our perception of events is sequential, yet we have little difficulty building multidimensional represen-

tations from collections of experiences. In the vision application motivating this contribution, we wish to
combine the many views arising from the exploration of a 3D object into a single representation. Moreover,
this representation should be self-organizing and useful for recognizing novel view sequences of this object.
We have recently designed a network, called an aspect network, based on the concept of an aspect graph pro-

posed by Koenderink and van Doom (1979). An aspect network extends our 2D object recognition system

(Seibert & Waxman, 1989a) by organizing 2D-invariant 2 view sequences of 3D objects into coherent graph

representations suitable for recognizing the objects. An aspect network extends the aspect graph concept by
incorporating self-organizing competitive learning and temporal sequence recognition.

The network which emerges through learning is analogous to an undirected, cyclic graph. Each node
of an aspect graph represents a single 2D-invariant view from a sequence. Let us refer to a single view as
an "aspece' (or a "symbol' in other applications). An arc represents a feasible transition between adjacent

aspects in a sequence. The collection of arcs store the relationships among the aspects and sequences.
Figure 1 schematically diagrams the aspect network. Several (possibly partially overlapping) representations
of multiple objects are stored in the network. As a consequence of the graph representation, there is no

a priori aspect which initiates or terminates a sequence. Any observed sequence provides evidence for its
parent graph. When attempting to recognize an object from a sequence, multiple running hypotheses are
maintained. Any sequence is recognizable in either the forwaid or reverse directions. We seek to exploit the

transitions between the aspects by detecting "trajectorie" of experience through the aspect network. Thus,
we are able to recognize objects using views which may be statically ambiguous and noisy.

A set of simultaneous first-order differential equations (motivated by cell membrane dynamics) governs

the activity of the nodes in the network, as well as the slowly varying synaptic weights (i.e., arcs of "variable
strength") between the nodes. Our dynamical equations below are based on principles of neurodynamics
and learning developed over the past twenty years by Grossberg.

Input is provided by the I-nodes, which are the output nodes of the F 2 (category) layer of an ART 2
network used to categorize 2D-invariant views in (Seibert & Waxman, 1989a). As a result of competition
within the F2 layer, only a single view is active whenever the ART network is in resonance. Any view
category could potentially be an aspect for any object during the initial learning phase, so each I-node is

connected widely across the aspect network to potential aspect graphs, although sparsely to allow other

I-nodes connections also. The input from node I (either 0 or 1) to node xi is gated by a nonadaptive

connection Jti:
f1.0 if I is connected to x,
J 0.0 otherwise.

l'rhi5 work was supported by the l)epa-rtoicnt of the Air For,:e. The views expressed are those of the authors and do not

reflect the official policy or position of the U.5. Governent.
'The 21) neural system leanis representations of 2D shapes that are invariant to position, orientation, scale, foreshortening,

and sallau deformations (due to perspective).
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+ 
U2)-nodes

I (objects)

deta) x-nodis
(aspect graph)

Il-nodes
(in•puts)

Figure 1: Aspeci Network. The learned graph representations are realized in the x-node layer. "Trajectories"
through the graphs are detected by the y-nodes. (To simplify labeling, only a few interconnects are drawn.)

The x-nodes actually form the aspect graphs: each node represents a particular 2D invariant view while
the (variable strength) arcs code the learned relationships (i.e., transitions) among the viewq. The rates-of-
change of the x-nodes are given by a set of coupled, first-order differential equations:

dx, (1j) hJA + E Zth(xj) -z, (1)jh(-

In (1), Zj, denotes the synaptic strength (i.e., possibility of a transition) from node zj to node xi and the
superscript indicates either excitatory (+) or inhibitory (-) connections. A passive decay of activity is
provided with rate p. The signal function h(.) can be used for noise suppression (i.e., sigmoid or threshold-
linear), but we have not experimented with anything other than linear h(.) functions. Equation (1) elaborates
Grossberg's (1973) shunted short-term memory model. The first term is shunted by (Il-x,), which approaches
0.0 as xi approaches 1.0. This serves as an automatic gain control on the excitatory terms, keeping the value
of xi less than 1.0. Similarly, the inhibitory and decay terms are multiplied by 1i so that the value of xi
cannot decrease below 0.0.

The excitatory inter-x-node weights, Z+, serve to subliminally and laterally prime possible adjacent
views (since they are correlated by experience), as well as help in the detection of views which legally follow
predecessor views. The inhibitory inter-x-node weights, Zj,., discourage these events which are decorrelated
by experience. Both excitatory and inhibitory weights evolve from identical initial conditions to reflect the
experience of the network as it observes 2D views of 3D objects in 3D motion. Each Zj becomes either
excitatory (i.e., positive) or inhibitory (i.e., negative) and therefore contributes to either the first or second
summation in (1). (For inhibitory weights, Z, = -Zj > 0.)

The equation governing the inter-r-node weights uses a modified Hebbian learning rule. Inspiration for
weight adaptation via (2) comes from competitive in-star learning which was proposed by Carpenter and
Grossberg (1987a, b) as part of Adaptive Resonance Theory. The rates of change of the weights are:

dZ.J

"-d- = f() [(1 - Zij)a th(x,) - (1 + Zij)13 E h(xk) (2)

In (2), re < 1 controls the speed of evolution of the weights relative to the x-node dynamics, a > 1 and
13 < I balance the importance of Ilebbian learning and competition, respectively. Weight changes are gated
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by f(xj), a threshold-linhar function of the post-synaptic activity x,. The weights unldergo coinpetit0ion
according to - hi(xA.), which serves to normalize the weights impinging on each T. node. This sy naptic
competition reflects niass-actiol dynamics where axons compete for a limited number of synaptic sites oil
dendrites. The shunting terms (1 - Zjj ) and (I + Zj,) provide automatic gain con, rol on the strengths of
the weights (Grossberg, 1973), just as in (1), to keep the value of Zij in the interval from -1.0 to +1.0.
Weights between x-tiodes which are activated in sequence become excitatory, while other inter-x-node weights
become inhibitory through competitive learning. From an initially amorphous network, an aspect network
crystallizes as the trajectories through it are repeatedly erperienced. A significant side effect is that the
emerging representation is more general than the experiences which combined to create it, in the following
manner. When two trajectories cross at a single node, many other trajectories are implicitly represented by
taking the first half of one trajectory and branching into the second trajectory at the shared node. That is,
once a view transition is learned, it contributes to any trajectory that incorporates it. Thus, view sequences
which have never previously been experienced can still facilitate recognition of the appropriate object.

Competitive learning plays a key role in the evolution of the synaptic weights. Suppose the element x,
is active, but begins to decay as X2 becomes active due to the next view. The activity of x, does not decay
to zero since it receives lateral priming from x2, and indeed takes quite a while (depending on the setting of
p) to decay. While both nodes are semi-active, the weights Z1 ,2 and Z2,1 are both strengthened according
to (2). The weight Z1 ,2 is strengthened at the expense of all the other weights impinging on X2, namely
Zki 1 ,2, while the weight Z2 ,1 is strengthened at the expense of Zkp 2, 1 . All of these weight changes proceed
simultaneously. Since )3 < a, the reinforced weights do not impose a large penalty on the other weights
(permitting many-way branches within the graph), but the cumulative effect of seldomly experienced view
transitions is to drive the associated weights negative (and inhibitory), effectively halting excitatory lateral
priming (anticipation) along the arcs between uncorrelated nodes.

Referring again to Figure 1. let us examine the general architecture. Each bottom-up input aspect
activates widely dispersed n-odes witihin the a.pec, network via raundoly disrributed, h.ardwired connections.
This is necessary since any particular ajpect may be a member of many different object representations.
The time-sequences of aspects, through competitive learning, then build up local graph structures within
the network. The activities of nodes in the network laterally prime one another (sequence predictions),
as well as gate the flow of activity to the object classifying y-nodes. The y-nodes compete on a slow
time-scale (relative to the i-node evolution) so that the maximally active yk indicates the currently best
object-hypothesis. The y-nodes also provide top-down, subliminal priming (expectations) to the x-nodes.

Example of Aspect Network Learning

We have recently described (seibert & Waxman, 1989b) the integration aspect network learning with the
recognition system for 2D-invariant views. For example, a simple prismatic object (Figure 2A) might generate
a graph such as Figure 2B when some symmetries are taken into consideration. This will be used to illustrate
the learning of the aspect graph. The sequence of views presented to the system was: reset -- 0 -- 2 --

10 -- 1 -- 0 -- 9 -- 3 - 4 -- 5 -- 6 - 7 -- 4 --- 8 -- 9 --* 10 -- 6 -- 8 -- reset - 3 -2 - 5. The
reset item indicates that all x-node activities were set to zero before the next view was presented, which
is necessary when the next view is not a successor of the previous view, such as when attention is shifted
due to camera motions. This sequence was presented as input to the aspect network 5 or 6 times. As a
result of this presentation, each possible transition among views was experienced in at least one direction for
the graph of Figure 2. The equations for the aspect network were implemented using 4-stage Runge-Kutta
and predictor-corrector coupled differential equation solvers. We systematically investigated the effects of
perturbation on the equation parameters in terms of robust organization, recognition, network size, and
stability.

Figure 2C shows the matrix of evolved connection weights for the aspect graph of Figure 2, after five
complete cycles through a sequence of views. The parameter settings were as follows: Zij(0) = 0.01, a =
3.0, K = 0.01, 13 = 0.5, p = 0.5, and the threshold for the threshold-linear function f(.) was 0.3. No top-
down priming was used in this example. There are no weights Zii from xi to xi: the bracketed diagonal
elements are used to display the current activity values of the x-nodes. In this ca-se, 2x5 has the highest value
since it corresponds to the most recent view of the prism.
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A ~I

C

0 7• 0 9 10

(0 0 0337? 0.0517 0 0707 -. 0178 -0660 045) -. 0660 -0283 0552 0.059) -. 0317

0 08913 (0.0134) -. 0495 - 0)90 -. 0707 .0552 -. 0495 -. 0281 -. 0521 -. 0414 0.0286

2 0.0521 -. 0027 (0.1202) 0.0424 -. 0564 0.0571 -. 0503 -. 0264 -. 0538 - .0464 0.054'

.- 0)93 -. 0261 0.0659 (0.0424> 0 0611 - .0078 -. 0592 -. 0251 -. 0418 0 0290 - .0421

4 -. 0453 -. 029) -. 0466 0.0425 <0 0454? 0 0725 - .0426 0.0483 0.0677 -. Q461 -. 0670

..0416 -. 0249 0.0186 -. 0197 0 0292 (0 6710, 0.0556 - .0002 - .0275 - .0627 -. 0586

6 -. 0414 -. 0179 -.0619 -. 0459 -. 0417 0.0249 (0.0644) 0.0957 0.0607 -. 0638 0.0040

7 -. 0431 -. 0279 -. 0636 -. 0444 0.0624 -. 0410 0.0325 (0.0126) -. 0082 - .0644 -.0695

8 -. 0441 -. 0186 -. 06)) -. 0)81 0.0218 - .0391 0.0190 - .0102 <0 0128) 0.0531 -. 0487

S0-.0406 -. 0234 -. 0434 0.0816 -. 0454 -. 0490 - .0490 - .0267 0.0238 (0.0145> 0.0493

10 -. 0167 0.0919 0.0126 -. 0331 -. 0673 -. 0429 0.0436 - 0268 - .0392 0.0103 <0.0352)

Figure 2: A prism (A) could be represented by the graph in (B) when certain symmetries are considered.
The learned weights are tabulated as the diagonal elements in (C).

Note that the connections Zo,1 and Z 1,0 were both learned, even though the transition 0 -- 1 was never

experienced. This is the case in general: the weight matrix is qualitatively symmetric. The quantitaive

asymmetry is due to the effects of different competitions for post-synaptic receptive sites. That is, the

competition tends to normalize the weights in each column of the connection matrix according to (2). This

has the convenient effect of lessening the priming of anticipated views when there is a large number off

possible successor views (and thus less certainty).

In addition to vision, such learned graph representations , ... or)plicable to speech recognition, simulating

finite state automata, representing semantic networks, music recognition and improvisation, and planning.
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Training Continuous Speech Linguistic Decoding Parameters as a Single-Layer Perceptron
Mark T. Anikst and David J. Trawick

Speech Systems Incorporated
18356 Oxnard Street

Tarzana, California 91356

Abstract
In this paper we present a provably convergent variant of the corrective training method (see [Bahl 88]) for

estimating the scoring parameters of a linguistic decoder for speech recognition. This method does not rely on the
treatment of the scoring model as a hidden Markov model (HMM), which is viewed here as unnecessarily limiting
the values of the scores to those of transition or output probabilities. Our variant of the corrective training can be
characterized as a direct application of the LMS algorithm to single-layer perceptron training (see [Lippmann 87]).
As such, when the target labelling is kept fixed, it possesses the known stochastic convergence property of the LMS
algorithm. This variant of corrective training can also be applied to the IDMM-based scoring model if we abandon
the interpretation of that model's components as probabilities. We also include a more natural method for finding
near-misses for the algorithm, by using the near-misses generated during the speech decoding process.
1. Introduction

Many current speech recognition systems use hidden Markov models, which are typically trained using the
Baum-Welch (or forward-backward) algorithm [Baum 72]. An alternative HMM training method has been introduced
by Bahl, et al. [Bahl 88], called corrective training, which yielded a 16% reduction in the number of word errors on
their 2000- or 5000-word speaker-dependent, isolated-word office correspondence task. Lee et al. [Lee 89] extended
this method to speaker-independent continuous-speech, which yielded a 20% reduction in word error rate on a (no
grammar) 997-word DARPA resource management task. Both of these methods rely on the Baum-Welch algorithm
for reestimating probabilities as an underlying step of the training process.

Here we describe a similar algorithm that we have used for training our speech decoding scoring parameters.
However, we have not re-strietevo nirilve, to r ontinL sing the parameta~s of th.e m.ctel as nrnhahijities, nor
are we dependent on an underlying Baum-Welch algorithm. This allows for a direct application of training methods
for a single-layer perceptron, and allows us to optimize directly for improved recognition performance.

Our decoding algorithm is a version of a dynamic programming beam search [Lowerre 80]. As such, it keeps
alternatives when decoding. After decoding, several Olternatives remain that were not chosen as the output. These
alternatives are used in our training algorithm as a natural choice for near-misses, making reinforcement training
easy. In the case of an error in decoding, we can furthermore identify where the decoder went wrong and concentrate
our training at that point.

In section 2, we describe our speech encoding and decoding model, particularly as it relates to the training
algorithm. Section 3 describes the training algorithm, and section 4 gives the results along with some discussion of
an application of the algorithm on a speaker-independent continuous-speech digits task.
2. Speech Encoding and Decoding Model
2.1 Speech Segmentation and Coding

A continuous-speech uuerance is first quantized by the acoustic front-end into a time-sequence of acoustic
frames. Next, the acoustic frames are coded by a Frame Encoder (neural-network based) trained to maximize the
average mutual information between its code alphabet and the alphabet of the broad phonetic classes (which are used
for frame segmentation). The time-sequence of coded acoustic frames is then processed by a Segmenter which forms
acoustic segments by merging some time-contigous blocks of frames using their codes and the code/broad phonetic
class statistics to make segmentation decisions. Finally, the resulting acoustic segments are coded by a Segment
Encoder (also neural-network based) trained to maximize the mutual information between its code alphabet and the
alphabet of the dictionary phonetic classes (which are used for transcribing words in the dictionary). We denote the
output time-sequence of segment-codes by S = {code(i), i = 0,...,I) where each code(i) belongs to the code alphabet
(or codebook) of the Segment Encoder.
2.2 Language Model

A language model is defined by a dictionary and a grammar. Each word in the dictionary is represented by a
directed graph with nodes associated with certain phonetic classes. Multiple paths in the word graph account for the
phonetic variations of the word.

The grammar is a directed graph with nodes associated with certain word categories. Paths in the grammar graph
correspond to sentences allowed by the grammar.

Expanding each node of the grammar graph with the word graphs of all the words found in the node's word
category yields a (directed) graph which we call a sentence transcription graph. Each path of the latter graph
represents an allowable transcription (in the phonetic classes) of some sentence. We denote such a transcription by
(class(j),j = 0,...,J), where each class(j) belongs to the set of phonetic classes.
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2.3 Speech Decoder Model
To find the spoken sentence which produced the sequence of segment codes S = (code(i), i = 0,...1I], we search

the sentence transcription graph for a transcription T = (class(j), j = 0,....J) which maximizes the score of the (best)
alignment between S and T. The sentence text corresponding to this transcription is then chosen as the output.

The alignment between the segment code sequence S and the sentence transcription T includes time alignment
between elements of S and T. Possible time alignments are restricted to those in which a subsequence of codes
(code(i), i = i(0)... .i(1), i(0) -< i(1), can be time-aligned with a single class class(j); conversely, a subsequence of
classes (class(j), j = j(0) .... j(l)), j(0) < j(l), can be time aligned with a single code code(i).

A typical alignment is illustrated in Fig. 1., where code(O) is aligned with class(O); class(l) is aligned with
(code(l), code(2)); code(3) is aligned with (class(2), class(3), class(4)j; class(4) (the last class of the previous
subsequence) is also aligned with code(4); code(4) (the last code of the previous subsequtence) is also aligned with
class(5); and finally, class(5) is also aligned with code(5).

code(O) code(]) code(2) code(3) code(4) code(S)

Foaure 1. class(O) cla"ss() class(2) clag(3) cla.ss(4) class(5)

2.4 Alignment Score Computation
To score an alignment between the segment code sequence S and the sentence transcription T, we first assign

score values to the time-aligned subsequences of S and T, and then take the sum of these score values. To score the
time-aligned subsequences, we account for (a) each alignment between a code and a class, (b) the number of
successive classes aligned with the same code, and (c) the number of successive codes aligned with the same class.
To express the score of an alignment, we introduce the alignment scoring model comprised of three components (one
for each of the above cases):

(la) p(code, class) -- the score for aiigning code with class;
(lb) q(code, nunc/ass) -- the score for aligning code with nwtclass successive classes;
(1c) r(class. numcode) -- the score for aligning class with numcode successive codes.I'I~~arnn..a . ... .-_ ... _ *t__C f h n

r_..-. .. S.c.o.. 1•.' ,* a. '=- UUL,,., i , , isiply tUh stu a or thn scores of tihed ..-aiigned subsequences of the entire
utterance. To illustrate the score computation, we give the score for the alig%;nent of Fig. 1:

score(alignment Fig. 1) = p(code(0),class(O)) +q(code(O),l) +r(class(o.),1)
+p(code(1),class(1)) +p(code(2),class(I)) +q(code(1),l) +q(code(2),l) +r(class(1),2)
+p(code(3),cass(2)) +p(code(3),c4ass(3)) +p(code(3),class(4)) +q(code(3),3) +r(class(2),l) +r(class(3),I) ÷r(class(4),2)
+p(code(4),class(4)) +q(code(4)2) +p(code(4),c/ass(5)) +i(clam(5),2) +p(code(5),cIars(5)) +q(code(5),1)

We will now rewrite the scoring formula into a form suitable for single-layer percerptron training. Since the
score components of the aligned subsequences of the codes and classes are summed to obtain the alignment score, we
can group the terms of that sum in the following way:

(2) score(alignment) = 7, 1 p(codeclass) . x(code,class)
all code, class

+ Y I q(codenumclass) y(codenumclass) + I I r(classnumcode) , z(classnumcode)
all code, numclass all class.niumcode

where x(codt,class), y(code~nwmclass), and z(class,nwncode) are the number of times the given pairs (code,cOass).
(code ,nurmclass), and (class~nurcode) occured in the alignment, respectively. If we introduce., ve rectors P. Q, and R
corresponding to the p, q, and r scoring components respectively, and the vectors X. Y, and Z corresponding Do the x,
y, and z alignment components respectively, we may rewrite (2) as a sum of the dot product of th,,.s vectos:

(3) score(alignment) = P * X + Q * Y + R * Z
Finally, concatenating P, Q, and R into a (block-) vector L, and concatenating X, Y. and Z into a (block-) vect;.-

U, we obtain the formula for the score of an alignment 2s the dot product of L and U:
(4) score(alignment) = L * U.

Note that L has all the scoring parameters of the decoding model, which are the parameters that wili be subject
to training, while U = U(alignment) has all the essentials of the alignment as far as the scoring formula is concerned.
2.5 Decoding Method

To convert the segment-code sequence into the sentence text, we use a version of the dynamic programming
beam search method. An utterance is decoded left-to-right by progressively aligning its segment-code sequence with
the transcriptions found in the sentence transcription graph. A set of prefix alignments is maintained by the DP
beam-search algorithm, consisting of all the prefix or complete sentence transcriptions aligned with the prefix
segment-code sequence. The prefix alignments are successively expanded each time the next code is added to the
segment-code sequence. The set of prefix alignments is pruned by retaining only the top scoring alignments. Only
those alignments within a relative scoring threshold of the best scoring alignment are kept.
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After the decoding process reaches the end of the segment-code sequence, the complete sentence transcription
yielding the highest scoring alignment with the complete segment-code sequence is found. The text corresponding to
this transcription is the chosen output. If no comple,;e sentence transcription exists among the aligned transcriptions
remaining on the beam, the utterance is rejected (a decoding failure). For more details see Meisel, et al. [Meisel 88].
3. Training Method

For the purpose of training, we designate the target alignment and complete sentence transcription for each
utterance of the training set. Our task is to train the alignment scoring model (2) so that the score of the target
alignment is greater (by some threshold) than the score of any incorrect alignment (aligned with the same prefix
segment-code sequence) remaining in the beam structure after each beam-pruning step. An incorrect alignment is
defined as any alignment of any prefix or complete transcription of any incorrect sentence. Thus if RA is the target
alignment, and WA is any incorrect alignment remaining in the beams after the beam-pruning step, we want:

(5) score(RA) - scere(WA) > h, (h > 0, a fixed margin) for all WA.
Replacing these scores and alignments as in (4), yields

(6) L * U(RA) - L * U(WA) = L * (U(RA) - U(WA)) > h.
If we define the set of vectors V = (V : V = U(RA) - U(WA)), we can formulate the scoring model training task as
the training of the single-layer perceptron with weight vector L to perform the separation of the set V:

(7)L*V > h, for all V in V.
This task can be approached with a number of the single-layer perceptron training algoa urns (see [Lippmann

87]). We selected the LMS algorithm with the linear threshold non-linearity:
t(d) = 0ford <0, t(d) = d/hfor0 5d<h, and t(d) = Ifordah

An algorithm to train the scoring parameters L is then:
(8)L' = L + (1-t(L*V)).B.V

where L' is the updated L, V is some vector of V. and B is the training rate (0 < 6 • 1). The effect of this update is
to adjust the scores so that the target alignment's score is increased while the incorrect alignment's score is decreased.

"The update step (8) is performed for all vectors V of V. For the next utterance of the training set, a new set V
is constructed. One iteration through the training data consists of processing each utterance in this manner, updating
L each time.
3.1 Generating Target Alignments

The target alignments necessary for training are generated automatically by a special mode of the decoding
process. In this mode the sentence transcription graph is restricted to transcriptions of the known sentence. Then a
nearly exhaustive search is performed on the alignments of that graph with the segment-code sequence for that
utterance. The highest scoring alignment/transcription is chosen as the target alignmenL (Specifics of the
alignment/transcription including the score, class sequence, and class-code alignment are retrieved from the remaining
beam structures after decoding is complete.)

This automatic target alignment generation step is performed just prior to performing the parameter training
with that utterance, using the scoring parameters being trained to do the decoding. This constitutes a modification of
the standard LMS algorithm which precludes a straightfoward extension of the proof of convergence. Nevertheless,
we found that it resulted in the stochastic convergence in all the cases tested so far. Note that if we could select the
target alignment a priori and use it in all training iterations, then convergence is guaranteed for a large enough-ill-...... ... . . ." .. . Ahig ... ... . . .II uur nao& fk..VLiiori, itu as posble tftat uA Ltarget guniient wil never setue into a steady

state, and thus ft scoring parameters would not converge.
The values of the vector L, the scoring parameters of the decoder, are initialized with a heuristic estimte before

any training is performed. The estimate is made from a large pool of phonetically labelled speech data. (CThe data are
labelled with the phonetic classes of the dictionary.)
3.2 Selecting Incorrect Alignments: Preventive Maintenance Training

Several possible incorrect alignments remain in the beam structures after the decoding process, as well as many
prefix alignments. By using these remaining incorrect alignments we focus on the errors actually made by the
scoring algorithm. This addresses the problem more directly than generating near-misses, as has been done in other
approaches [Bahl 88, Lee 89].

Due to the left-to-right nature of the decoder, we can determine the point in time (the segment-code sequence
index) where the target alignment was lost by being pruned from the beams. We can thus focus the training on that
area where the chosen alignment lost the possibility of attaining the target alignment, by training with the prefix
target alignment and the corresponding prefix incorrect alignment(s). These prefix alignments are treated essentially
like complete alignments by the training algorithm. Training is performed on each whole word prefix alignment
until the target alignment is pruned off the beams (if it is), at which point we stop the training for that utterance.

We call this training metlhod "preventive maintenance training" since it attempts to prevent the score of each
prefix target alignment from dropping too low. It thus attempts to prevent each prefix targct alignment from being
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pruned from the beams, as well as attempting to make (eventually) the complete target alignment the highest scoring
complete alignment.
4. Results and Discussion

An experiment was run to investigate the performance of the new algorithm. For this experiment, a digits
applicatior, was used. The grammar for this application accepts all sentences contaifiing the words "zero" through
"nine" and "oh" in any combination and of any word length. The word "point" may also occur anywhere in an
acceptVd sentence, but only once.

A set of 3017 digits utterances collected from elever, male speakers were used for the training process. Another
800 digits utterances collected from eight of the original eleven were reserved for testing purposes. The average
number of words in a training (test) utterance was 4 (4). Baseline results were obtained using the original scoring
parameter estimations, 'enerated from large-vocabulary (1526 word) training data. These will be indicated as
iteration 0 in the following tables. For this test, a training rate of 1 = 1.0 and a training threshold of h = 5.0 were
used. Some brief uxperimentation showed that performance was satisfactory at these values.

Table 1 shows the change in performance on the test data for the six iterations that were made. Table 2 shows
the. zhange in performance on the training data for the same six iterations. The utterance accuracy refers to utterances
that are exactly correct; no deletions, substitutions, or insertions. The "+ Off 1" statistics refer to the percentage of
utterances with at most one error (one insertion, one deletion, or one substitution only). The "+ Oft 2" statistics
refer to tiie percentage of utterances with at most two errors.
Itratin UtteranceAurncc +.LLl + Off 2 I ion Utteranc Acuracy +_Q OffI +Off 2

0 45.25 72.00 86.25 0 56.25 84.22 94.66
1 61.75 85.25 95.38 1 72.69 92.38 98.08
2 59.38 86.00 94.88 2 72.92 93.80 98.54
3 64.63 87.75 95.62 3 79.22 94.93 98.77
4 68,75 89.12 96.62 4 85.58 97.18 99.57
5 67.50 88.50 96.00 5 86.84 97.32 99.44
6 69.13 89.38 96.50 6 87.04 97.12 99.47

Table 1.Test Data Table 2.Training Dat

At the end of six iterations, the utterance recognition iate on test data has increased from about 45% to 70%, for
a reduutiosi in uuerance error rate of about 55b. The recogiition rate on training data has increased from about 56%
to 87%, for a reduction in utterance error rate of about 30%.
5. Conclusions

A new training algorithm ior continuous speech linguistic decoding parameters has been presented and tested
successfully. This new algorithm has several novel aspects, which we believe are advantages over other tested
corrective training Lpproaches [Bahl 88, Lee 89j. In particular, it:

a. Deals with an alignment-scoring model more general than HMM (does not rely on the interpretation of the
model com~ponents as probabilities);

b. Is based on the LMS algorithm directly, for which the property of stochastic convergence holds,
c. Selects ccnfusible alignments (near-misses) from the incorrect sentences remaining on the beams, which

were actual confusions the decoder encountered;
d. Trains using prefix tsxget alignments, so that training emphasizes survivability of target alignments

throughout tie left-tn-ri eht nrncpeein of t•he decoder.
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Abstract

A neural network based data compression system using a
technique called scene quantization is presented. In scene
quantization a whole scene of information is quantized at a time
and is compressed to a single repr-esentation for low rate
transmission and subsequent recovery of the original scene. The
proposed network model is a 4-layer feed forward architecture with
back propagation learning paradigms. Simulation results for the
compression transmission and recovery of a number of scenes which
are members of the training set or out side the training set are
presented.

1. Introduction

This paper presents the results of an investigation in the use
of neural networks to realize data compression using scene
quantization. Scene quantization differs from vector or- scalar
quantization in the sense that it allows si mul taneous
parallel-processing of a whole scene of information whereas vector
or scalar quantization only quantize one vector or one point
respectively at a time. Therefore, with scene quatization
technique one scene of information can be compressed to one
representation. Thus, the transmission rate, time and number of
parallel links for transmission, and storage requirements are much
less than those required by scalar or vector quantization for the
same scene.

2. Data Compression Using Scene Quantization
2.1 Tne Proposed Neural Network Architecture

output subscenes

Layer .

.- DeCombiner

Hidden
Layers - Quanti zer

Layer s ___ I

input subscenes

Fig. I Thu Proposed Neural Network Based Data Compression System
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As shown in Fig. 1, the system consists of three sections:
i nput-l ayer section, hi dden-I ayer section, and output-l ayer
sect-icn. Input-layer section consists of a number of subnets which
serve as input layer to the network. The hidden-layer section
consists of three parts: combiner, quantizer, and decombiner. The
combiner acts as the multiplexer to the input subnets. The
quantizer produces the internal representation of the scene.
Finally, the decombiner acts as the demultiplexer. A preprocessor
may also be used, but is not shown here.

If the network consists of m input-subnets. and m
output-subnets and each subnet has k nodes and a sigmoid nonlinear
tranformation is applied to the activation level of each node,
then, k

At the combiner: Cin = f[ z w nixni ], where
th Jth

C ni ouptut of i combiner node corresponds to n subneti th th
x ni output of j. node of n subnetnjth

Wnij 24 weight between the j th node of the nth subnet to the ith

node of the combiner.

m ±

At the quantizer: q, = fI n(Z jWnj Cnjj )], where

th
q output of i node of the quantizer

pAt the decombiner: dni = [ Wni1 q. where

th Jth
d •-output of i node corresponding to n subnet

p •-number of nodes of the quanti zer
r

At the output: yni = f[ j W njqJ ]
The distortion measurement is the mean square error between the

output scene and the input scene. Therefore,

m k 2

nZSE n ]Z ( Xni - Yn )
The overall desired outputs are the same as the corresmpcnding

inputs.

2.2 A Simulation Model of the Network

The proposed neural networtk model for scene quantization was
simulated on an IBM AT using the Professional II software package
of NeuralWare, Inc. [3]. Due to the lindtation of the software
tool, a scene of i2x12 pixels was used as the input scene. The
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number of nodes in the quanti.zer was.-a ! or 0.

As shown in Fig. 1, the network model is divided into three
sections: input-layer, hidden-layer, and output-layer soctions.
Futhermore, the hidden-layer section consists of three layers.
namely combiner, quantizer, and decombiner. The overall network
model is symmetric. One can take advantage of this symmetry in the
training process as follows: the network was trained inside out,
i.e. the hidden layers were trained first, thenthe outer layers
were trained using those previous computed weights for the hidden
1ayers.

3. Simulation Results

Shown in Figure a are the examples of recovered output scenes
which have been quantized and reconstructed from input scenes.
Table I shows the distortion, MSE, over trained and untrained
input scenes with different number of hidden nodes.

Scene Hidden Compression MSE Type
Nodes Rati o

a 5 28.80 0.0380 Trained
Z40 0 AO . 02,70 r a iL ,,•-d -

c 6 24.00 0. 1285 Untral ned

Table I : Compression Ratio and MSE

4. Conclusion

It is observed from the simulation results that the network
worked with reasonable error and hence the scene quantization
provides . viable method for compression of data scenes.
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Ca) show• reconstructedJ scene from trained dtata
wiTh 5 quantizer no.des.

Input Scene Output Scene

Cb) shows reconstructed scerie from trained data

with 6 quantizer nodes.

Input Scene Output Scene

Cc) shows reconstructed sc..i,- from utLrained data

with 0 quantizer nodes.

Figure ? - Exampls of Simulation Rusult•,.
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The temporal nature of speech signals provides strong constraints on the neural net-
work (NN) solution design process for automnatic speech recognition (ASR) at the word-
level. In this report we present initial experiments comparing the performance of several
static and recurrent back -propagation (BIP) trained networks onl a spoken English word-
recognition task. We conclude that judiciously applied, a recurrent neural network solution
aimed directly at the word-level may be appropriate fur certain ASR problems.

Methodology

Speech data and prepro-cessng
The ASR problem we stuidy here is a si;nplQ, yet inidic.ative, spoken English word-

rccogptinof task. Nie.uiwal rints me; trained to classify isolated Zutteranices of the dligits "0' throu~gh
"9" 4nd control words "up", "down", 1lh, right", 'pitch", 'roll" and "yaw" recordi.ed iCroa thre".
male-spea1'.,'rs. Five sets (l.-V) are, recorded from each spcakf-.r wik.r a severall week period.
Recordin~g is done in amabient r.oisc conditions at 10K A/D samples per second, low-pass
filtered at 3.3kHz cutoff'. Prepk-ocessing of recorded speech yields inpul data for NN training.
First, selection by hand yields 0.5 sc~orid segments containirig a single word or "noise." FFT
analysis (with llfamnrina window.; liocar pre-emph.tsls in the frequency domnain) in a 25 msec
moving timre-window (2/3 river'lap between F'uccessive windows) transforms each uittrarice into
a 3D imwe.g. a fr~ctcuency spectrum at. each of 60 times in a 0.5 second segment. Sccond,
NN input is obtained by transforming each indiv'idual spectrum to a 15-D vector by integrating
the1- spectral kkm plitudes ccntoredl at the following frequencies in Hz (bandwidth indicamed in
1:'arcnthescs): 130 (30), 104 (38), 2106 (48). 260 (60), 327 (76). 412 (96), 520 (12)), 655
(152), 8I2S (192), 1040 (242), 13W0 (305), 1650 (384), 20713 (485), 2619 (611ý), 3300 (710).
Fach 15-vector is optio ially peak-, vector- or not. normalized. Four of' thc five word scts are
usord for NNl ;raining; the ^fifth serves a.v an independent test set.

d ct--Ark architect URSe
We systemnatically study severai static and Tecurrcnt NN trained with the 13P algorithmn

[1,2]. Static net~s with one or two hidden U~yers are trained by presenting the entire 0,5 second
spc:togrphas a, 3D 'image" on the input layer, e.g. 6(0 x 15 input units. 1 hQ single--hidd-enr
ieriteu; wie 20 hidden units; double hidden-layer nets Use 15 units per layer. For all iwts,

the outpt layer contaiins 1-7 output nodes (one ON per word); noise vectors to turn all output
Unitis 01+.

On r recurreat net is an extension of that reported by Elmian [2] and analyzed by Servan -

";cltrc iber [31. The extenzrsion is sim ply an implementation of' the nested equation describing
rccu rrericc. of a htiddent Unit's Ou tput value, For the case of a two-step timi-e-dcL.Iy, the eqlu;ýtior
dic.tates the nuiin ber and relation sihip ofi local mnem ory cells associated with cacti iiiddcr i un it.
Thce equation generalizes to arbitrary time-delays by further nesting.

f(Xyvi'w,, + Wf(Yy:'wji + w*yf' 2 ))
j=0 i=O
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yj - hidden unit output, f(x) - unit transfer function, yi! - input unit output, Wfi - input t( hid-
den unit connection, wj - the recurrent connection, n - number of input units (includes bi ý;).

The recurrent net allows time-sampling of the input spectrogram without the n"cessity for
multiple copies of time-shifted inputs; this is well-suited for real-time applications. Our
aplproach is to present, for each utterance, sequential, overlapping groups of spectra contained
in that wor6's spectrogram. Exhaustive search suggests that for the present data, an optimal
combination of grouping, overlap and time-delay srores hidden unit activation for the
equivalent of up to 200 milliseconds preceding current input. The number of hidden units used
in the single hidden layer case is twenty.

Training and testing

Training of all nets proceeds in an iterative fashion. For speaker-trained nets, training ini-
tially proceeds with set I alone using random weight strengths as initial conditions. Following
convergence, set II is trained using as initial conditions the weight matrix generated at the pre-
vious step. This procedure is repeated until all four training sets have been pooled. The
multiple-speaker case proceeds similarly, but with pooling of numbe~ed sets at each iteration.

Our usage of the back-propagation algorithm is as follows: a.) errors are accumulated
across the entire training set; b.) learning rates range between 0.05 - 0.001, depending on train-
ing set size and net type; c.) "viscosity" term is 0.9; d.) learning rate and viscosity terms are
divided by 10 for the first 20 training cycles; e.) errors greater than 0.1 are propagated; and f.)
calculation of error is as described by Solla [4]. Empirically, gradient descent has proven most
useful. (Extensive experimentation with the conjugate gradient descent procedure coupled with
simulated annealing is disappointing so far for anything but the smallest nets.) In the case of
recurrent nets, a time-varying teacher signal has proven most successful. (See also [5[.) In par-
ticular, for a given utterance, the selected output node is trained to peak at 1.0 in the range
250-350 milliseconds into the 500 msec utterance. Over the interval [0,250-350], the value
rises linearly.

Trained nets are tested by classification performance on word set V. In the case of static
nets, we define two types of classification score: a.) "raw" recognition; and b.) "fine-tuned"
recognition. In raw recognition, the highest valued output unit greater than 0.5 denotes net-
work response. Fine-tuned recognition is one approach to a problem inherent in processing
each utterance as a single 3D image: time-alignment of repeated instances of an utterance.
Noise spectra are appended to the beginning and end of the test spectrogram and the composite
image is shifted sequentially through the window defined by the number of net input units.
Each shift position yields a peak output value; the highest value (> 0.5) achieved across an
empirically derived shift set (< 100 msec in either direction) denotes net recognition. In cases
where the correct output node is signalling < 0.5, fine-tuning can often raise the value to > 0.9.

Testing performance of recurrent nets is more problematic. Since the input is time-
varying so is the output. To detect classification, output layer activity is fed one-for-one into a
continuously running mutually inhibitory net. This additional net (MAXOUT) signals recogni-
tion when one of its units achieves a value of unity, e.g. signals the corresponding most active
recurrent net output unit across time.

Results

Table I summarizes network performance on our 17-word (plus noise tokens) database.
"Raw" and "fine-tuned" recognition scores (max= 18/18) are listed separately for the one and
two hidden layer (HL) static networks. For the one HL static case, fine-tuning the position of
the spectrogram image on the input layer adds significantly to performance. For the two HIL
static case, raw recognition for two of three speakers is 100%; for the third, fine-tuning
increases performance. The response values in the two HL case are robust, so that for speakers
2 and 3, a minimum output threshold value of 0.8 yields 100% and 88% raw recognition,
respectively. On average, performance of the two static net types is quite close. Training time,
measured by cycles through the learning set at each iteration, averages between 50-150 for all
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nets; note that the one HL net contains > 19000 connections and the two HL case < 15000.

Table I

Network Performance on a 17-Word Test Set
Speaker Static (1 HL) Static (2 HL) Recurrent

Raw Fine-tuned Raw Fine-tuned

I 61%(1!) 78%(14) 44%(8) 67%(12) 83%(15)
2 78 (14) 100 (18) 100 (18) 100 (18) 88 (16)
3 94 (17) 94 (17) 94 (17) 100 (18) 94 (17)
Mean 78% 91% 79% 89% 88%

MS* 87%(27/31) 90%(28/31) 81%(25/31) 84%(26/31) 94%(29/31)

Results for 1 and 2 hidden layer (HL) static nets and a 1 HL recurrent net using
a "home-grown" 17-word (plus noise) database (see text). (# correct in parch.)
We are currently installing the TI/NBS Database. The recurrent net achieves
competitive and more consistent results than the static nets. (*MS - multiple-
speaker digit recognition "0" - "9" plus noise token only)

Table I (last column) lists performance of the single HL (20 units) 2 time-delay recurrent
nets. (Initial studies suggest that a time-delay beyond 2 adds significantly to training time, with
marginal effect on performance for the singie HL niet.) Though tiainiiig tiiiie is significantly
greater, e.g., 100's of cycles, these far smaller recurrent nets perform competitively and more
consistently than the static nets. The recurrent nets contain fewer than 1600 connections: a.)
17 output units; b.) 20 hidden units with a recurrent connection; and c.) 75 input units, e.g. 5
sequential 15-D spectrogram-derived input vectors per sub-sample.

Classification proceeds by sequentially sub-sampling a test spectrogram and tracking
activity of the MAXOUT net. Typically, the initial samples, at the transition of background
noise and speech, force all outputs towards zero, e.g., the noise response. As sampling
proceeds, the correct output node (as well as one or two others) increase activity; the final con-
vergence of the correct output node to a peak value (on average, in excess of 0.8) follows a
non-linear path, see also [5]. Significantly, the misclassification is most often the type "NOT
CLASSiFiED", e.g., no output node activates enough to diive a MAXOUT convcrgcrcc over
the entire word. ttence, the recurrent nets trained with noise vectors (or a "garbage" output
node) resist false positive classification; we have not observed this property in the static nets.

The final row of Table I indicates performance on a multiple-speaker digit recognition
problem. The data used arc from the same dataset above, but new nets (with 10 output nodes
only) are iteratively trained as described in Triaining and testing, above. Again, fine-tuning the
static net input increases performance, though in this case, raw performance is high. The far
smaller recurrent net outperforms both the one and two IIL static nets.

Conclusions and Discussion

The present effort is aimed ultimately at word-spotting in continuous speech. Thus we
ougt deal dlicctiy with thU LUiMipOlt& characteristics of the fornmant-plioncnme and word levels.
At the word-level the key problem is time-alignmcnt owing to differential speaker rates, ainpli-
tudes, fundamental frequencies, etc. We have explored two approaches to the problem. One
using static nets in conjunction with an image shifter, and another using (temporally) recurrent
nets. In this restricted study, recurrent nets yield competitive classification rates; with a level of
consistency not seen with static nets.

The present results are similar to those reported by Anderson, et al., 15] and Franzini, ce
al., 16]. Similarly, the study by Rossen and Anderson [7] suggests that there is a variety of
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input representations which may enhance performance of both static and recurrent nets. The
usage of different databases makes direct performancc comparisons difficult. (We are presently
installing the TI/NBS database in order to facilitate such comparisons.) However, these several
studies, amiong others, support the conclusion that recurrent nets offer a viable neural network
approach to ASR.

The approach adopted in this study is different in ant instructive way from that adopted by
Waibel and colleagues 18]. First, we seek to effect discrimination at the word level, thus aiming
to implicitly incorporate co-articulation effects and the like, into the network. In their applica-
tion (Japanese ASR) Waibel, et a]., have found it efficacious to focus on the formnant-phoneme
level; word level recognition is achieved by forming heirarchical nets in a bottom-up fashion.
Second, a recurrent neural network structured properly allows each hidden unit to optimize its
own time-delay characteristics. The result is smaller networks where each hidden unit requires
only small local memory for (suimmed) activation values. Moreover, the loca memory affords
the opportunity for more advanced temporal processing by the hidden units, e.g. see 19]. On
thc other hand, in their application, Waibel, et al., 'Nave been able to select and fix temporal
dependencies by pre-specifying connection patterns between layers. The differing nature of the
two applications may fully account for the differing NN designs. However, it is important to
recogni/,c that temporally, ASR is a multi-level problem. An application -drive n NN design pro-
cess ought to take advantage of and be informed by the unique characteristics which exist at
each time-scale. The inherent temporal processing capability of recurrenL nets makes them
strong candidates as components in NN Solutions for autLomatic speech recognition.
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INTRODUCTION
Self-Organizing Maps are competitive neural networks that both produce localized responses to

input signals (i.e., accomplish a kind of vector quantization of an input vector space) and represent
the topology of the input signal space over the network [1,2,3]. Most of the applications of Self-
Organizing Maps are based on the proposition given in, e.g., [3] which says that if the input vectors x
are samples of a stationary probability density function p(x) then, due to the self-organizing learning
algorithm, an ordered image [(p(x)Jn/(n+ 2) will be formed onto the reference (weight, codebook)
vectors of the cells of the network. I.e., the ability of the network to optimally align the reference
vectors according to the input space is usually utilized.

However, in this report we outline a discrete-signal identification application that, above all,
employs the active topology preserving property of the learning scheme. In modern signal
transmission technology, ideally, values of transmitted signals are quantized, i.e., in one dimension,
only certain values, e.g., a+n(t)h, n(t)=0,1,... can occur (figure 1) and, in two dimensions, only
(coordinate) values of, e.g., gridpoints of a rectangular area can occur. Consequently, the p(x)
function is very simple - a sum of properly shifted delta functions. However, due to various reasons,
the transmitted signals may be distorted by the transmission path of the communication system
(figure 2) and thus, adaptive signal identification mechanisms are needed for recovering from
possible errors. Although p(x) is now time-varying it can be assumed that the form of the signal
topology is preserved and the self-organizing learning can easily adjust its reference values
according to the signal levels.

ADAPTATION BY SELF-ORGANIZING LEARNING
As described above, ideal transmission of quantized signals occupy discrete values, eg., x(t)-

a+n(t)h, n(t) = 0,1,... (see figure 1). Due to disturbances, etc., the receiver sees modified values of the
transmitted signals, i.e., x'(t) = a+n(t)h+en(t), resulting in signal trajectories such as in figure 2. An
obvious choice for the self-organizing framework is now a linear array of learning cells, each
characterized by an adaptive parameter mi. As the ideal and distorted signal values are one-
dimensional, the mi values are also scalars. The mi values may be initialized to the ideal values, or,
according to the signal levels received in the beginning of the transmission, or, they may be given
even random values because the mi values will effectively converge to possible asymptotic values of
the received quantized values in the coarse of the self-organizing learning process. The adaptive and
time-varying signal identification proceeds according to the following rules that are based on the
original self-organizing algorithm.

Figure 1. Figure 2.
a+3h a+3h+e3

a+2h a+2h+e2

a+h a+h+el

a a+eO

t(irne) t(irmG)

II - 249



M/ m1  M 2  M3 Tn IV.

Figure 3. One and two dimensional adaptive networks.

(i) At each discrete time instant t, determine the cell c with the best matching
parameter mi(t) in respect to the current received signal sample x(t), i.e.,

IWx(t) - m 0(t)II = mini {lix(t) - mi(t)II} (1)

(ii) Adapt the parameters in the neighborhood N, of the computed cell c

mi(t+1) = mi(t) + cix~t) - m(t)], i = c (2a)
mi(t+l) = mi(t) + P[x(t) - mi(t)], i r N, i # c (2b)
mi(t+l) = mi(t) i e Nc (2c)

The topological neighborhood N, consisted of the recalled cell itself and its direct neighbors up
to depth 1,2,... (see figure 3a). Since the problem now is not primarily to find an image for a
complicated stationai-y input distribution but rather to follow the udrifts, - tc'w., . ..in• t quantized signal
values we used values for the iteration coefficients, a and P3 (and not monotonically decreasing
functions of time, etc.). As is obvious from the experience of the capabilities of the self-organizing
maps in general and also as shown by the demonstrations described below, if the a and P values and
the neighborhood radius are selected properly, the mi values will trace reasonably well the time-
varying x(t) values, i.e., adaptively identify the received quantized signal. It must be further
emphasized that as the broadcast signal space has a well-defined topology and as the mapping is
topology-preserving, due to neighborhood learning, the adaptation is very effective unless the
distortions are so large that the linear topology of the quantized signals is destroyed.

The neighborhood learning is always applied symmetrically in each direction in the array of
adaptive cells. Because cells near the edges of the array may not have neighbors in both directions
the learning causes some bias in the mi values towards the _eroup center of the parameter values. To
compensate for this, the input signal x(t) can be modified to bi+dix(t), bi and di being node-specific
parameters, i.e., the input signal space is effectively enlarged yielding the following modified
adaptation formulas:

mi(t-+ ) = mi(t) + a[bi+dix(t) - mi(t)], i = c (3a)
mi(t+1) = mi(t) + Pfbi+dix(t) - mi(t)], i a N, i f- c (3b)
mi(t+l) = mi(t) i z N, (3c)

The ability of the method to preserve a signal space topology becomes even more evident when
the quantization of the signal space is two (or higher) dimensional, i.e., the ideal signal values
occupy, e.g., the coordinate values of the gridpoints of a rectangular area. Two-dimensional signal
quantization is utilized in the so-called QAM coding in modern communication systems [4].
Obviously, it is advantageous to use now a respective rectangular array of learning cells familiar
from the multitude of demonstrations given of the Self-Organizing Maps (see figure 3b). Accordingly,
the le:_rning neighborhoods are also two-dimensional. Otherwise, the above adaptation equations are
directly applicable to the two-dimensional case, too.

The gridpoints in a two-dimensional space may be shifted, zoomed, rotated, etc., in various ways
but still the order of the signal levels tends to be preserved, i.e., the rectangular grid-like s, icture is
preserved. Even when absolute signal levels change drastically, they are effectively and steadily
followed by the topology-preserving learning rule.
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SMU1lATIONS
The purpose of the simulations was two-fold. Firstly, we wanted to demonstrate the ability of

the self-organizing learning network to identify adaptively discrete and distorted signal levels.
Secondly, we wanted to preliminarily survey acceptable values for the coefficients, etc., of the
method, primarily for ot and P. Especially, we wanted to test the sensitivity of the parameters against
different sort of deformations in the input space. The emphasis of the simulations was on the two-
dimensional quantization.

The adaptation capability was measured in terms of identification accuracy, i.e., counting the
number of correctly identified signal levels in proportion to the amount of all transmitted signals. A
received x(t) was always identified according to the nearest-neighbor rule, i.e., Eq. (1). For
comparison, the identification accuracy was also measured using a straightforward adaptive method
that, in one-dimensional case, traces the smallest and largest values of the received signal in time
and then divides the space in between evenly assuming an equally spaced modified quantization.
Such an identification technique is commonplace in many practical AGC (Adaptive Gain Control)
based receivers. In two-dimensional case, both dimensions were treated similarly and the simplified
method assumed a signal quantization occupying at the intersections of equally spaced parallel
division lines in bo! 'i directions.

The first simulation was carried out with one-dimensional signal quantization. The ideal
quantization consisted of four equidistant levels and the amount of signal samples broadcast were
2000. An artificial distortion was made in the middle of the transmission by shifting the lowest and
highest levels towards the other two levels, however, without intersecting the signal trajectories and
thus, maintaining the topology (see figure 4). The distances of the shifted signal levels to the intact
levels were 1/4 of the original. For the form of the shift, a smooth step (like a sigmoid function) was
used. In addition, simulations were always carried out with random, normally distributed noise
included in t.he received signals. in this particular example, the standard deviation of the noise was
a = 5 per cent of the difference between the ideal quantization levels. Equations (1) and (2a.c) were
used for the adaptation. The neighborhood radius was 1 in all simulations. Each simulation actually
consisted of a series of systematic test runs to find out proper or safe values for ot and 03 to obtain
good adaptation. Figure 5 depicts the region of (a,3)-values with identification accuracy of 95 per
cent or above for the received signals with time indices 201 through 800, i.e., during the nondistorted
region except noise. Figure 6 depicts the corresponding (cp)-values for time indices 1251 through
2000, i.e., after the collapse. For practical operation, (c,[l)-values giving high accuracies in both time
regions should be chosen. Figure 7 depicts the decrease of identification accuracy obtained with
properly chosen (aP3)-values within time indices 1000 through 1150, i.e., during and right after the
transition from normal to collapsed mode. The accuracies are calculated of 30 sample windows, each
10 samples apart. With the AGC based method, the identification accuracy was 100 per cent for
signals with time indices 201 through 800 and only 85.6 per cent for signals with time indices 1251
through 2000.

Figure 4. - Figure 7.
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With two-dimensional signal quantization, the forms of deformations experimented were the
following (see also figure 8). a) Collapse of all signal levels or "zooming in", b) collapse of corner
levels inwards of the grid c) rotating the grid by 10, 20, or 30 degrees, and d) escape of one
quantization level from the grid. In each type of deformation, the transition from normal to the
abnormal mode occurred in the middle of the transmission, around the time index 1000, analogously
to the one-dimensional simulation. The total amount of samples was extended to 3000, however. The
rate of each transition was the slope of the sigmoid function (fft) = 1/(l+exp(0.l*t))). The standard
deviation of the noise (two-dimensional) varied between 2 and 5 per cent. Both 4 by 4 and 6 by 6
grids were tested. For adaptations, equations (1) and (2a-c) were used in each case.

In general, the adaptation is most reliable in deformations that cause topologically similar
changes to all gridpoints, e.g., zooming in or out, rotation, or shift. The effect of noise was neglible, at
least in the range of 0 to 5 per cent (standard deviation). If there are gridpoints whose behavior
diverges from the others, e.g., escape, it is advantageous to decrease the P-parameter to make the
effect of the neighborhood learning weaker.

As a special case, we will describe the simulations c), i.e., rotating the grid, in more detail. At
first, it was not difficult to assign good values for a and 0 before the transition, i.e., a 100 per cent
identification was easily obtained. A 30 degree rotation of a 4 by 4 grid was initiated at time index
751 and was completed at time index 1250. The standard deviation of noise was 5 per cent. The
region of (z,•)-values giving a high identification accuracy (95 per cent or more) for received signals
with time indices 1501 through 2200 is shown in figure 9. As can be seen, the adaptation is robust
within a wide range of (oa)-values. For comparison, the identification accuracy of the AGC based
method was below 25 percent assuming the rotation of the grid can not be taken into account.

N: 7wo 0.I

original zoomed corner rotated escape 0 -

collapse

Figure 8. Figure 9.

CONCLUSIONS
These preliminary simulations clearly indicate that self-organizing learning may offer a very

effective and robust means for adaptive signal identification in modem communication systems. The
virtues of the method can be seen especially with two-dimensionally quantized signals with noise
and distortion. The choice of the parameters of the method does not seem to be critical. The
adaptation is fairly fast and stable although no provisions of the characteristics of the signals have
been made (admitted the test signals were artificial, so far).

Encouraged from these early simulations, we are now concentrating on carrying out more
extensive designs and test runs with real communication signal samples.
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SOME PRACTICAL ASPECTS OF THE SELF-ORGANIZING MAPS
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Abstract. The main purpose of this presentation is to advocate the Self-Organizing Map algorithm by emphasizing
the simplicity of its implementation by standard hardware (electronic, optic). In particular, if the original dot-
product matching is used, the Map is easily implementable, e.g., by optic devices; the learning law must then be
modified accordingly. Nonetheless it remains possible to define almost arbitrary nonlinearly separable and even
disjoint class regions with this simple algorithm. - A survey of a few earlier and contemporary applications is also
given.

1. Motivation of the Map for a Neural Network Paradigm

If we try to make a comparison of the nowadays perhaps already familiar Self-Organizing Map
[11, [21 with the most widespread NN structure, namely, the Backpropagation network (BP), the
most salient difference is that BP is designed to implement a wanted input-output mapping of
signal patterns, whereas the Map carries out a Vector Quantization, directly identifying the input
signal pattern with the closest "codebook pattern" (in some suitable metric). If one then applies
these networks to pattern recognition or pattern classification tasks, the difference becoi .es even
more apparent. In BP, a "regularizing" input-output mapping between sample data is first
designed in terms of nested functional expansions of the form

Yk = (Y(YWhY(Yv10(". (•-uiXj).))
h i j (1)

where the xj are input signals and the Yk output responses, respectively, and Y denotes the
"sigmoid" nonlinearity; classification of the input vector then results on the basis of the relative
output values of Yk. The Map, on the other hand, does not need nested mappings, since in
classification, it is only the decision border between classes in the signal space that is
important, and any (optimal, nonlinear) form for it can directly be set by using a sufficient
number of suitably located codebook vectors for each class; to define the codebook vectors on
thc ai. of.,..-. .. t decis-ion ,o-ers. a ... vastly l;ghter task than determirnation of the functiona!
expansions in BP networks. Still the classification accuracy of the Map is at least as high as thatof the BP networks.

2. The Euclidean Map Algorithm

Let us denote the input vector by x e Rn and the codebook vectors of the Map by wi E Rn,
respectively. The simplest matching defines the nearest codebook vector, with subscript c, in the
Euclidean metric:

IIx-wciI = min (lx-will)
i (2)

Updating of the codebook vectors is usually based on the following law. If x = x(t) and wi
wi(t) are discrete-time sequences of vectors, then

wi(t+l) = wi(t) + cx(t)[x(t)-wi(t)] for i e Nc ; wi(t+l) = wi(t) for i NC , (3)

where a = o•(t) is a monotonically dccreasing "gain" sequence (0 < ox < 1), and Nc is the
"topological neighborhood" of the codebook vector w, ("winner") (see [1], 121).
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If the Mal) is thtn used for classification, each zIass is usually m~ade zo contain a~ smrall number
of codebook vectors. Post-training (fine- tuningiý, of the Map is now carrieO out in a supervised
process whereby the class-affiihation of th~e input veciors x m~ust be known. If the class-
affiliation of the closest codebook vec~tor in -the Map on the oasis of Eq. (2) is the same as that of
x, then a positive a like in Eq. (3) i., used; on the other hand, f z'-ie classification was wrong.
then -c,. i .s tusea i .nstead of a. This principle (whic;h i3 applied after the Map was already formed
and e.ýpecia1Iy With Nc = (c)) is one of the algorithms called Learning Vector Quantization [2],

3 The Dot-Product Map A~gorithm for Simpler Hirdware lImplementationi

Ihet hardware implemnentation of the Map, in which the "optimal" codebook vecýtors car, be
computed off-line, m-ay be txtrea-i~y simple. For instance, with high-dimensional in~put vcccoi~s
it is often possible Lo norn,,`Jzc themn, or at least. :o assuine that all the important information is
contained in the rek'tive_ viJues of the components. ,'ll the avai.,able information is ther,
preserved although thz: codebook vectors zre normalized. Such a Map may be implcmented by a
line-ir mapping followed by a maximum selector ""winner-,ake-all'). The matching law is first
modified to read:

i (4)

If this transformation i_ý used, Jtl' learning law for thie codlebook vectors wj niust read:

wi(t+l) = -' * -tOr iE NC wi(t+ 1) = wi(t) fori o NC,
llwi(r) + a'x (t)li (5)

whert- a' = ex'(i) is a monotonical'y decrcasing s-'alar function of time (this time 0 < a' <-)
and NC is a similir ne~ighhor-hood .aýound the "winner" wr as in the pL-evi(,us Map algorithm. One
might ary the form a' = cxo/t where cxo is rather ½uge ('0 to 100).

If this Map is again applh ed to classification tas;ks, a stiikeivised learning scheme analogous to
that mentioned in Sec. 2 can be Lscd,1 now, ag-aln, whe ý;ign ol a' is a function of classification vs.
misclassification of the known input training, vec,,crs x.

A simuple hardwane implementA1mon, Where the dot prcdcixs ire first co-riputed by a "synaptic
niatxilz" (optically;- by tr~nsmiss~ion filters) and sumnma,; -n is cnaoc by the column111S (like in many
necural models) is illustrated in Fig. 1. The different dot prcviuctIS are compared by a ' riner-
take-all' cir7cuit thol. ()utpt, ts a 1 at the line corresponding i... thte maxim-um dot prodAuct xTrni zind
0 at All the oth'.-r ou,')Lt lines. The ceutputs corresponding t,. adl those coch-.ook vectois thal
bc;lcng to the same class are combined with at logic OR gate; each *yi tus corrcspend.- to one
class and the corre~sporiaing output indicates to what class x bt-loags.

4~. Survey of Practical Applications of the Maps

In addit[ion to nui nrcrous wore abstract sirnulanmoris, thcorcticAl~~cI','cn~ and ''loy
r tnupk~s' the fo~lowirg practical problem ýireas hav e beven approaclheýd t~y (n:

.Aps. In some of them rather concrete work is alre~cly in progress Althcgli [tie rvin-btr of
pubiishcd papers is alicady much greater, I have tried to collect -efcrcn,_es to the rnos; centtrAl
ones,

-Statisuc.al patternz recolnition, especially recognitior of speech 14]1, [Hý;
-contr-ol of f-oixo arnus, and other problemis of robotics 16], 171, 18,11
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each column corresponds to a
codebook vector of class I

x _

winner - take - atll1

LO FR OR FOR OR

class I class k
output output

Fig. 1. Schematic illustration of the Dot-Product Self-Organizing Map. Each
column of the "synaptic matrix" computes a dot product ot the type XTW1 .

- control of industrial processes, especially diffusion processes in the production of
semicond uctor substrates [9], [101;

- adaptive devices for var-ious telecommunication tasks [11], [ 12];
- optimization problems 113]; and

analyvsis of semantic inform-ation r 141.

Among these, the application to speech recognition has longest traditions in demonstrating~ the
power Qf tht. Map mnethodi, when dealing with difficult stochastic signals. My personal
expectations are, however, that the greatest industrial potential of this method may lie in process
control and telecommunication tasks.

It is a little _:urpriiing that so few applications of the Maps to Computer Vision are being
stodied. This does not mean that thle problems of vision were not important; it is rather that
automnatic analysis arnd er~tr,3ction of visual features, without any heuristic or analytical
approach, has turned out to co~nstltitte an extremnely hard problem. In tht- biological vision, and
in its auificiai im-plementations, one probably needs a very complicated hierarchical system th'it
employs mnany stagcs (..several different rnaps). One of the unclear problems is how the mlaps
!should be interconinected, e.g., whether one Should use sptcial interfaces; and in hierarchical
syýstemns, adaptlveý iiorinalization of iniputs also seemis neck-ssary. There are only somne isolated
problemis, sVch ats texture analysis, that might be amenable, to the basic method as such.

Thie p obhltin OJf uiterachical maps has indeed turned out to be- very tough. Of ic of the particular
eifficultics arises if tht: inIpuBtso a cell come from very different sources; it then seems
.inevitable- that an1 IMSyi~Mnletrical dk1,;ance fun~tion, in which the. signal components are provided
with adaptive tmensrial weights, miust be applied 1 151. Another aspcct concerns the interfaces of
nvxIJles iii a hierorchical, imap ý:ystemr: the sign-,is merging from different mo~dules may have to
N_ combirned rkonlineariy 116,].

It has already, been demonstrated that the Map can be used, e.g., as a prep~rocessing stage for
other m1odelS 11 F1.]. In thle Coullmerpropagatnon N'etwork of l-clect-Niolsen 1 191, the mnap is
nicecly intiqegatcd Himt a hie.-archical system as a special layer.

more Ihcwtia aspecxts of the Maps can beý found in Refs. 1 20] through 125).
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A Technique for the Classification and Analysis of Insect Courtship Song'

Eric K. Neumann, David A. Wheeler, Jamie W. Burnside ,Adam S. Bernstein, and Jeffrey C. Hall, Dept. of

Biology, Brandeis University, Waltham, MA. 02254, *M.I.T. Lincoln Laboratory, Lexington, MA 021732.

AJhstraAL

A technique is described and preliminary results presented for the classification and analysis of acoustic
signals fromn insect courtship song using Neural Networks. The system consists of two parts: 1) a Kohonen self.-
organizing network that directs its output into 2) a 2-layer feedforward network which uses back-propagation
learning. The signal is first preprocessed by a zero-crossing transform before training. The network eventually
learns an optimal representation of the pulse events based on learned vector quantization (LVQ). The vector-quan-
tized output is used to calculate a histogram of time-summed quantized events and is then used as input for the
subsequent feedforward network. The second network learns with a modification of back-propagation the
correspondence between the processed-song input and an external parameter such as the genotype of the song
producing animad. The adapted system can then be used to analyze new mutant songs and to classify them into
appropriate categories based on genetic allelism and song characteristics. Finally we describe a novel technique
for the identification, classification and analysis of other complex behaviors and its application to the general
analysis of animal behavior and communication phenomena.

Introduction courtship repertoire and is believed to enhance the
female's receptivity for mating. Variation is observed

The complex behaviors of animals are of great interest between pulses from different trains, but is much less
to both behaviorists and ucurobiologists alike. Models between pulses within a train. A complete song lasting
of how the nervous system of an animal is capable of many minutes can contain many types of pulses with
producing complex behavior are being developed for different amplitudes, frequencies, and polycyclicity.
many specics (..oso 114, Hall 11]; Aplvsia Kandel
[21; canary, Nottebohm et al. [31). With the advent of
new molecular techniques and tols for analyzing
neural systems, the need to accurately correlate
behavioral patterns to the data obtained by these
twchniques is critical. A complex system such as an
animal's nervous systems can yield very complicated
results to even ihe most focsed investigation. This
translates into a need for more accurate and compre- Figure 1. Pulse song from wild type Drosophila
hensive techniques which reproducibly measure and rnQLag= .. Time intervals are 50 milliseconds.
classify these behavioral ensembles.

W, have been investigating the mechL.,Ism of male Two separate mutations, cacophony and dissonance
Drossohta mclanoasteLr (fruit fly) courtship song which affect pulse polycyclicity are presently being

from both wild type and song mutants. The song is studied at the molecular level in our lab. However, both
producer] by wing vibration and is made up of intermit- mutations exhibit high pulse variation and therefore
tect ihum and pulse component. "lc latter consists of a simple classification based on pulse polycyclicity alone
train from a few to m.'.y individual pulses of 2-3 is not very accurate or reliable. In addition, many
cyek!c,;/putse(polycycliciiy) at -225 tlz separated from experiments involving mutant transformation rescue
each otheir by a mean iutCrpulsc interval (MPI) of 35-45 and other genetic mocdifications yield very complex
milliseconds (Fig. 1). It is a neccssary part of the results which are not definable by any single pulse

few -e, such as polycyclicity. We eventually wish to
1. This 1rojet was ItnCuld by Grants GM-21473 de .op a fast, automated approach to screening and
from the MIT ito JCllall, analyzing these and other putative mnutations. Before
2. The views eApressed heic are the preliminary this can be done, a technique must be devehlopel on the
views of the author:;, and (1o not reflect the views or computer which provides for a liOre complete song

policies of 1I.. Lirrcoln Laboratory. phenotype assessment.

11- 257



Conventional signal processing techniques (signal within an octave bandwidth, then !he signal can be
rectification, low-pass filtering, peak detection) have described completely by its zero-crossing information
been employed to identify putative pulses in a court- and a multiplicative constant. The spectral energy of a
ship song recording; however -10% of the pulses are pulse is concentrated in such a frequency interval, and
either not identified or other non-pulse events (wing therefore can be effectively transformed by ZX without
cleaning, female wing vibrations, bumping) are much loss of information. In order to compare the
incorrectly labeled as pulses. In addition, though their efficiency of the adaptive system to more conventional
polycyclicity and IP~s are measured to yield an signal processing and identification methods, pulses
average set of values for a given song, the identified were also identified by an automatic procedure. This
pulses are not individually classified because of their procedure employed threshold peak detection of recti-
complex variability. In order to design a more complete fled and low-pass filtered signal. For each pulse event a
analytical tool, the use of adaptive techniques which total of nine ZX intervals were stored along with its
would specifically tune a system to features in the time, its event number and whether the pulse was iden-
acoustic signals of interest was investigated. The goal tifiexd (true) or not (missed). Non-pulse events which
was to develop a system which could best describe a were incorrectly identified by the conventional
given pulse, classify it, and then use the entire pulse automatic approach were also entered into the record,
classification record of a song to correctly assess the along with their ZX information (non-pulse). The auto-
type of fly that produced it. identification information was later used for analysis of

the classification capabilities of the network.
Kohonen [4] describes a system which is able to vector
quantize data. This system adapts itself using self- I. Kohonen Self-Organization
organizing rules to effectively construct a set of proto-
type input vectors. These vectors when compared to A Kohonen LVQ network [8] with 72 nodes and nine
real inputs yield a least mean squared error based on a inputs to each node was used to learn the distribution
nearest neighbor measure. The result is a network of the pulses' ZX information. Each nodc i consisted of
which best describes the distribution of the input data nine coefficients for each input elemeit of vector x.
and can be used to label signals into classes if the This network was then allowed to adapt to the ZX
prototypes are ordered according to some clustei ng information of each pulse. This was performed by
(classification) method. This technique can also be u, e- adjusting the coefficients of each node according to the
d as an effective codebook for data compression. rules:

The vector quantized song data are then used to adapt a choose node c such that-
feedforward network that attempts to map the song to II x - mc II = mini ( II x - m. II] (1)
the correct type of animal producing it. Preliminary
data on the effectiveness of this approach are presented Ji ithin -neigh.•rood f - . . ......
and additions to the technique are suggested. A brief . . .. 0 C t/ e.

outline to be applied to more general behavioral
analysis is also presented. I mi - mc II < Ao*exp(-tTl) (2)

.ImpienentatuM then adapt the coefficient vector according to:

Courtship songs of Drosophila males were monitored ,mi(l) + a(t)[x(t) - mi(t)] for i E NEc(t) (3)
using a special microphone system called the mi(t+1 )= I' (
Inscctavox [51. The song data were digitized at a sam- Lmi(t) otherwise (4)
pling rate of I kHz. Pulses were identified manually by
an operator who logged in the individual pulses using where a(t)= AlI* exp(-t/T2) + A2 (5)
previously described software [61.The location of the
pulse was defined as the time at which the maximum x is the input vector (ZX) anrd mi is the node vector
absolute amplitude of the pulse occurred. The node corresponds to a pulse prototype). The mi(each nd ozsod oaplepooye.Tem
identified pulses were used to create zero-crossing
(ZX) interval files for each of the pulses. This i adjusted first coarsely to the the input distribution
consisted of starting at the pulse location and with NEe(t) and a(t) being maximum for t 0. As
calculating the ZX interval for that half cycle and also approaches TI and T2, NEc(t) and a(t) both decrease

for 4 preceding and 4 subsequent ZX intervals. A exponentially, respectively, and the adjustments are
theorem by Logan [71 stales that if a signal is contained fine. The final mi for all the nodes evcntually attain a

11 - 258



distribution similar to the training input distribution, was defined using the cosine of the angle between
The nodes can be represented as a set of points, each different vectors: the less in common the distributions,
corresponding to a node, whose position in input space the greater the orthogonality and the angle. This was
(i.e. nine dimensions) is specified by the coefficients of performed by calculating a dot product between
that node. An input (e.g. pulse) is also representnd in normalized histogram vectors (1-D correlation) or
the same space, and that nxoe which is closest to the between normalized matrices containing the
input (Euclidean distance) is "activated". distribution of node activation in one index and their

distortion error in the other (2-1) correlation). Both give
After training the network can be used to vector the cosine of the angle between the distribution vectors
quantize novel inputs whose distribution is similar to or matrices (orthogonality) ranging from -1 to 1 which
the training set's. If the distributions are stationary, then is effectively a measurement of similarity between
the mean squared distortion error (MSE) is minimized: event distributions.

< erro2>=Emini II x(t) - mi 12] (6) The node activation histogram is useful for the

screening of potential behavioral and song mutants in

where i = ... M. which this lab is active. To do this, another system is

required that will be able to best estimate whether a
This quantity is also useful in assessing the efficacy of given song is wildtype or mutant. We have utilized a
vector quantization for a given network presented with two-layer fecdforward network whose input is the nor-
a given song sample. malized node activation histogram vector from each

song file,
Thecefor, for M nodes, the distortion error of a signal
is minimized for the rm.-pping of a signal to the This vector is fed into a feedforward network and the
"closest" node. Subsequently, all puLies can be mapned outplt trained to matr'_h one of thie genotypes. The
to a node to create a compressed fiie of only the node network is trained on the vector pulse records for many
labels corresponding to the original pu!se sequence. examples using a mcdified back-propagation method.
Such a file stilf retains all the information as to the type After training, tlhe feedforward network is tested with
of pulse event and their distribution. However, the novel examples.
pulse data has been significantly compressed from a
vector of nine r:lements to a scalar quantity ranging 11. Backprooagati-on Learning Rule
from I to M. 'he "node" event file can be utilized in
several different ways in the analysis of song structure. The familiar error backpropagation learning rule [91
bi this set of cxperiments, the entire accumulated event was used to uain a two-layer (one hidden layer) neural
record (i.e. node activation histogram) i. •ed as a "sig- network. In a convcntional backpropagation network
nature" to predict ,ome caracteristic of the animai (BPN), the connection weights are modified for each
which produced the song. input/output pair (p) according the the rule:

,, ApWji = i.tS .0. (7)

N C

Uh I where the error, 5pj, is defined as

N ' 5p =i (T pj - Opi) f'(netp,) (8)

Figure 2. Node activation histogtam of a song
after being analyzed by a self-organized network. for the outp,, lwyer anO as

SPI = f'(rietpj) 4 .SpkWkj (9)

A nod. activauou histogram can be calculated based on
tie distribution of nodes activated by a given song for hidden layers. We used 1he conventional signioidal
sample (Fig.2). Tlhc histogram can be represented as a function:
vec.tor which is usually scaled to unity. I his vector can
1k. thought of as a time-independent (stationary) 1(ne, A 11(1 - elelpj (10)
signature for the sutig. A measure to quantiuatc the nJ'
similarity between song activation histogram vcctors
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The variable i in Eq. (7) is the scalar learning rate co- "valley", but not letting it increase too quickly when on
efficient and netpj is the linear sum of weighted inputs, a "smoothly sloping" section of the error surface.
In order to increase the learning rate, our
implementation used adaptive learning rate The delta-bar-delta rule has similar advantages to using
coefficients. The scalar learning rate coefficient in Eq. a momentum term [10] but unlike momentum, the
(7) was replaced by a learning coefficient matrix. The learning rate can be allowed to increase without bound
weights of the network were modified only after ar, when appropriate. It is limited only by the term Kc and
entire pass through the training set: the number of iterations through tde training set. This

has the advantage of speeding convergence on the
AWi = jit )p p8 (1i1) "smoothly sloping" section of the error surface and is

superior to momentum for most cases.

This was both computationaily efficient and prevented
the order in which the training set was presented to the The values of 0 and eo which produced consistentnetwrk rom ffeting theadapivelearing convergence of the network were 0.7 and 0.2, respec- •
network from affecting the adaptive learning tively. This produced more than an order of magnitude
coefficients. The learning rate coefficients, gji , were improvement over a constant learning coefficient in

adapted according to the delta-bar-delta rule of Jacobs terms of convergence speed. A judicious choice of K is
[9]: dependent on the magnitude of the input vector and the

size of the training set.
AWji(n) = 0 AW i(n-1) 4. (1 - 0) AWii(n) (12a)mml

where 0-0<1 0 id 1

if AW.,(r') * AWii (n) > 0 In our experiments, we first trained the Kohonen self-
]' organizing network on all the pulses of all the training

then IJPji =•j1 + < (1 2Z) files. The network consisted of 72 noddy, Cucik

receiving the nine inputs. These files consisted of 6
if AWji(r* AWji(n) < 0 wildtype songs, 6 cacophony mutant songs and 4 disso-

then g. (1 - 4.. (12c) nance mutant songs. and 3 period songs. Both wild
t J1 - itype and period exhibit normal songs, while the other

two mutants specifically affect pulse song, albeit not
where AW..(n) is the exponential moving average of consistently. The total number of pulses used to train

AI and n repsesents the nth pass through the training the network were 29,000 and the whole set was

st.n memory" characteristics repeated 3 times (i.e. 87,00 pulse examples). The
set._0 determies the "fadinge Kohonen training parameters were chosen to be: for the
of Awji(n), learning rate Ao = .001, T1 = 30,000; for the

neighborhood contraction rate: AI = 1.5; A2 -_ .001, T2

The rationale behind th,- delta-bar-delta rule is as 3000.
follows- An exponent • ving average of the weight
updates, AWji(n) in Eq. (,i2a), is multiplied by the Our experience has shown us that TI should be at least
current weight update, AVWji(n). If the product is 3-fold lower than the total training samples, and T". at

least 10 fold lower than T1. AI was based on the radius
positive, c tble learning is occurring and the learning of the. initial random distribution and A2 on the desired
rate coeficientj, can be increased. If the product is smallest distortion error, usually set to 0. Ao was ini-

negative, learning is unstable or oscillatory and the tially chosen based on an equation derived using a few
leanipg rate coefficient is decreased to improve a'-sumptions (not shown). The initial values of each set
convergcnce stability. Since we are searching for the of node coefficients were chosen randomly u-;ing vý
miniimum of an c--or surface, this can also be thought Gaassian distribution around the meian pilse value for
of as increasing the learning rate when passing over all the song files.
"simoothly sloping" regions of the error surface and
decreasing the learning rate when we traverse a The effective data conyaression is determincd as the
"valley" of the error surface. The learning rate is number of bits required to describe the original pulses
increased linearly by an amount K, but decreased divided by the biL-s required to describe the activatctd
geometrically by the factor 0. This has been found to nodc maxirnized for entropy. The ZX traii.-form has the
produce more stable convergetnce by quickly added advantage of staying constant with increasing
decreasing the learning coefficient when Lrossing a sampling rate. The compression ratios for tested songs
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is -50:1 for 1kHz sampling, and increases linearly with Jest Song "ypg
sampling rate. The bit rate (bit/sample) of the vector WT cac diss perO
quantized ZX-preprocessed signal is defined as log2 72

nodes / 9 ZX-intervals = .69 bit/sample. WT 0.73 0.32 0.09 0.53
cac 0.08 0.58 0.74 0.33

After completion of learning, the same set of examples diss 0.08 0.26 0.31 0.19
were entered into the network and the normalized node pero 0.49 0.06 0.07 0.09
activation histogram calculated. Both 1-D and 2-D
correlation measuremeats were used to give an Table 1. Average output response vf BP net-
indication of how similar pulses classifications were work trained on 4 genotypes (15 songs total)
compared to non-pulse classifications. Effective sepa- and tested on 4 novel songs of each geno-
ration is accomplished using the 2-D correlation, in type.
which 98% of pulses are correctly included as pulses,
while -75% of the previous falsely classified non-
pulses are now properly excluded. This illustrates that generalize to songs it has not seen before. The highest
pulses can be partially separated from non-pulses by values in each column represent the network's "predic-
VQ alone. tion". In summary, WT and pero are classified both as

WT, while cac and diss are usually classified as cac.
The same correlation measurements were used to This result is reasonable based on the observed pulse
compare different songs (pulse events only) with each characteristics of these songs. These results indicate the
other. Songs from dte same and differing genotypes use of the BP network after VQ is essential for proper
were compared to each other this way to determine if song classification.
the Kohonen network was sufficient in distinguishing
the ge.lotypes by the node activation overlap. The cor- *uuture Ap-licatIo
relation results indicate that most songs cannot be
properly distinguished by this analysis alone. The system described can be adapted to more general

behavioral analysis beyond song. Inputs could include
The fact that a substantial portion of the song histo- animal movement, orientation, courtship components,
grams from different genotypes overlap suggests that and other measurable, and putatively significant
the genotypes share some pulse types. Furthermore, as aspects of behavior. These behavioral responses could
the numbfr of nodes defined increases, the overlap of be compressed using the Kohonen self-organizing
general pulse classes with nodes will decrease due to network described here. Alternatively, or additionally,
the finer nodal separation of pulses within these class- they could be orthogonally projected into a subspace to
es. These two obstacles make simple comparisons remove noise and insignificant features from the data.
based on scalar correlations difficult. The compressed/projected data would then be inputted

into a network similar to the feedforward network. This
Therefore, an a-ddi'cnal metho i required which will input need not be limited to time-independent analysis.
identify those prototypes or groups of prototypes which Analysis using sequence dependent data would allow
belong to a pulse class and are most significant in time and sequence specific events to be analyzed.
correctly distinguishing the song according to
genotype. Also, the analysis of an M-dimensional Hlowever, the "target" of the data is not limited to
signuture may be more complicated than simple genotype predictions. It can be also targeted to
corclation Ltnalysis (i.e. involving higher than second- experimental stimuli presented to the animal before
order combinations of features). "Ilie output was analysis. Such an adapted system would contain
targeted to the different genotype classes and the infoi-mation about the correlation between the obscr'ved
wcighLs adapted according to the modified back- behavior and the preselted stimuli, In othcr words, the
propagation rules described above. It was hoped that network could be used to identify and determine the
the song signatures would contain enough information underlying principles governing compiex behaviors
to be able to distinguish dtem based on the genotypes and the relation between different behavioral modes, it
that produced them. would not necessarily explain the behavioral

mechanisms in dctail, but it would aid in the
Table I shows the averaged resulLs of four runs in constriction of Y-.d.)lpriatc behavioral models. Such
which the BP netwotk was tr-ained on a set ol songs of "aJi oox" systems could be made to yield important
all genotypes and tht% tested on four noveO songsi. "111 information of their behavioral mechanisms by the
output response -ignifies hc, ability of tire networks to careful imapping of their highly non-linear, yet
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relationally significant, external expression. experiments also could utilize the sequence
information in the VQ event files in order to find time-

Analysis could be expanded to all forms of animal dependent features which differ significantly between
communication and complex behavioral repertoires. animal songs of different genotypes. Such time-
Factors controlling and affecting these expressions dependence can be analyzed in a variety of ways: 1)
could be studied and would contribute in the synthesis VQ song data can be analyzed for time-dependence of
of models. The ability for these networks to achieve pulse types over different time-frames, 2) pulse
these aims is based on the fact that adaptive networks probabilities can be analyzed for dependence on
are able to focus and tune in the important features of previous pulse events (first-order transition
phenomena (e.g. communication and behavior) and probabilities), or 3) self-organizing network could be
correlate them with any causal effectors. designed for the elucidation and identification of

complex time-dependence between pulse-events.
Conclusion
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Abstract

This paper presents the classification results of applying traditional classifiers and neural classifiers to the same
real-world problem. The returns of a surface-based dual-polarized radar are used to classify sea-ice fields into
one of four possible classes: first-year ice, multiyear ice, icebergs and shadows cast by icebergs. It is shown that
a multilayer perceptron classifier trained with the back-propagation algorithm and a Kohonen/learning vector
quantization (LVQ) classifier provide performance comparable to the traditional Bayesian (Gaussian) classifier.

The decision regions of the classifiers are plotted, and are found to be similar.

I. Introduction

Ice fields in the Arctic are generally composed of three different types of ice, first-year ice (salt-water frozen
during the present winter), multiyear ice (salt-water frozen during previous winters), and icebergs (large pieces
of fresh-water ice). Safe navigation through sea-ice fields is hindered by both multiyear ice and icebergs. Hence,
it is necessary to distinguish between the different ice types.

Although sea-ice surveillance can be performed using air-borne and satellite borne radars, the work pre-
sented herein is concerned with the classification of the returns of a surface-based radar system; specifically a
noncoherent dual-polarized, Ku-band (16.5 GHz) radar. Data collection was performed on the northern tip of
Baflin Island, Canada in a joint project between the Communications Research Laboratory (CRL), McA'aster

University, and the Department of Fisheries and Oceans (DFO), Canada. Since the radar is surface-based, in
addition to the three ice types described above, there will be a fourth category, that of shadows cast by objects

(usually icebergs) which extend above the height of the radar antenna. The only pre-processing performed was
range-compensation.

Since the radar system employed is dua.l-polarized, two-images of the sea-ice field are obtained, one from

the like-polarized channel and a second from the cross-polarized channel. ltence, it is necessary to employ a
two-input classifier. In this paper we summarize the results of classifying the radar returns using a traditional
Btyesiarl (Gaussian) classifier [1] and two neural classifiers, a multilayer perceptron classifier trained using the
back-propagation algorithmn 12], and a Kohonen feature map [3]/learning vector quantization (IVQ) [4] classifier.
The classifiers were trained using 450 data pairs from each of the four classes and thten tested using a different

data set of the sawe size. A scatterplot of a subset of the sea-ice data is shown in figure 1.

II. Bayesian (Gaussian) Classifier

The first classifier, a parametric Gaussian classifier [1], is a well-known classifier. The results of this classifier
will provide a benchmark for the neural classifiers. Ih the classification problem, we are given a vector, x (in this

case a two-element vector), and must decide to which class it belongs (in this case 1 out of 4 possible classes).

Using classical Bayesian theory, and assuming a constant loss function, the problem reduces to determining the
class, i, with the mnaxinmum discriminant function,

g.(X) X - -si)E'-x loglydn) (1)
22

The mean, nii, and covariance, li, are ,< iiated from the training samples for each class, i, using,

N

in,f Yxk, and (2)

k=l

I (N N - ")(X - n.) 7" (3)

where N is the number of training points available for each class (in this case 4501).
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The decision regions formed by the two-dimensional Gaussian classifier using the data of figure 1 are shown
in figure 2. The vertical decision boundaries between shadows and first-year ice and between first-year ice and
multiyear ice indicate that only the like-polarized channel is needed to distinguish between these two classes.
However, the curved decision boundary between multiyear ice and icebergs indicates that the cross-polarized
channel is needed to successfully distinguish between these classes. The results of applying the Gaussian classifier
to the test data are shown in table 1. The classifier has an average classification accuracy of about 82.0%.

III. Multilayer Perceptron Classifier

Multilayer perceptron neural networks, trained using the back-propagation algorithm [2), are becoming increas-
ingly more common for non-parametric classification. In this particular experiment, one-hidden layer networks
were trained using the data of figure 1. Each network had 2 inputs nodes (one each for the like-polarized and
cross-polarized channels), and 4 output nodes (one each for the 4 possible classes). Several different networks
were trained, consisting of from 1 to 50 nodes in the hidden layer. Sigmoidal nonlinearities were used in each
node, the learning rate constant was set to 0.5 and the momentum constant was set to 0.7. Convergence, in
the sense that the mean-squared-error per output node has reached a steady-state value, is gener-,Aly achieved
after presenting the network with a total of 100,000 input points. The networks were trainjd such that the
desired output of a given output node is 1 if that particular node corresponds to the current input class, and 0
otherwise. In testing the trained network, the output node showing the greatest activation was deemed to be
the decision of the network. The results of applying the different sized classifiers to the test data are shown in
table 1. The average classification accuracy reached a maximum of 82.6%.

The decision regions formed by a multilayer perceptron classifier with 6 hidden nodes in the hidden layer
aie shown in figure 3. The decision curves are very similar to the corresponding curves formed by the Gaussian
classifier of figure 2. Again, it can be seen that only the decision boundary between multiyear ice and icebergs
require the cross-polarized channel; the like-polarized channel alone can distinguish between the other classes.

IV. Kohonen Feature Map/Learning Vector Quantization Classifier

The final classifier consists of applying a Kohoncn self-organizing feature map [3] to determine a good initial
state for a LVQ classifier [4]. The Kolionen algorithm assumes a network in which all nodes are connected to the
input vector, x. Each node, i, stores a weight vector, wi, of the same dimension as the input vector. Following
the rules of the Kohorien algorithm, each node computes,

n, = l1i - will 2, (4)

the Euclidean distance between the input vector, x, and the node weight, wi. Following this computation, a
neighbourhood of nodes around (and including) the node which computes the smallest Euclideanz distance is
modified according to the rule:

wi = + a(x - wi), (5)

where a is a small learning constant (see to 0.05 in this simulation). The neighbourhood typically begins large
(to include half of the nodes in the network), and decays with time. The procedure continues with the next
input vector.

Once the Kohonen algorithm has converged, all training vectors are once again input to the network, and
class labels are as-;-r'ed according to a majority vote to which class most often excites each node. This labelled
inap is then used starting point for LVQ learning. For the LVQ algorithm, the input vwctors, x, are once
again presented to the netwoik and the closest node, c, is determined using (4). The node weights of this node
are modified according to,

WC = w, + a(x - w'), if x and node c belong to the same class; (6)
w. - a(x - w,), if x and node c belong to different classes.

All other nodes are left unmodified. Upon completion of LVQ learning, the unknown input vectors are applied
to the network, and the class associated with the node computing the niiniatune distance according to (4) is the
decision of the network.

Several different experiments were performed with the Kolhonen/LVQ classifier, using differenit numnbers of
nodes, with one-dinicusional networks ranging from a 10-by-1 map through to a 100-by-1 map, and two two-
dimensional networks covsisting of a JO-by-lO configuration and a 5-by-20 configuration. Convergence of the
network using the Kohonen algorithm was achieved after inputting 10000 sample points (alternating between
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the four possible classes) and training of the LVQ required a further 10000 iterations. It was found that networks
composed of at least 20 nodes, in either the one-dimensional or two-dimensional configuration, performed nearly
as well as the other two classifiers. The classification accuracies of the different networks axe found in table 1.
The average accuracy of the classifier peaked at 81.9%.

The decision regions formed by the 50-by-1 Kohonen/LVQ map for the data of figure 1 is shown in figure 4.
The points indicated on the map represent the node locations and labelled class type. The lines are drawn
equidistant between nodes of different classes. The decision regions of this classifier closely match those of the
previous two classifiers. Again, the cross-polarized channel is needed only to distinguish between multiyear ice
and icebergs.

Table 1. Summary of Classifier Performance

Percent Correct

Shadows First-Year Multiyear Icebergs Average
Classifier Ice Ice

Gaussian Classifier 93.3% 84,2% 72.7% 77.8% 82.0%

Multilayer Perceptron Classifiers

1 Hidden Unit 94.4% 80.7% 51,8% 85.1% 78.0%
3 Hidden Units 92.0 86.2 72.7 74.2 81.3
6 Hidden Units 91.8 86.2 73.6 78.7 82.6
12 Hidden Units 92.2 85.3 74.7 77.8 82.6
20 Hidden Units 90.7 88.0 73.8 77.8 82.6

KohonenjL VQ Classifiers

10-by-1 Map 82.7% 96.7% 66.7% 74.9% 80.2%
20-by-1 Map 91.8 89.6 71.6 74.9 81.9
50-by-I Map 92.2 86.1 74.7 73.3 81.7
100-by-1 Map 91.6 86.0 72.7 74.2 81.1
10-by-10 Map 90.2 86.7 74.7 74.0 81.4
5-by-20 Map 91.8 85.8 75.8 73.3 81.7

V. Summary and Conclusions
Three classifiers have been applied to the sea-ice problem. Each classifier has produced similar decision regions
and showed similar classification performance. Since the Gaussian classifier achieved a classification accuracy
siraifar to that of the other two neural (and non-parametric) classifiers, we can conclude that the ice data are
closely approximated by Gaussian distributions, Based upon this data, the choice of a specific classifier to process
large sea-ice images in teal-time will depend upon the efficiency of implementation of the classifier. Current
work is aimed towards the real-time implementation of neural classifiers [5]. Another important conclusion
drawn from this research is that the like-polarized channel contains information about the different fornis of ice
that is adequate for its classification into shadows, first-year ice and a combined class consisting of multiyear ice
and icebergs; the addition of a cross-polarized channel is particularly useful in distinguishing between multiyear
ice and icebergs.
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Neural Tree Structured Vector Quantization
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Abstract

In this paper we present a new method ]or vector quantization design and implementation using a tree
structured artificial neural network. Each node in the tree consists of a neural network which successively
learns to partition the input space. While the structure is evaluated for use in image compression, the
NTSVQ can be generalized as a means of data compression wherever vector quantization is appropriate.
In addition, the adaptive tree stru,-ture should have many applications in related pattern recognition
problerns.

1 Introduction
In recent years, vector quantization (VQ) has become an increasingly popular form of data compression (see
[1) for a review). A traditional vector quantizer consists of an encoder, decoder, and codebook as shown in
Figure la. Given a vector to be quantized, the encoder finds in a codebcok the codeword which minimizes the
distortion between it and the vector to be quantized. The binary index of the codeword, called the channel
symbol, represents this vector and can be processed, transmitted, or stored. A decoder having an identical
codebook uses the channel symbol to locate the correJponding codeword for the reproduction vector. For a
codebook of k .odewords and a vector dimension of N, the bit rate is defined as log2 (k)/N bits per vector
component. The codewords themselves can be stored to an arbitrary accuracy and do not figure into the
bit rate. The process of encoding and decoding is straightforwaad. The more difficult task, however, is the
design of the codebook which minimizes the overall distortion of the data to be quantized. The standard
VQ design technique, the LBG algorithm [2], utilizes training vectors to establish the codebook.

In a tree structured VQ, encoding is achieved through a series of binary decisions in which the input
space is successively partitioned. Referring to Figure 1b, the input is first evaluated by the root node, which
is at the top. Depending on the result of this initial test, the input vector is then passed to either the left
or right child of the root. Each child, in turn, is another node which makes binary decisions to continue the
classificatin process. Each node in a VQ tree actually consists of a tiny VQ with a codebook of size two.
The binary decision at the node consists of determining which of the two reconstruction vectors incurs the
smaller error. The effective codebook of the tree VQ is the union of the codebooks of the lowest level nodes.
For a binary tree with L levels, the total number of classes or codewords is 2 L. Reconstruction vectors used
by any node above the bottom do not appear in the final codebook but only determine the search path
down the tree. This binary path through the tree corresponds directly to the actual channel symbol. Since
only one coni:,arisou is needed at each level, the computations required to search a tree grow only with the
logarithm of the codebook size (a great savings over the fullsearch VQ which grows linearly with codebook
size). iRoo Node

lAft Child Right Child

X l~owe-st Nod"eas

A 0 l 0 1
X~~ A`nýr. Ak~c

WOr 001 00 Oil 100 101 110 1.,

Channei Synihols

(a) (b)
Figure 1: (a) Traditional VQ System, (b) Binary Decision Tree Encoder

The process of quanltizing an N-dilictsion.al vector arinounts to Jiartil.ioning N-dinlcnsional Luclidean
space into k partitions. TIw ceiitroid of each partition represents each codeword. A vector falling illto olie of
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these partitions is represented by the centroid of the partition. The error as a result of quantization can be
viewed as the distance between the actual vector and the codeword. An example of a 2-dimensional vector
space partitioned by a binary decision tree is shown in Figure 2a.

2 Learring in the Decision Tree
We now present a medhod of implementing a tree structured VQ based on neural network techniques. Each
node in the decision tree of Figure lb contains a small adaptive neural network capable of binary decision
making. The architectures of the nets aTe ihe same for all the nodes. The weights are different from node
to node, depending on learning experience.

1nhe typical neural network for each node is shown in Figure 2b, The simple 2-layer neural net can be
considered as a two-codeword vector quantizer. The first layer is an encoder and the second layer is a
decoder. The values of the encoder weights determine the partitioning of the input space. For a single layer
of encoder weights, this partition is a simple hyperplane at each node. While additional encoder layers would
allow for non-linear partitions, the optimal partition for a two codeword codebook is alwayj a hyperplane.
The sign of the sigmoid output at the hidden channel layer determines the binary decision for the node. The
collective binary decisions down the tree formulate the full channel symbol.

0 node 6

r mot node 1imi 1

0 4o cw z 0V 
7oA

1 2 Channel

X sample Inpt vector (a) (b)

Figure 2: (a) Tree Partitions, (b) A Node's Internal Neural Network

Node Adaptationl Referring to Figure 2b, training is effected using the backpropagation algorithm [3] to

cause the decoder output k• to be a least squares reconstruction of the input X. TJhe sigmoid is necessary

for backpropagation. However, after convergence of fthe two layers, the sigmoid must be replaced by a hard
binary quantizer. This produces an actual bit at the encoder output and drives the second layer with a
binary .iignal. The decoder weights are then readapted using simple VMS [4] to once again minimize the
mean square error. With the encoder weights hxed, and the partitions set, the decoder outputs will converge

to two possible reconstruction vectors :k which will become the centroids of each partition. Thus, the system

of Figure 2b is a self-contained self-organizing classifier which is used here as a binary vector quantizer. The
tree itself forms a more sophisticated vector quantizer that also learns without supervision.

Trec Adaptation Sincgure nodes)o mk decisions on inputs which are passed to them from

higher nodes, it makes sense to adapt their weights on only those vectors. Thus to adapt the entire tree we
use the following training cycle F

1. Adapt the root node to the current vector in the training set.

2. L)epending on tHoe side to which the root node classifies the input vector (based on the sign of the
channel bit), select either the left or right child to receive the input.

3. Perform sTeps 1 and 2 for the selected node aiid continue until the bottom of the tree is reached.

4. m epeat the cycle for a iew ienput chosen randorly from the training set.

of this way, for nta gived infut oraizing vector, only r nwdc s ise the trees re a bnrty d corresponding to
that input's classification path. Multiple passes through the training set are performed until the weights
conv3rg2 or a suitabie VQ distortion lecvel is achieved
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3 Analysis
A study of an individual node reveals how partitions are formed and provides insight into the nature of the
reconstruction vectors. Referring to Figure 2b, let the input X = [1, X1, ... ,' N]T be a sample vector plus
bias. U = [uOU 1 , ... ,UNIT is the encoder weight vector, V = [voe, ... ,vvN]T is the decoder weight vector,
and M = [m0, in, ... , rnN]T is the decoder bias weight vector. The output reconstruction vector is then

S-- Vf(XTU) + M (1)

and the error due to reconstruction is

E = X -. = X - Vf(XTU) - M (2)

For a performance measure we consider the total mean squared error . E[ETE]. The optimal solution
for the weight vectors which minimizes the overall mean squared error can be found by setting the gradients
of ý with respect to the various weight parameters to zero and solving a set of nonlinear matrix equations.
Unfortunately, no 'losed form solution exists. However, by assuming operation in the linear region of the
sigmoid (i.e. f(x) ;• x), several interesting results may bc obtained. With this assumption

TR[R] + 2uTxVTM + uT RuvTv - 2MT X + MTM - 2UTRv (3)

where P = E[XXT]. By taking the gradient with respect to each of the weight vector, U, V, and M, it can
be shown that the following conditions must hold at a minimum V

M= X U V- V (4)

V == AV = TTR[r] - uTIv (5)
This implies that whenever V is an eigenvector of R., and the conditions in (5) are met, we are at a

local minimum. Thus there are up to N local minima, where N is the dimension of X. The optimal global
solution is achieved when V is the maximal eigenvector of R.. The globally minimum expected mean squared
error is then

Girin = TR[R] - Amax (6)

and the optimal partition defined by XTU = 0 is the byper-plane normal to the maximal eigenvector of R.
While this result is only valid for the linear case, it should reflect how partitions are initially formed during
the early stages of adaptation with the siginoid. The nature of the final partitions with the full non-linearities
involved is still uuder investigation.

4 Applications To Image Compression
For image compression, the input vectrrs to the VQ system are obtained by dividing up images into sets of
non-overlapping square blocks of pixel,. Thus, each image provides a large number of input vectors. Training
vectors can be obtained from several representative images.

A saraple image compressed to 2 bits per pixtl with a 2x2 block size is shown in Figure 3. The original
8 bit per pixel image, with pixel intensities ranging from 0 to 255, is reconstructed with a root mean square
error (per pixel) of 6.17. The compression ratio is 4:1. The reconstructed image is almost as good as the
original.

5 Variations
Philanthropic Trees Traditional decision trees are often described as greedy. A parent is designed to do
the best it can without any consideration of how its child is doing. The overall performance of a tree may
be improved if at any given intermediate node a sacrifice in performance is allowed based on knowledge of
how its decision affects its children's performance. Neural TSVQ's offer the unique potential of being able
to adapt all nodes in a fully interdependent manner. The error of a child can be weighted into the error of
its parent The parent which atteinpts; to minimize its own mean squared error is now directly influenced
by how well its children are doing. The parent, which determines the subset of the training set its children
see, in turn affects the expected mean squared -,rror of the children. The detail-, of philanthropic trees are
left to [6]. Experitrients with -ror p.LF'sing have shown iiiilmroweI(iinLs in MSE on the order of 10 percent. It
is our view that various error passing schemes which allow one to adapt the tree an a fully interdependent
unit will ultimately provide rmany advantages over traditional decision trees.
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Pruned Trees Additional improvements to Tree VQs can be obtained by using variable length trees. One

can prune selected nodes to cut the tree short along paths which include inefficient nodes. This lowers
the average bit rate of a coder without undue loss in mean square error. Equivalently, this procedure can
yield lower distortion for any given averag2 bit rate by first growing a uniform tree at a higher bit rate and

then pruning back to the desired rate. Pruning results in trees with classification paths similar in nature to
entropy based codes and can outperform even full search quantizers. An "optimal" pruning technique can
be found in [5].

6 Conclusion
In this paper we have presented a new method for vector quantizatioii which combines decision tree techniques
with neural network techniques. While we have concentrated on data compression, the neural tree structure

can be applied to a variety of decision problems. Inputs to the network may, for example, correspond to
segments of speech. The tree would develop in such a way that decision paths identify phoneme classes. A
study of this structure for use in character recognition is already under investigation and will be reported in a
forthcoming paper. Finally, other possible variations include alternaue error passing algorithms, the inclusion

of additional layers in the encoder and decoder, and the uce of teacher directed learning. A detailed discussion

of this structure can be found in an expanded version of this paper [6].
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Abstract:

A three-layer neural network has been used to detect moving5 targets in severely cluttered environments
for pulse-doppler radar applications. Significant performance imnprovements have been achieved as compared
with the conventional fast Fourier transform method. An examp>e with 16 input signal samples per moving
target is used in this paper for demonstration.

1. Introduction

The basic function of pulse-doppler radars is to detect a biget by transmitting a pulse of radio frequency
energy and receiving a portion of the reflected energy from th, target. Medium pulse repetition frequency
(PRF) radar systems can be designed to have a greater dcg:;e of tactical flexibility in target detection by
combining the desirable features of both low and high "EFRY idars [1,2]. The medium PRE radar systems use
time discrimination for ranging and frequency discrimni•Aio for range rate calculation. The clutter foldover
effect caused by ambiguous range makes the medium PRa,' radar require greater clutter rejection capability.

In this paper we apply three-layer neural networks for moving target detection in severe clutter
environments. The performance of the neural network is compared with that of the conventional filter bank
method. The neural network shows much better performance especially in highly cluttered environments.

2. Moving Target Indication

The purpose of moving target indication radars is to reject signals from fixed unwanted targets, such as
buildings, hills, and trees, and retain signals for detection of the moving targets such as aircrafts, ships,
missiles etc.

The target doppler frequency Ft can be expressed as Ft = (2Vt/A)cos 't where Vt is the target velocity,
4t is the angle between the target-velocity vector and the radar-target line of sight, A is the radar

wavelength. Figure 1 shows a typical mntdium PRF radar frequency spectrum in the presence of ground
clutter. The major function of a moving target indication (MTI) radar is to detect the target doppler shift
from severe clutter environments.

2.1 Conventional MTI techniques

Adaptive pulse cancellers process the received signals in time domain. Based on the clutter information
the adaptive pulse canceller can change the notch frequency to block clutter from receiving. The adaptive
pulse canceller can only distinguish whether this is a mnving target O, clutter. 'The target velocity can not be
obtained from pulse cancellers directly. In many application situations the target velocity is required.
Therefore in advanced radar systems, filter banks are used to further process the output signals from pulse
cancellers.

Another technique is to use dopp!cr filter banks directly without using pulse cancellers. Doppler filter
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bank technique is used in many modern radar systems to detect not only moving targets but also their
associated radial velocities. Fast Fourier transform (FFT) is the most commonly used technique to construct
filter banks for target velocity detection and clutter rejection. Based on the sampling theory, the maximum
detectable target velocity is 1/2 * PRF. A filter bank covering frequency from -1/2 * PRF to 1/2 * PRF can
be constructed from a direct application of fast Fourier transformation. There are many other ways to form
filter banks, such as using a set of narrow bandpass filters in parallel. But the most economical and reliable
one is to use FFT.

2.2 Limitations in Conventional MTI techniques

The bandwidth of each filter in the filter bank determines the accuracy of target velocity. The number of
points used in the FFT processing has to meet the radar system design requirements. The number of stages
used in the FFT is log 2 n, n is the number of points and has to be an integer power of 2. The FFT algorithm

has reduced the computation load tremendously as opposed to discrete Fourier transform. But it still takes
log 2 n processing steps to finish one complete transformation. Moreover, the spectral leakage effect due to the

finite window h igth in observation wNill degrade the signal strength in the mainlobe and enhance the signal
strength in sidelobes. To overcome this spectral leakage, i.e. to reduce the signal magnitude in sidelobes, many
windowing schemes are used such as Harming, Hamming, Blackman, and Bartlett windows [3]. All these
windows can greatly reduce the signal magnitude in the sidelobes, but the mainlobe frequency bandwidth has
been increased. In other words, the supression of sidelobe signals sacrifices the resolution due to the widening
of mainlobe bandwidth.

3. Neural Network Moving Target Indication

A three-layer neural network has been trained to perform as a moving target indicator. The back
propagation training algorithm [4,5] has been used to train a three-layer neural network. This three--layer
neural network has 16 neurons in the input layer, 24 neurons in the hidden layer, and 16 neurons in the
output layer. For each input signal (pattern), two corresponding output neurons will be activated to generate
output signals with magnitude close to 1, and the rest of neurons in the output layer generate almost zero
output. The output neurons are numbered from -8,-7,...,0,...,6,7, then training pattern 1 will activate output
neurons -1 and 1, training pattern 2 will activate output neurons -2 and 2, and so forth. Training pattern 8
is used to activate output neuron 0 only. Physically this three-layer neural network is trained to perform as a
set of bandpass filters with different center frequencies. The outputs of neuron n and -n are correspnnding to
a bandpass filter with center frequency at n/16 * sampling frequency, where n varies from 0 to 7. For a
pulse--doppier radar system, the sampling frequency is the PRF.

3.1 Performance Comparison

The performance of the three-layer neural network is tested with randomly sampled input signals to
represent different moving targets with different velocities. The white Gaussian noise has been used to
simulate the highly cluttered environments. For the purpose of comparison, the outputs from the FFT filter
bank method have also been calculated. Figure 2 shows the output comparison between the neural network
and the FFT for signal-to-noise ratio (SNR) = 5 db and no noise cases. Figure 3 presents a complete
comparison for eight different target doppler signals with SNR = 0 db. Surprisingly good performance is
achieved by the three-layer neural network. Thz three-layer neural network performs much better in clutter
suppression than the conventional FFT filet batik iemhod. Anotner unique feature we found from the neural
outputs is that the mainlobe width remains unchanged, implying that the target velocity detection resolution
will not be changed after the suppression of signal magnitudes in sidelobes. This unique feature can not be
achieved through the windowed FFT method (such as Blackman, Hamming etc) that can only suppress the
signal magnitude in the sidelobes at the expense of widening the mainlobe [3]. (i.e. detection resolution is
reduced.)
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4. Discussions and Conclusions

The advent of new massively parallel neural network hardware offers the opportunity for implementing
special purpose detection processing which has the potential for considerable performance gains. This paper
has shown that a three--layer neural network can be trained to detect moving targets in very cluttered

environments. The three-layer neural network performs much better than the conventional FFT method 1i
several aspects: 1) suppress the sidelobe clutter significantly without widening the mainlobe bandwidth, 2) the

number of input signal samples can be any integer numbers, 3) only two stages are needed for the completion
of computation regardless of the number of input signal samples. (many test results cannot be included due to

space limitation)
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ABSTRACT The development of handwritten character recognition system has been an
age old puzzle to researchers in the field. A simple hardware implementable technique that
yields very high recognition rate using neural networks is herein discussed.

INTRODUCTION Artificial neural net (ANN) models have evolved to emulate the
behavior of biological nervous systems in such tasks as image and speech recognition [1].
The brain peforlmus a large numnber of operaiions in parallel with the aid of interconnections
(synapses) of a largo number of simple processing elements (neurons). Thus these ANNs
incorporate parallel distributed processing with dense interconnections of simple
computational elements.

Such a highly interconnected ANN model is not easily scaled for large number of nodes,

since the area requirement increases as per O(N 3 ), where N is the number of connections
[2]. Two proposals have been made so that different ANNs can be implemented in VL.SI
without undue demand for interconnection area [2,3]. Bailey and Hammerstrom [2]
suggested an architecture based on multiplexing of communication lines and informatio;i
storage and passing. Akers and Walker [3] have proposed limited-interconnect, multi-
layered perceptron like neural net architecture. A limited interconnect would limit the area
set aside for communication links and hence would be easily expandable.

We have explored a limited-irterconnect multiple-layer perceptron topology to
overcome the interconnection problems. We have successfully trained network
architectures for handwritten numerals (ZIP code information) with a maximum of eight
inputs and eight outputs per node and nearest neighbor connections. Results on the
(handwritten) zipcode database from the United States Postal Service Office of Advanced
Technology are presented [4].

METHOD Several techniques such as Fourier transforms, stroke feature distribution
and moments [5,6] exist for addressing orientation, translation, and scale invariancy in
pattern classification. We have opted for a feature set extracted in a manner that is
simplistic, and computationally more efficient. Starting from a binary image frame of a
digit, we first skeletonize the image, and then extract a set of features from the image. Eight
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parameters (Di, Mi, and 0i) are obtained by preprocessing the image using holon dynamics

[7]. We define a septon as a group of nine holons (3x3) taken as a unit [7]. Here a holon is

assumed to exist for each pixel and neighboring holons cooperate in image processing and

information compression. Di represents the total number of Septons with the ith mode

excited. A certain mode is said to be excited it a direction vector exists in a 3x3 pixel area

of the digit. Mi counts the number of type i septons with i modes and 6i is the total angle

subsumed by the septon of type i. These parameters provide for orientation independence

[81.
The remaining features in the set (see Fig. 2) account for character distortions. It was

noted that most of the character distortions occurred near the image boundaries. So, a set of
parameters were extracted from a sub image obtained by disregarding in the final
computations 10-20% of the image near the four edges. For computation of horizontal
parameters, regions near the vertical boundaries are disregarded and vice versa. HC
parameters determine the number of crossings as the subimago is scanned in the horizontal
direction from top to bottom. HCi corresponds to the total number of times the number of

crossing change in the subimage from j(j * i) to i crossings, with the i crossings maintained
for 10% of the subimage. HS records the sequence in which these HCi occur up to a

maximum of four entries. VC and VS define similar parameters in the vertical direction. HE
and HJ (VE and VJ) record the number of end points and junctions, respectively, while
scanning the image in the horizontal (vertical) direction.

NETWORK ARCHITECTURE Figure 1(a), represents A730, one of our hierarchical
.5 tritisrP. with -5 and 6 input percentron modules. The featur-" wore subdivided into C
groups of five features as shown in Figure 1(a). D1 through D4 were repeated as D5

through D8 respectively (Figure 1(b)). The outputs of these six subgroups formed inputs

to the second higher level B module (Figure 1(c)). A730 thus has 396 wieghts which are
locally connected. Two other networks used are of similar architecture with more inputs.
One of them has 36 inputs while the other has 64 inputs.

B

A, A2  A A3  A, FAs A

01 02 D3 V2. ,2.HC1 HS1.HS2,HSJ VC2.VC3.VC4 VS3 VSA N•E Vj 05.06
04 MI HC2.HC3 HS4.VC €$1I .SIs HJ.VE 07 o0

(a)

Figure 1. A730 Network Architecture
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(b) (c)

A-Module Network Architecture B-Module Network Architecture

Figure 1. A730 Network Architecture (continued)

SIMULATIONS We used the image database that the U.S. Postal Service has assembled
to train and test various autoinatic dinit recognition techniques [4]. This database contains
approximately 2400 image frames of handwritten ZIP codes. SPIDER package routines
among other routines were used to process the images. We have developea our algorithms
using only the first 90 frames which yielded a total of 460 digits. Of these 460 digits, a
maximum of about 50 digits, as listed below, were used to train the networks. The networks
were trained with the back propagation algorithm. The number of iterations varied from
about a few hundreds to 2000 depending on the setting of alpha and beta [1].

Table 1. Test resuults n Arn h46-0 A,r;#Inn r4iet;*

NUMBER
DIGIT IN TRUE FALSE TRUE FALSE PERFORMANCE
/ TRAINING POSITIVE POSITIVE NEGATIVE NEGATIVE (%)

SET

0 12 90 7 359 4 97.6
1 10 24 3 430 3 987

2 28 51 11 393 5 96 5
3 51 35 12 412 1 97 2

4 40 29 2 427 2 99.1

5 35 20 12 424 4 96 5

6 28 45 9 402 4 97 2

7 35 50 8 40'1 1 98 0

8 15 46 7 4U1 6 972

9 30 37 3 415 5 98 3
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RESULT Results for the performance of the networks on the handwritten digits are
provided in table 1 above. Our true digit recognition rates of 96% or better are superior to
those obtained on the same database by other researcheres who used various techniques [9].
One of the techniques used a 256 input perceptron that was trained with 391 digits 10,000
times and tested with 1173 digits. The better of their various techniques yielded 60-75%
performance.

DISCUSSION We have adopted an incremental training technique for all the networks.
Initial set included only one of a group of patterns in the training set. Since the digits are
handwritten and come in all shapes and sizes, a well written dig-t and a badly distorted one
might not be seen by the network as the same pattern. Consequently, the additions to our
training set will come form the false positives and negatives.

CONCLUSIONS We have evolved a system that is simple, and has a high digit
recognition rate. Our limited interconnect hierarchical perceptron classifiers are VLSI
implementable. Cost and performance may be traded to yeild hardware solutions that range
from a fully serial to a fully parallel (one network per digit) implementations. It is also
our belief that the system is general -.nough for application to characters.

ACKNOWLEDGEMENT We would like to thank Dr. Timothy Barnum for allowing us to
use the U.S. Postal Service database.
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Abstract: The neocognitron was previously proposed as a model of visual
pattorn reeognit. ion in the brain. This paper mainly discusses merits and
probicms which will arise when trying to extend the neocognitron to recognize
spatio-temporal patterns. As a first step to extending the neocognitron, a
simplified model is proposed. In connection with this niodeL, we concentrate
our discussion especially on the problem of tempo- invariant recognition of
time sequences, that is, a problem somewhat related to recognition of words in
a continuous stream of speech.

1. Introduction
The neocognitron was previously proposed by the author as a neural

network model for visual pattern recognition 111-[31. The stiucture of the
network was suggested by the visual system of the brain. It can recognize
stimulus patterns correctly, even if the patterns are shifted or distorted.
It can acqu i re this ability by unsupervised learning. The repeated
presentation of a set of training patterns is sufficient for the self-
organization of the network, and it is not necessary to give any information
about the categories in which the patterns should be classified. Since the
neocognitron has the function of generalization, it is not necessary to teach
all the deformed versions of the training patterns. It even comes to
recognize correctly a pattern which has not been presented before, provided it
resembles one of the training patterns.

The original neocognitron can recognize spatial patterns only, and do not
have the abi Ii ty to process time-varying patterns. We are trying to extend
the neocognitron so as to be able to reccgnize not only spatial patterns but
a I so spat i o- tempera I pat terns, such as speech s i gnal s.

The vibration of the sound wave caught by the eardrum ger erates a
traveling wave through the basilar membrane in the cochlea in the inner ear.
l)i fferent locations along the basi lar membrane have dil't-erent resonance
frequenc.ies . 'l'hus the frequency of an acoustic signal is transftormned into a
particular place of vibration along the basilar memlb ranie. ihe vi brat ion
pat tern of the basilar membrane is sensed by hair eel Is that, line along the
in ibrane, and is converted to neural signals. Hence, the input pattern to the
auditory nervous system is a one-dimensional spatial paltttern that varics with
t i me. We can treat speech recognition as a problem of' spatio-temporal pattern
recogni t. ion.

In the first part of this paper, we discuss meri ts and prohleins wh ifch
will arise whell ttry u:g to extend the neocogn i tron to recogn izxe spat io-temporal
pal I (r ns . After that, we concent rate our diSCUSSion i oily oll the plroblem ofr

tellmpo- i nvar i ant recogn i 1, i oil of' t i elll sequences, that, is. a prob 1 mll SOillewhat

related to recognition of words in a continuous streamll of sp(ceeh. We have
proposed several mode Is for spat io-tciporatal pattern recogni t ion 14 ]. Aimong
these niic els, we pick up a simplimied niodeli wit 'i which we are maiii i)y testing
the funcl ion of I empo-invar'iant recognition of' t. ime sequences.
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2. Spatio-temporal Patterns vs. Spatial Patterns
2.1 Why Neocognitron for Speech Recognition?

We will first. consider the similarity between visual pattern recognition
andI aud i tory pat. terin recognaition. In order to make the fol lowing (discussion
simple, we will tentatively consider an easiest way of using the neocognitron
for spatio-temporal pattcrn recognition, although this is not. the model
proposed in this paper.

The process which is tentatively considered is as follows: Using an
array of' delay Lines, the spatlo-temporal pattern is transformed into a two-
( i 111el: i olli I spill, ia i pattern in which one axis correspond to the I. i me axis in
the original spatio-temporal pattern. The neocognitron can be used to
recognize this converted spatial pattern.

We, human beings, can recognize speech correctly, even if the frequency
of the speech sound is somewhat shifted. In other words, we can recognize
speech even if an audio tape is played at a speed different from the recording
speed. Tile frequency shift of the sound corresponds to the shift in position
in the spatio-temporal pattern, and consequently to the shift in position in
the two-dimensional spatial pattern. Because of the shift-invariant nature of
the neocognition, the effect of frequency shift would be absorbed.

We can also recognize speech even If it is spoken slowly or quickly. The
change in speaking speed, that is, the elastic expansion or contraction of
time axis, is converted to the change in scale in the two-dimensional spatial
pattern. The size-lnvariant recognition ty the neocognitron would also solve
this problem.

The ability of deformation-invariant recognition of the neocognitron
would he useful to make speaker-independent recognition of speech sounds.

The process of converting spatio-temporal patterns into two-dimensional
spatial patterns by delay lines, however, seems to be unnatural as a model of
biological systems. Hence, we try to extend the neocognitron to be able to
process spatio-tumporal patterns directly without transforming them into two-
dimensional spatial patterns.

2.2 Peculiarity of Straight Llncs
When recognizitig a spatial pattern consisting of line drawings by tile

neocognitron, the cells ii a lower stage extract local features such. as line
L;egment in a particular orientation, intersection of lines, corner of a bent
line, curvature of a line, end of a line, and so on. Among these features,
line seg;mnents show a peculiar characteristics different from others.

1et. a I ctter "I,", which consists or a bent line, be presented to the
inipuý layer (or the retina) of a iieocognitron. Mary ceils will be activated
in tine cell-plane* which extracts horizontal line segments, and also in the
ctell-plane extracting vertical line segments. However, only one cell (or at
most a few cells around it) will be activated in a cell plane which extract
corners. The same Is true for each end of the bent line. If the output
signral from these cell-planes are treated under the same criterion, the
inrlueoce or the line segments becomes extremely strong because of the large
nlum•er of' act. ivated cells. To make matters worse, the number of' activated

cells varies cons derably with tile change in size of' the input pattern,
depending on the length of the straight lines in the pattern. This causes
deformation-Invarlant recognition difficult.

A cell-plane of the neocognitron is defined as a subgroup or cell s wh i ch
extract the same feature but from dlfferent locations in the retina. Celis in
a :eil-planie are arranged topographically in order in a two-dii -ýnsienal array.
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i1r the conventional neocognitron which are designed to recognize
handwritten numerals 1:31, training patterns which would generate ccl I-planes
extracting line segments are not given during the supervised learning of the
intermediate layer Us2. Layer Us2 are trained to extract such features as
ends. of lines, corners, curvatures, intersections, and so on.

D)isuse of line-extracting cells In the intermediate layer plays an
important role in endowing the network with the ability of size- and
deformation-invariant recognition of line drawings. In order to recognize a
strai ght. line, for example, it is enough to detect the existence of both ends
of the line, and also examine the absence of all other features between them.
If the input pattern is not a straight line, some other features must be
detected between the both ends of the line. Thus we can recognize input
patterns without detecting line segments explicitly in the middle part of
lines. Since cells detecting line segments does not exist in the layer, the
number of activated cells does not vary so much even if the size of the input
pattern changes.

This does not mean, however, that line extracting cells are completely
el iminated from al 1 stages of the network. On the contrary, the first layer
Us, consists of cell-planes extracting line segments only, and no other
featuces are extracted in this stage. All the other features are extracted
indirectly in higher stages using the output of layer Usi.

In the case of spatio-temporal pattern recognition, a continuous signal
which does not change with time corresponds to a straight line in the spatial
pattern recognition. By eliminating cells responding to stationary continuous
signals, we expect to help endowing our model with tihe ability to tempo-
invariant recognition of temporal patterns.

tHence, in our simplified model for spatlo-temnporal pattern recognition,
transient components (or temporal variation) are first detected from a time
sequence of spatial patterns, and the sequence of such transients are
processed by layers of cells connected in a hierarchical manner. Transient
detecting cells correspond to on-cells and off-cells found in the auditory
nervous system. An on-cell Is activated by the start of a continuous tone,
and an off-cell responds to the end of the tone.

3. A Simplified Model for Sequence Recognition
:.1 Sequence Recognition

Th;e basic idea for sequence recognition in our model resembles somewhat
to that proposed by Tank and liopfield [51 in the sense that sets of delay
filters are used. FIilters of different delay times detect signals from
different parts of the input time sequence. In their model, one set of delay
filters is used to detect the entire sequence at a time, while in our model,
many sets of delay filters are used to detect. fragments of the input sequence.
In the next stage of the hierarchical network, the information about fragments
of the input sequence is integrated by other sets of delay filters which has
longer delay than the first. This kind of processings are repeated in a
hierarchical manner in a multllayercd network.

In these models, a filter which has a longer delay has a broader tuning
curve on time scale. This is effective to make tempo-invariant recognition of
sequences. However, the detection of the order of stimuli in a sequence (say,
the order o I phonemes in a word) becomes ambiguous , especially at the
beginning part. of' the seq uience which is detected by a filter of broader tuning
curve.

In order to reduce the adverse effect of broad tuning curve of the
filters, and still to maintain the ability of toempo-invariant recognition, our
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iode(l is designed in such a way that the difference En the tempo of the i nput
sequences is absorbed a little at a time at each stage of the hierarchical
network.

3.2 Structure of the Network
Supposing that the deformation-invariant recognition of spatial patterr.s

could be performed by the same mechanism as the neocognitron if necessary, we
omit these function from our simplified model.

The network has a hierarchical structure like the neocognitron. Input
signal to the model is a time sequence of spatial patterns, and is given to
input layer Uo consisting of receptor cells. Behind Uo, layers of S-cells and
C-cells are connected alternately in a hierarchical manner, and they are
denoted by Us and Uc, respeztively: Uo4Us14UCI-+Us2-+UC2-4US3-Uca4-Us4.

Layer Usi in the first stage consists of on-cells Lind off-cells. An on-
cell responds to the beginning of the response of the corresponding cell in
the input layer Uo, and an off-cell responds to the ending of the response.

An S-cell sends signals to a subgroup of C-cells of the next Uc layer.
The connection from the S-cell to a C-cell has a characteristic like a delay
I ine of r)road tuning curve. C-cells in each subgroup have connections of
di fferent (delay tillme ranging from zero to a certain mIaxi m ulm delay. The
breadth of the tuning curve increase in proportion to the delay time of the
connect ion.

In an intermediate stage, even the longest doelay of the connect ions to C-
cells is shorter compared to the duration time of the entire input sequence.
In other words, the Uc-layer of' the intermediate stage processes only a part
of the input sequence at a time. The higher the stage is, the longer is the
time span of the sequence which are processed by the Uc-layer in the stage.
In the highest stage, It Is as long as to cover the entire input sequence.

S-cells (except those of layer Us,) receive input connections from all
the C-cells in the preceding stage, and extract spatial features at every step
of tume. The input connection of S-cells do not have any time-delay. These
connections have plasticity and reinforced by unsupervised learning using a
competitive learning procedure similar to the one used in the neocognitron.

The S-cells in the highest stage works as recognition celts. Each of
them observes the entire input Information indirectly from the output of the
C-cells of the preceding layer, and responds only to one particular input
sequencne.
Acknowledgement. This work was supported in part by a Bioscience Grant
for International Joint Research Project from NEDO, Japan.
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TEXTURED IMAGE SEGMENTATION USING LOCALIZED RECE-PTIVE FIELDS'
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Department of Electrical and Computer Engineering,

University of Texas, Austin, TX 78712-1084

Abstract: We present an approach to texture analysis that uses spatially localized filters and cooperative-
competitive mechanisms for determining emergent boundaries. Gabor filters that closely resemble cortical
receptive fields are used to activatc columns of cells that selectively respond to localized frequency and
orientation attributes of an image. For each cell column, a winner-take-all network that is moderated by
the activities of neighboring colunis is used to gradually segment the image. All the mechanisms used
are biologically plausible and typically yield results that are superior to those reported previously for real
images.

1. Texture-based Segmentation.

Both biological systems and computational vision models use texture for perceptual tasks such as seg-
mentation of surfaces, classification of surface materials and computation of shape. Ani image texture can be
interpreted -as a pattern of image intensities projected from a surface of uniform surface radiance attributes.
Several modds of perception use spatial filtering or frequency analysis to perform segmentation based on
charucterstics of the image spectrum. Since frequency estimates are inherently global, identifying significant
spectral components in an image does riot remove the burden of determining their spatial supports. Indeed,
it is possible to generate textures having identical i-ower spectra but_' with different local structures that are
preattentively discriminable [9].

An alternative approach developed recently regards an image as a "carrier" of region/surface information
which can be encoded into several narrowband channels[1,2]. A localized irulti-frequency multi-orientaioin
channel decomposition of an image yields local orientation and spatial frequency estimates that are used as
key parameters for -lassifying texture. Bovik et al. [1] have proposed texture segmentation methods based on
the recovery and analysis of the amplitude envelopes of Gabor-filtered images with two predominant te:tures.
Daugman [6] has shown that the 2-1F Gabor functions uniquely achieve the lower bound of the conjoint
uncertainty relationship - Au x ix > 1/47r and Av Y Ay > 1/41r, where (x, y) and (u, v) represeit. 2D spatial
and spectral coordinates respectively. Thus these functions optimally achieve simultaneous localization in
space and frequency. Furthermore, these functions closely resemble the receptive field profiles of simple cells
in the visual cortex of cats, and their coeflicients can be determined by a neural network [5,6]. A slight
modification of the Gabor transform has been used by Perry and Lowe [13] for segmenting textured images
through an iterative growth of seed regions. In this paper we extend this methodology to cater to images
with arbitrary type-, of textures, and present a novel neural network for the adaptive segmentation of images.

2. Determination of Localized Spatial Frequencies.

A continuous, monochromatic image containing only a narrow range of frequencies concentrated near
(Uk, Vk) can be described by:

tk(x, y) = a(x, y)cos[27r(Ukx + Vky) + p(x, y)], (1)

where a(x, y) and p(x, y) are slowly Varying amplitude and phlase terrms. A natural texture t(x, y), can be
modeled as composites of sub-images of the form (1):

N

t(x, y) ai(x, y)co=[2r(Uix 4- Viy) + pj(x, y)] + t'(x, y),
i=-1

where t' is a rmsidulal con taMinig shared or inisignificant frequencics and any dc term.

The image t(x, 71) is the input to our tcxturc discrimination nLet work. The assiiibly of 'ncural' cells that
formr,. this ntwork con tains N layers of ccll;. Tine cell at position (x,y) it the it! layer hias a localized
receptive field ceritered at coordinates (x, y) of the image. The synaptic strengths in this field are selcted

'This researclh is supported by thfe: "l',sa-xw Ad1v;u fed Rtsarch I' n ograi und,:r Gran ni No . 3456 mid, by U It! 'r ,jctIt 1-15.
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so as to mimic a 2D Gabor filter with center frequency (Uj, V). Such a filter is described by: h(z, y)
(x',y?),2irj[U'x+V'y], where (z', y') = (xcosq + ysino, -xsin -F ycoso), and g(x, y) == - -exp{-[(x/A) 2 +

y 2
1/20-

2
). tlere, h is a complex sine grating modulated by a 2D Gaussian with aspect ratio A, scale parameter

a, and major axis oriented at an angle 0 from the x-axis.

Let Tni(z,y), 1 < i < N, be the activation of the cell in the ith layer with retinotopic coordinates (x,y).
When an image is presented to the discrimination network, the N cell activations at each point (X, y) are
proportional to the amplitude responses of N Gabor filters. Within a component texture, the activation
vector formed by such a column of cells is expected to vary smoothly. At texture boundaries, on the
other hand, the activation vectors will differ significantly. It can be shown that, if the textures are highly
narrowband, then segmentation may be obtained using the region assignment:

(X,y) G R,, if n = arg{max [m 1(x,y)]}, 1 < i < N. (2)

Usually, the envelopes mi are not smooth enough to allow consistent segmentation using Eq.(2). If some
texture does not have narrow bandwidths, leakage will occur. This can be reduced by post-filtering the
amplitude envelopes with a Gaussian filter having the same shape as the channel filters but a greater spatial
extent. The modified region assessmnon,

(zXy) E R, if n = arglinax [gi(x/7,y/7), * r(aY)]}, 1 < i < N; 0 <y< 1, (3)

will then yield a smoother segmentatioin In our experience, we have found -y = 2/5 to be effective in mo,;L
cases.

Even the modified region assessment, gives inadequate performance for textures that vary smoothly in
frequency and/or orientation. By using a mar function in Eq.(2) and (3), information about the differentials
in the ces!l responses is not fully utilized. Region awsignment at each point (x, y) should be dependent not only
on the strength of each hypothesis indicated by the column of cells at that point, but a!so on the activation in
neighboring columns. The next section describes how these column vectors are used for adaptively detecting
emergent texture boundaries.

3. Detecting Boundaries through Cooperative-Competitive Mechanisms.

On the presentation of an image, the feedforward network using local receptive fields enables each cell
plane to reach an activation level corresponding to the amplitude envelope of the Gabor filter that it iepre-
sents. A cooperative-competitive feedback network is then used as a Smoothing, Adaptive Winner-Take-All
Network (SAWTA) so that only one cell gradually becomes predominant in each column.

To implement this mechanism, each cell receives constant inhibition from all other cells in the same col-
urrin, aloig with excitatory inputs from neighboring cells in the same row or plane. The synaptic strengths of
the excitatory connections exhibit a 2D Gaussian profile centered at (x, y). The network is mathematically
characterized by shunting cooperative-competitive dynamics [81 that model on-center off-surround iiterac-
tions among cells which obey membrane equations .[10]. Thus, at each point (x, y), the evolution of the cell
in the ith layer is governed by:

dTjr~mi =-mi + (A - rni),J+ - (B +- Crn)J-, (4)

where J+, J- are the net excitatory and inhibitory inputs respectively, and are given by

J+ = ; J- = nim f ,1,y,,)
(.r,,, .)E It jp~i

Ilere, R is the neighboring region of support and f is a siginoidal transfer function. The stability of such
systemrs has been shown by Cohen and Grossberg. The network is allowed to run for t,, iterations before
region amsigiineid. is performed usinmg Eq.(2).

ELeinmental ( sult.s: A variety of naturel and synthetic images have been segmented using t.h1. SWATA
network, and compared to p)re'viouis approaches that use Eq.(2) or (3). The 256x256 gray level imnages
are prefiltcred using a Laplacian-of-Gaimssian to remove high dr commponents, low-pass phatsc futcnions, and
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to suppress tiasing. Sixteen circularly-symmetric Gabor filters are used. Sets of three filters with center
frequencies ir..reasing in geometric progression (ratio = 2.1) are arranged in a daisy-petal configuration along
5 orientations, while the sixteenth filter is centered at the origin. Figure 1 shows the segmentation achieved
by the three approaches for a synthetic texture. Figure 2 uses an aerial view of tilled land that can be easily
segmented by the human eye, and compares the same three approaches. For both Fig. 1.d and 2.d, the
constants A, B and C in Eq.(4) were taken to be 1, 0 and 10 respectively. The activation function used is
f(x) = tanh(2x). Figure 3 shows the effect of varying the number of iteration steps t, and the inhibition
factor C, on the segmentation obtained. We observe that the SAWTA network achieves a more smooth
segmentoation in regions where the te:cture shows small localized variations, while preserving the boundaries
between drastically different textures. Usually, 10 iterations suffice to demarcate the segment boundaries,
and any changes after that are confined to arbitration among neighboring filters.

4. Concluding Remarks.

Our method does not require a feature extraction stage as in [7] or computationally expensive masking
fields [4]. The incremental and adaptive nature of the SAWTA network enables it to avoid making early
decisions about texture boundaries. The dynamics of each cell is affected by the image characteristics in
its neighborhood as well by the formation of more global hypotheses. Typically, four spatial frequencies are
dominant in human visual systems. This suggests the use of a mechanism for post-inhibitory response [12]
that suppress cells with activation below a threshold and speeds up the convergence of a SAWTA. network.
Also, the adaptive learning network of Kohonen [11] can he used to change both excitatory and inhibitory
synaptic strengths (J+, J-) in response to a teaching input. This approach is being currently studied.
The use of cell responses for instantaneous frequency estimates leading to shape-from-patterns analysis also
merits active investigation[3].
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ALL

Figure 1 Figure 2

Figure 3

Fig. 1: Segmientation of a s-ynthetic texture. (clockwise from top left): (a) original (b)
segmentation using (2) (c) segmentation using (3) (d) segmeontation after 10 iterations of the

SAWTA network.

Fig. 2: Segmentatio, of' an aerial image. (a) original (b) segmxientation using (2) (c)
segmentation using (3) (d) segmentation after 10 iterations of the SAWTA network.

Fig. 3: Effect of iter ition steps and inhilition factor on segmentation. (a) same as Fig.

1(d) (b) segmentation using C -- 3 (c) aftetr 100 iteraitions (d) after 50 iterations.
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1. Introduction

Computer vision via range image analysis has potential use in automated vision tasks because of the
richness of the explicit surface information contained in range data. Surface representation is one of the
important ways used to characterize objects. Surface curvature features, such as mean curvature and
Gaussian cu'vature, are invariant to rotations, translations and changes in surface parameterization and
are therefore desirable properties for 3-D object recognition and location[I]. The surface curvature
based representations facilitate many 3-D vision problems.

According to Differential Geometry [9], mean curvature and Gaussian curvature at a point on a graph
surface can be computed from tie five partial derivatives of the graph surface function which is the
range data in the problems considered in this paper. However, numerical differentiation is mathemati-
cally an ill-posed problem [10],[121. Regularization techniques have been used to make an ill-posed
problem well-posed [3],[6]. Some researchers have introduced discontinuities in finding regularization
solutions for early vision processing such as surface reconstruction, edge detection [2],7],[l 1].

In this paper, we present from regularization theory a computational framework for low level and inter-
mediate level processing of 3D computer vision based on invariant surface curvature features, covering
from a range image to invariant surface descriptions [8). We then map the corresponding computa-
tional algocithms onto neural network paradigms. The final interests of this work is the understanding of
range images.

2. Low Level: From a Range Image to Surface Curvature Images

The problem we are facing in this level is to estimate surface curvature from noisy range data. It is
done through minimization of some energies involving discontinuities, with the result of regularized
data. Partial derivatives are estimated from the regularized data.

2.1 Computational Framework

We chooses for our problem energy functions of the form as:
E (f I d,nt9-,^) = EP (f I d) + XE" (f Irt.• 1

In this function, d={d(i,j)l(i,j)EZM) is the given data, where, ZM=((i,j)IIi,j<_M) is an integer
lattice, f=(f(ij)I(i,j)EZM) a function to be found, X>O a weight, Q,={O)(ij)I(i,j)EZM) is the
homogeneous neighborhood system in which o),(ij,)=((u,v) I O<(u_-i)2+(v-j)2<_n j is the set of neigh-
bors of (ij) where n is an integer (note (i j) i co,(ij) ). 7t=fit(i,j) I (ij)GZM) is a characteristic
function indicating (the absence of) depth discontinuities at (i j) with respect to ),, (ij,). At this level,
The neighborhood parameter n = l and the cardinal number of the neighborhood set # w, (i j) = 4.
EP (f I d) is a function that measures the discrepancy between f and d:

EP(f Id) = E [f(ij)-d(ij)]2
(i~j)

E"(f I tt,D) is a membrane energy that measures the (lack of smoothness of the function f with
respect to K2,, controlled by 7t:

E'(f I t,Q2^) = . t[(i'j)jf (u,V)-f (i~j)12

whcre o.'(i ,j)::{(u,) (u ,v)C tu,(i ,j); ui ,vj; (i ,])E ZM ) is a subset of o',(i ,j).
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Solution f * minimizes E:

E(f" Id,nQ,4) = min{E (f Idt,xQ)) (2)
f

E is quadratic with nt fixed and therefore there is a unique solution for the minimization problem (2).

2.2 Neural Networks

By substituting V for f, I for d, we can write (1) as:
E(V) = J[V(ij).-l(ij)]2+ I' F, T(ij;u,v)[V(u,v)-V(i~j)]2

(0d) 04,.) (M v),cz C%

where T(i j;u,v)=T(i j)Ai(ij). A simple dynamic system with characteristic -- 0 is determined
dt

by a system of differential equations:

dV=i - i j )E for all ijdt NOV 1ij)

where g.>0 is a constant. From this, we can write the dynamic equations for the network:

C d = I (ij) - V + + T(ij;u,v) [V(u,v)-V(ij)] for all ij (3)
di R (U.)'ci.0j)

where C = -li> 0 and R = 1. Since dE D ( E d t) = -C[i dt ]) <- 0 with dE

dij)dt U j) aV (ij) dt J di d

only when '-0 for all (i j), and E is lower-bounded (from 0), the system will converge to thedt
minimum energy state and E is therefore a Liapunov function. Once initialized, i.e. once I, C, R and
T are set, the network will evolve as to settle into a stable state [51, that of the least power dissipation.

According to Kirchhoff's current law, (3) is the dynamic equation of of a massive network at node
(i j). Fig.1 illustrates the circuit for neuron (i j) of this network and its connection.

The stable state of {V(ij)) is the minimum solution f of (2). Partial derivative estimates f,, fy can
be computed from the minimization solution f* using the finite difference formulation. Fig.2 illustrates
the derivative estimation process.

3. Intermediate Level: From the Curvature Images to Invariant Surface Descriptions

The problem we are facing in this level is to segment an estimated curvature image g into a curvature
sign (+,0,-) map which we expect to possesses some surface-patch coherence. If g is a noise-free image,
this problem can be well solved by a thresholding operation at thresholds ±+(s>0), resulting in an initial
3-level segmentation. However, in the noisy case, the problem is not so simple. In what follows, an
appropriate energy function will be constructed as the cost of segmentation to achieve coherent and
consistent segmentation from noisy images, and a piecewise-constant configuration is found as the
solution of the segmentation problem by minimizing the energy function.

3.1 Computational Framework

The energy functions is defined by:

E (h Igrt,(2,) = EP (h I g,,t)+XE-(h I nt2,,) (4)

In this function, h =(h (ijI)l(i,j)E Z M) is the map of the curvature sign; h (i ,j)E , where 4)=[+,0,-) is
a set whose elements correspond to the positive, zero and negative sign of curvature.
g={g(ij)I(ij)CZM ) the input curvature data. X£, n and 0,, are as illustrated in section 2.1. t>0 is a
pre-detcrmincd threshold [8]. EP (h I g,T) is a function that measures the plausibility of a mapping from
the curvature function g into the curvature sign function h subject to the threshold c:
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EP (h I g ,T) = , •_ ~(h (ij) I g (ij),.t)

where h (i j)E 0, g (i j)e R and er. (0)1 T1,t) is a function that measures the plausibility of a mapping
from g(ij) to h(ij). eP -(0)I7l.t) is a function defined by:

i1 71<0 1 Ii/2'l l 7l<2tP

ef.,(+ I ,T) = I-I/2,t 0-'TI<2"t e( 0 1 ,'t), = otherwise efJ(-'lilt) ef,,(+l -il,'r)
0 rl>2"t

E'( Iit,c,.) is a function that measures the smoothness of the function h with respect to the neighbor-
hood system 0,

E'(h ir,,,) = Yefj(h(i j) I 7r(i j),co, (i j)) = :Ttc(ij) # {(u,v)E:o,(i.j) I h (u,v)t}4/# (),,
(V j) (i j)

"The neighborhood parameter n=5 at this intermediate level processing stage. The solution h* of the
problem minimizes function E:

E(h' Igmin(E(h Ig,,c42.) (5)
Ai

3.2 Neural Networks

Replace h by a 3-layer net V = [V+(ij), Vo(i j), V..(ij)]T I (i j)cZM). The state of a neuron
takes boolean value V#(i ,j)E (0,1). Among layers, states of neurons have to satisfy a consistency con-
straint: XV,(ij)==-. This multi-layer network is an extension of [3]. Let IO(ij)=eP•(O I g(ij),t)
and T=Xit. Equation (4) can be written in terms of the new notations as:

E(V) I E IO(ij)VO(ij) + nr(iJ)V#(i,j) [N - E Vo(u,v)]
9 (ij) 9 ttdJ (MV)E (i)

= E 10(i j)VO(ij) - Z T(ij;u,v)V*(i j)V+(u,v) + constant
*(i j) 0 (ij)(uV)

where N=# ow. and T(i ,j ;u ,v )=T (i ,').=-(NN)ir(i ,j).

The energy change AE ()(ij) due to the state change AV(')(ij) = [AV+() (i,j), AV6) (i ,j), AVY) (ij)]T

of a neuron at (i ,j) is:
AEt'O(i ,j) -- •_,!l,) (i,j) AV(t) (i,j )

where
flti)(i j) = I#(i j) - 2 E T(i ,j;u ,v)V(') (u ,v)

(",v )

The updatngg rule for the gradient descent is that for all (i ,j):
Vp Q+1)(i ,j )<---0
Vq('+I) (i ,j)<-- I

if
ll(')(i j,, < 1l(')(i ,j) for all p •q

According to the updating rule, we have AV('j=-I and AV(')=I and therefore the local energy change:

AE (l(i j) - H ,,(Y)
is always negative if any change occurs. V(') will finally converge. V(') is a map representing the solu-
tion h* of (5) from either a mean curvature image or a Gaussian curvature image.

In this network, the neurons within a layer cooperate whereas those among layers compete. The circuit
for neuron (i j) of this network and its connection is illustrated in fig.3.

A mean curvature sign map and a Gaussian curvature sign map are derived from the present intermedi-
ate process. The combination of the two maps yields a new map that tells up to eight different surface
types. This description is invariant to rotations, translations and scale changes. Fig.4 shows results from
a Renault part image. Upon this, an adjacency graph can be derived with suiface patch attributes
attached to each node of the graph, with which a third network for object recognition and location can
start working.
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Fig.1 A circuit for neuron (i j) of the network for low- Fig.2 An illustration of the partial derivative estimation pro-
level proce ssng and its connection, where cess. A triangle represents a regularization operation, a filled
T " ,j'-lh-(V " ) I ()V.)E( ,j)] and circle a finite difference operation and the cross the mean-averaging operation.

-( jq'E'j D -

Tit,J)

Fig.3 A -'Lmuit for 3-layered neuron (i ,J) of the network Fig.4 Experimental results from a Renault part image
for 1 /Jtennediate-level d is connection where
{Vm(U,V)}= {V u.(,vl(u, ts c t) C ( on (i wh and
"Max" operation selec.ts the maximum component from the
input and outputs in 0/1.
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INTRODUCTION

How can we understand the rich and complex organization of processing functions found in many biological
perceptual systems? The visual system of macaque monkey, for example, is composed of dozens of
anatomical regions which we may think of as processing stages, interconnected in a manner that suggests
extensive serial and parallel processing of visual input, with both feedforward and feedback interactions
between regions (Van Essen 1985). Are there rules that might account for the specific processing functions
found in each such region, and for the ways in which cell properties develop and become organized to perform

these functions'?
In earlier work (Linsker 1986) 1 showed that in a layered feedforward network of linear-response cells

whose connections develop according to a Hebb-type rule, cells can develop feature-analyzing properties
(including center-surround and orientation-selective receptive fields) that are qualitatively similar to
properties found in the early stages of visual processing in cat and monkey. Analysis of the Hebb-typc rule
used in that study showed that the rule causes each cell's set of connection strengths Jc,I to change with time
so as to maximize the quadratic form V-Z,. cQ,,c subject to the constraints ZC = constant and
c_ < c, < c+ for all i. (The constraint on vc, is not explicitly imposed, but emerges from the particular form
of Hebb-type rule used.) Here Q, is the covariance of the signal activities at a pair of connections i andj that
provide input to the developing cell. The quantity being maximized, V, is the statistical variance of the output
activity of the developing cell. To visualize the optimization problem geometrically, note that: (I) The
connection strength vector c lies within a hypercube bounded by c and c,. (2) The covariance matrix Q has
no nonnegative eigenvalues. Therefore, apart from the possibility of zero eigenvawues. V(c) has a unique local
minimum at the origin. (3) V is to be maximized on the hyperplane defined by "el = constant. This maximum
is guaranteed to occur at a point on the boundary of the hypercube at which all, or all but one, of the cs are
extremal (Linsker 1986). V is not in general guaranteed to have a unique local maximum (owing to the
constraints).

if we instead use a rule that maxiimizes " subject to the. diffrent constraint 1c,2 = constant(,with no
additional constraint on each q), we are maximizing Von a hypersphere. The well-known solution is then that
c should lie in the direction of the leading eigenvector of Q (that having maximal cigenvalue), or in the
subspace spanned by the cigenvectors having identical maximal eigenvalue, if degeneracy exists. Such a cell
performs principal components analysis (PCA) on its inputs, in the sense that the cell's output value is the
leading principal component of the input vector.

I emphasize that the solutions obtained in (Linskc 1996) are not the PCA solutions. owing to the
difference in constraints. iHowever, the particular constraints can be changed by using a dillerent Hebb-type
rule (e.g., Oja 1982). and there is no compelling reason to choose one such rule rather than another. It is
therefore worthwhile to explore what feature-analyzing properties emerge when a cell develops to perform
PCA on its inputs.

Why is PCA of interest in this context? (I) PCA. or the Karhuncn-l.oo~ve expansion, is a classic and
important tool ()f statistical analysis (Watanabe 1985). (2) If one uses the cell's output value to optimally
reconstruct the ilnpt vailucs, (he reconstruction has smaller mean squarcd error if the outtput is the leading
principal componemt than if the output is any other linear function ol the input values. (3) Under special

Thi% paper covLr, ill greaitir dltail a porrtiont f r t.c talk crilillcd "J'(Aig Information I hcnry to (Gultl' (tic De'signl o! a .II''r2ceplulll
SySIUM." [rt'.,M-N ld ail ilit II('NN Winter IN0it Meeting (Wahlngton. DU(. Jan 19(0))
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conditions (e.g., a linear response cell, a Gaussian distribution of input vectors, and Gaussian noise) a cell
whose output is the leading principal component of the input vector conveys maxinlurn Shannon information
about the input vector (Linsker 1988).

Why, on the other hand, might we expect that PCA does not suffice as a principle for determining what

response property a cell develops to analyze an ensemble of input "scenes"? (4) Cell response is in general

nonlinear. (5) Biological constraints are in general complex, and the particular PCA constraint

Ec,2 = constant is not a necessary (or even a particularly plausible) cne. (6) A processing layer contains many

mutually interacting cells, and there is no reason to require each cell to develop according to an optimization

principle, independently of its neighbors. (7) There is no apparent reason to "reconstruct" the input values

from a cell's output value in a biological system, so that the optimal reconstruction property of PCA (which

is important in a data compression context) is of unclear value here. Also, if the biological circuitry does not

in fact perform such a reconstruction, the appropriate choice of constraints to impose on such a hypothetical

reconstruction (in order that one may compute the optimal connection strengths for the encoding stage) is

obscure. (8) Feedback from "later" processing stages may be important in determining the cells' response

properties.
An information-theoretic principle, "maximum information preservation," has been proposed (L.insker

1988) as an optimization principle for a processing stage of a perceptual system. I For a review of earlier ideas

relating information theory and perception, see (Linsker 1990).] This principle reduces to PCA in restricted

cases [see item (3) above], yet is applicable to the more general situations described in items (4)-(6) of the

preceding paragraph. A new criterion -- namely, that the output values from a layer should optimally
discriminate among the input vectors -- replaces the minimum reconstruction error criterion of item (7).
(Further extension of the principle is needed to accommodate feedback from later stages.) Some

consequences of this information-theoretic principle for biological systems and model networks are described
in (Linsker i988, 1989a,b). in particular, (Linsker i989a) shows how the principle selects all

information-theoretically optimal solution from the low-dimensional subspace spanned by the first several

principal components, in certain types of linear systems.
With this background, let us explore some general properties of PCA solutions, and the character of

these solutions for input ensembles of biological interest. The goal is to see what we can learn about biological

response properties from studying PCA solutions, and what properties remain unexplained in the context of

PCA.
The main analytic, and some of the numerical, results presented here appeared earlier as part of a

technical report (L.insker 1987). Relationships between PCA and the emergence of feature-analyzing

properties in biological systems have also been studied for the case of orientation selectivity by Sanger (1989)
and Yuille et al ( 1999). and (for ocular dominance) by Miller et al (1989).

SPECIFICATION OF THE EIGENFUNCTION PROBLEM

Suppose we are given an ensemble of input "presentations" [L"(x)I , where L"(x) is the signal activity of

presentation iT at position x in the two-dimensional layer L. Without loss of generality we may assume that

<L"(x)> = 0 for all x, where the angle brackets denote the ensemble average (over 7T). (Replace each

L"(x) by L"(x) - <L"(x)>.) Consider an arbitrary cell of the following layer M, whose output is a linear
function of the activities in layer L: M" = f'L"(x)a(x)d2 x. The covariance function of L"(x) is

Q(x, x') = <L"(x)L"(x')>. If Q is a function only of (x - x') , then the eigenfunctions of Q are the Fourier

components of Q(x - x'), which extend over all of layer L (Linsker 1989a. Yuille et al 1989). To obtain

localized solutions in such cases, we will introduce a weighting function g(x) that falls off with increasing

I xl and in effect limits the spatial region of L to which an M cell will respond. [Yuille et al (I 8X9) j.udy the
unlocalized case (of translation-invariant Q) analytically, and the localized case by numerical simulation.
We will show that the cigenfunction problem in the localized case is separable. This leads to useful analytic

results concerning the geometric form of the eigenfunctions, simplifies the numerical computation, and helps
to avoid computational problems arising from near-degeneracy of cigenvalcs..

There arc several different ways to introduce such a localizing function. We state three ways. motivated

by different considerations. all of which lead to the same eigenfunction problem and subsequent analysis.
(1) Discrete connections with density function: Consider an M cell (centerCLd at x = 0)) that receives

discrete connccti.)ns from layer I., with a density of connections given by g(x)2 . The strength of each
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conrlection i located at x, is c(x,) =_c _a(X,)/g(X,) 2. The output value is M, f L,(x)g(x.)2 c(x)(Px
-_ E"L(x )c,. In terms of the discrete connections, the PCA criterion is that we maximize the output variance
V = <(MI2 > = f Subject to "'C,2 = 1I Where the discrete covariance matrix Q, =_<L(x~)L,(x,)>. In
the continuum representation, the output variance is V = JC(X)g(X)2Q(X, x')g(x')2c(x')d2xd~x', and thc
constraint is fg(x)zc(x) 2d'x = . Define z(x) _=a(x)/g(x) c(x)g(x). Then V =fz(x)S(x, x')z(x')d2xd2x'
and the constraint is fZ(X)2d'x = 1, where S(x, x') =_g(x)Q(x, x')g(x'). In the continuum representation,
PCA therefore consists if determining the eigenfunctions z(x) of S(x, x').

(2) Masking of input by a localizing function: A simple way to introduce the localizing function g is to

premultiply LI(x) by g(x) before providing it as input to the M cell. (The origin x =0 is defined appropriately
for each M cell in turn.) This approach could be appropriate if the goal is to use PCA to design an array of

filters in a synthetic network, for example. Then M, f L1(x)g(x)a(x)t$x and
V = fa(x)g(x)Q(x. x')g(x')a(x')d2xd~x'. If we impose the constraint fa(x)2d2x I then we should define
z(x) _=a(x) atnd (as before) S(x, x') =_g()Q(x, x')g(x'). In this case PCA again consists: of determining the
eigenfunctions of S(x, x').

(3) The criterion of minimum weighted mean squared reconstruction error: In this example we do not fix

either the density of' connections or any constraint on their strengths. Instead, we ask: For a linear response
function M, f L'(x)a(x)dr-x ,how should the Ja(x) } be chosen so as to mininmize the weighted mecan square
reconstruction error

WMSE =_y(x)'<[L-(x) , ~(X)12 > d 2X, I

where the Weighting factor gWx2 is applied to the MSE at x? Here L.;,,(x) is the optimal estimate of L'(x) for
given latx) it is givven (iLieubt 19 67) by

M"x X~ U [Q~x, x')a(x') dx / [f a(x')Q(x', x")a(x")d dx'd X~. (2)

Therefore WMSE = 1fg(X) 2<[L,(x)V>d 2x} - H, where the first term on the right-hand side is independent
of la(x)), and

H = f g(x) 2 [Q(x, x')a(x') d 2X/1 2 d 2x / [f a(x)Q(x, x'),(x') d 2 Ad2]. (3)

The ininimumn-WMVSE criterion therefore requires that we choose ja(x)} so as to maximize. U-. [Cf. (Linsker
!989) for the unwei_1hted e-ase.] Now define z(x.) a(x.)/g(x) and S(.x. x') =g(x)0(x. x')g(x'). Algebraic
manipulation gives

H = [z(x')S(X', X)S(X, x")z(x") d d x' d Xr~ /fz(xiS(x, x')z(x') d x d xI] (4)

Let z4(x) and A, be tile kth eigenfunction and eigenvalue in a complete set of orthonormal eigenfunctions of
the kernel S; that is,

f S(x, x') zA.(x) d 2x~ zA (k AX (5)

for all x and each k. For any eigenfunction z(x), the HI value of the corresponding M cell is X,. For any linear
combination of' cigenfunctions z(x) = , h,,A(x) [hence for arbitrary z(x)], H = (EhAN2) / 11A) is

maximal for tile CigerIfunction of S having largest eigenvalue. The linear combinations of thle first fecw

eiigenfunetions (in order ofdcercrasing cigenvalue) give the M cell types having large 11 vaIlue.
All of [lhe approachecs descrihed lead to the same pr(ohlern: that of' dctcroiiining, the e igeiifunct ions of

S(x, -4). We proceed to derive somec analytic results of general interest, and lnumerical results for particular
typeS Of' i1nput1 erISCemN- thlcs hatrise in models of' early visuial processing.
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ANALYTIC RESULTS: GEOMETRIC FORM OF EIGENFUNCTIONS

The situation of principal interest to us is that in which (I) Q(x, x') is a function Q(s) only of the
separation s =_I x - x' , and (2) the localizing function g(x) is a function g(r) only of the distance r of % from
the origin (the position of the origin is specific to each output cell). Under these conditions S(x, x') depends
only on (u, ý.', 10' - 1).,whiereu =_r2 , 11'r='/ , and 0,? 0' are the angles that x, x' make with a reference axis.
[To see this, note that S(x, x') = g(r)Q( Ix - xI )g(r') and that thte argument of Q is a function only of
(u, U1, 10' - 01 ). 1

For a covariance fuzickion S of the form S(u, u', 1 0' - 8 ) the eigenifunction problem of Eqn 5 is
separable in polar co')rdlinates. To see this, assume a product form z(u, 0) = f(u) sin(nO + 6). Then Eqn. 5
becomes (with 0p 8_' - 06

(1/2) fS(uju'% 10 ) flu) sin [n(o + 0) + 6] du'dO' ==Xf(u) sin(nO + 6). (6)

The left-hand side equals ( 1/2) sin(nO + 8)fdu'f(u')fd0 cos(n0)S(u,u', 1 I) Therefore this 2(11, 0) is an
eigenfunction of S if and only if f(u) satisfies fdu'T,,(u, u')ftu') = ?Xf(u) where.

For each n > 0, we denote the (complete) set of eigenf unctions of T., by [f,,(u)}I (i > 0) and the corresponding
cegcnValuleS by UtXJ. A complete set of eigenfunctions of S is then given by Lf0,(r),1,,r) cos nO,f.,(r) sin Of~
for all n > 0, i > 0. For all n > 0 and all i, the eigenfunctions occur as degenerate orthogonal pairs (with
angular dependence sin nO and cos n6ý In particular cases, special symmetries of S may give rise to additional
dri'enerivraies. or "'iccid'ni'rl" additional degeneracies may occur.

In the absence of' such additional degeneracies, we see that each eigenfunction of .S must have a
1sectored" geometric form. That is, each eigenfuriction is either circularly symmetric (n =0), or has two

semicircular regions of opposite sign (n = I), or has 2n sectors of alternating sign, with angular dependence
of the form sin(nO + 6) for arbitrary phase 6. Note tnat the only eig'mnfunctions that can be described ats
having a form similar to that of a Hubel-Wiesel orientation-selective "simple" cell are the n =I solutions.
We shall return to the comparison with "simple" cells later.

NUMERICAL RESULTS: RELATION TO FEATURE-ANALYZING CELLS

To proceed further we must assume specific forms for S. We sh~Il treat two different types of input ensemble
I LI(x) .

0I) Random field convolved with Gaus~sian filter: Here each presentation LU(x) is obtained by convolving
a random field of identically and independently distributed (i~i.d.) values with a two-dimensional Giaussian
filter tvyp( -s 2 ). 'The resulting covariance function is (apart from an overall constant factor)
Q(s) =exp( -s212). We obtain for the kernel T. of the radial eigenfunction problem:

T,1(u,u') = (Il/2)g~i 11 2 )g(i/ 1/2 ) exp[ - (u + u')/21f027 do cos(no) expl(uu') 1 2 cos 4)](8

= Tg(u 1/2W14u1 ) exp[ - (u + u')/21 IjI(uu ) I/

where 1. Is a mo)dified bessel function.
Figure l a shows the two largest cigenvalues of T, (for each of n = 0. I. 2 ) as functions of ihe

parameter r0, for a Gaussian localizing function g(r) = exp( -r 2/2r,2). The corresponding six radia;
cigenfunctions are' shown in Fig. l b for the case rI, = 1.5. N~ote that the leading. cigenfunctiori is the circularly
symmetric (n = 0,. = 0) solution. The cigenvalues of the broken -symmenitry cigenfuncticrns ori > I ) arc
considecrably smmller in value (for this choice of Smaru g).

(2) Random field convolved with "Mexican-hat" filter: HereT each inpu)Lt presentation is oJbta~ned by
co-.ivolvin, anl i.;d, random f'ield with a filter that is proportional to the Laplacian of ai two-d filnension i.l
Givussian (a type of ''Mexican-hat'' function). This filter function is (I _ I

2 ) exp( -. V
2 ), aIjd the resulting.

covariance function is Q(s) = 01 - V2 + S4 /g) exp( -. V/2) (obtained by calci'Iating Ciec overla~p integral of
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two identical filter functions whose center,; are separated by distance s). The kernel 7. has a form similar to
Eqn. 8, but with I., replaced by a sum of terms involving ln+0,12.

Figures I c,d show the eigenvalues and eigenfunctions of T, for n = 0, 1, 2 and i = 0, 1. Recall that each
eigenfunction of S is the product of a radial eigenfunction of 7T and an angular factor sin(nb- + 8) for arbitrary
phase 8. Thus the leading eigenfunction of S has (n,i) = (0,0) and is of circularly symmetric center-surround
form. The next two orthogonal cigenfunctions of S [with (n,i) = (1,0)] have angular dependence sin(0 + 8)
and cos(0 + 6) for arbitrary 8, and are therefore "orientation-selective" in the sense of Huubel-Wiesel
"simple" cells of odd symmetry. It is important to note that the eigenfunctions of S for n > 2 are necessarily
of "sectored" form (having 2n "pie slice" regions of alternating sign), and are not orientation-selective in the
sense of "simple" cells (although, clearly, symmetry breaking occurs for all n > 1). As stated above, the only
exception to this statement arises if the eigenfunction problem happens to have additional symmetries or
"accidental" degeneracies, in which case one may be able to construct an eigenfunction of simple-cell form
as a linear combination of degenerate "sector-shaped" eigenfunctions of S.

Some notes and caveats are in order before proceeding further. (1) In certain cases (particularly in the
large-r, regime of Fig. Ic, where several angular eigenmodes have similar but not identical eigenvalues), one
must be particularly careful when solving the two-dimensional eigenfunction problem numerically, to avoid
computing spurious "cigenfunctions" that can have a banded appearance reminiscen! of orientation-selective
cells, but are in fact not cigenfunctions of S (R. Linsker, unpublished observations, 1987). The recognition
that the cigcnfunctions of S must have a sinusoidal dependence on polar angle -- unlis,. true degeneracy exists
between different modes n -- helps in avoiding this difficulty. [Sanger's (1989) method [or computing transfer
functions gives banded, non-"sectored" solutions; the reason for this is not described. Yuille et al (1989)
provide insight into the reason for the occurrence of near-degeneracy in a related problem.] (2) Two of the

•f a)/ '" "".V (b)
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Figure I. PCA solutions: (a; Eigenvalues for angular eigenmode indices n = 0, I, 2 and radial
eigenmode indices i = 0. I, where each input presentation is a random field convolved
with a Gaussian filter, and the localizing function g(x) = exp( -r 2 /2r2). Curves starting
at top: (nJ) = (0,0); (1,0); (2,0) and (0,1) (degenerate), (1,1); (2,1). (b) Radial
eigunfunctions for the same six modes, for r0 = 1.5 (solid, i = 0; dotted, i = I ; within each
triplet of curves, the value of r2 at the peak or trough of the curve shifts to the right as n
increases). (c) Same as (a) but where each input presentation is a random fied convolved
with a "Mexican-hat" filter (see text). Curve.s starting at top: n = 0,1,2 for i = 0, then
P = 0,1,2 for i = I. (d) iamc as (b) but for the input presentations described in (c). Note
that the leading soluti(,n (n = 0, i = 0) has "center-surround" geometry.
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lower-lying eigenmodes in Fig. la, (nji)= (2,0) and (0,1), happen to be degenerate. This degeneracy
depends upon the particular forms of S and g; it vanishes if, for example, the form of g(r) is changed from
Gaussian to g(r)cr exp( -r 2 4/2rj). (3) The (n,t) = (1,0) eigenmode is not necessarily lower-lying than the
(0,0) mode. For example, choosing g(r) = 11 + exp[(r - r0)/Ar]-1/2 (a "flattop" function in two dimensions
with a smoothed sigmoid-like falloff), with r0 = 1.6 and Ar = 0.1, gives cigcnvalucs X0 = 1. 17 >
A,0 = 1.35 > A20 = 0.92 , for the S function used in Figs. lc,d. That is, an orientation-selective solution is
favored over the circularly symmetric one for that g(r).

We ret~irn to the solutions discussed earlier and illustrated in Figs. lcd. The geometric form of the
(n,i) = (1,0) and (2,0) eigenfunctions of S is shown explicitly in Fig. 2a,b. The function plotted is the
eigenfunction of S (denoted zj,) multiplied by g(r); this equals the transfer function from layer L to the M cell
for the three problems introduced in the "Specification ..." section above. [The transfer function is a(x) for
problems (I) and (3), and g(x)a(x) for problem (2).1 An orientation-selective cell of even "-+-" symmetry
(Fig. 2c) is not itself an cigenfunction of S, but can be constructed as the sum of two eigenfunctions (which
are not degenerate), zAx + Z20. Other linear combinations of the leading eigenfunctions have a variety of shapes
(Figs. 2d-g) which arc not in general "orientation-selective" in the sense of [lubel and Wiesel's (1962) classic
receptive field (RF) plots. [To obtain RF plots for the "cells" discussed here, one must convolve the transfer
function shown with the receptive field of the cells in the input layer L. However, for the cases shown, the
transfer function gives a good qualitative indication of the RF shape. Cf. (Linsker 1986) and (1988) for an
illustration of this distinction for an orientation-selective cell.]

2 (CI) 2 ,~N (b) 2 2(d)-1 2 _ _ _
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Figure 2. Transfer functions g(x)z(x) where z(x) are linear combi, .,tions of the first several
cigenfunctions z,,(x) of S, for input consisting of random field convolved with a
"Mexican-hat" filter, and Gaussian g(r) with r, = 2.5: (a) z = z,1 (cigenvalue
A,= 1. 10). (b) z z20 (020= 0.96). (c) z +,)+2() (i, is center-surround
eigerifunction, not shown, having X0--= 1.15 ). (d) z -x) + (z10/2) + z2(). (c)
'-" " m, +- z :,. (I ) z ' z,,, + 2z11, 4 Z20. (g) z - A, + 2z',, + z,, where z',,, is the (n,i) = ( 1,0)
cigCIIlu tnctioIi orthogonal t-, zig. Solid (resp. dotted) contour curves LC itnoc lomsilivc (rcsp.
negative) valueS; contours are spaced every 0.15 units (starting with ± 0.075). All z
functions normalized to f z(x)2 d2 x = I.
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CONCLUSIONS

Principal components analysis is a useful tool for understanding some aspects of the feature-analyzing
properties of cells found in at least I'he first few stages of a sensory processing pathway. This is illustrated for
the case of center-surround and orientation-selective cells. In particular, we (i) start with a simplified model
in which the input activities correspond to a random field convolved with either a Gaussian or a
"Mexican-hat" filter, (ii) compute the transfer functions for model "cells" whose output activity has high (but
not necessarily maximal) statistical variance, and (iii) find that some of those "cell" types are qualitatively
similar to those found biologically. These "cell" types lie in a subspace spanned by the first several
eigenfunctions in a PCA or Karhunen-Lo~ve expansion. The relevant eigenfunction problem is shown to be
separable in polar coordinates; this fact leads to useful constraints on the geometric form of the
eigenfunctions. A connection between PCA and a criterion for th,' minimization of a geometrically-weighted
mean squared reconstruction error is derived.

Although the properties of a low-dimensional PCA subspace may provide some insight into observed
cell response properties, PCA (at least as used here) is insufficient to determine which of the transfer
functions lying within such a subspace will be found in a biological system. To make more detailed predictions
of cell responses, and of the organization of these response properties within a processing stage, a more
powerful set of principles or constraints appears to be needed. An information-theoretic optimization
criterion that ii related to PCA in certain cases, but has greater generality, is cited and briefly discussed as a
candidate for such a principle.
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Introduction

A neural architecture is presented which can recognize and reconstruct the traces of
previously learned input patterns. The recognition and reconstruction properties of the
network are invariant under input patterns that are translated, distorted. noisy. incomplete.
scaled and slightly rotated with respect to the trained patterns. If novel training patterns
are to be incorporated into the nietwork . it is not necessary to relearn the previously
trained pat terns.

This network utilizes feature combination and coagxilationi of information in a manner
related to Fukushinia's neocognitron[i] and similar to inultilaver and multifeiiture meap
architecture described bv Jakubowicz in [2]. Feature categories at each stage are learned
using the Adaptive Resonance Theory introduced by Grossberg in [3].

Adaptive resonance architectrets ,elf_,-organize stable recognition codes in real time in
response to arbitrary sequence of input patterns. ART-1 generates the codes of catego-
rization for binary input patterns as connection weights between the neurons in the input
plane and the output piane. The vigilance parameter dletermines the coarseness of cate-
gorization. The network achieves its stability using the feedback connections and with a
test and reset mechanism. Altholugh the ART-i is completely characterized as a systemn of
ordinary differential equations. fast learning equations are sufficient for real time applica-
tions. All APT inetworks used in pattern recognition reqjtire either a preprocessor or the
input pattern to be identical in shape. size and location and to be noise free.

Neoc.ognitron is a hierarchical model of a cornpetitive? leariiing paradigm capable of
selectively recognizing position shifted or shape distorted patterms. The variable comnec-
tions between the stages grow according to a simplified Hebbian learning rule for the input
stimuli appearing in the lower stages. The different features recognized by different stages
are determined daring the self organization or trainiug phase. P,:istiotal error is tolerated
bit by bit at each st age b)-" reduction of the size of planes. The forward connections of the
network mianage the function of )attera recognition and the bNickward connections man-
age the function of selective attention, segmerntation and associative recall. The forward
connections are identical to the backward connections. The efferent signal flow is guided
by the afferent. sigual flow. The gaini control signals make even the vague traces of the
input to be recognized by lowering tue thresholds for the afferent signal flow.

ARIT learning improves thre stalhility and reduces the comiplexity of a ne-ocognitron
like architecture. The*architecture can learn and incorporate new training exemplars in
real time. The network i.s; capable of extracting eveii the vague traces of input features
during afferent signal flow. The new arcl.itecturc is riot unstal l, unlike other hierarchical
architecttue-s based on Iloh,.,nen's featutre niap learning algorithmi and does not need a lot
of iteration for training. Exten.ion to (,v cognize ainrlogý patternris anli to reduce the size of
large weight niatric-.• with APT-2 learlnillg principles is p,,sil lc.
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DesrriiA ion of the Architetu re

S
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input plane 1 OutDmia plane
Frigure (1).

Figure (1) showms the basic archi tecture for the systeim. The architecture consists of five
stages. The input patterns are to be sensed by tihe Uco laver consisting of 16xlG neurons.
Each path in each stage has two layers , and c namely and each layer consists of one or
more planes of artificial neurons. Thie layers in the afferent path are represented by- U and
in the efferent path by Iv. Each plane in every I's layer represents a feature that appeared
in the previ,ms Uc stage during the training phase. The input to a us layer at the spatial
location u (n,.,). is iestricted to windows of size D = 3x5 in all planes of the previous
Uc laver. Uct(/ i) represents the 1th stage activity of neurons in the kt' UC pla-ne a.t the
location n. .rie !Nat, t.irn at n is said to be centered and selected foi training if

itU ) rk

1._< c,(k. n + < 2.5 and 15. _ - . c5(k. Wn + ) < 2.5
- 2= U 1(k-. + Z) - 1 -t . F 'kl=C,(k. ix + r)

O~nJy ,ce-anteed i... l. _erns are selected for Training.,. This avoids traini•g' redundant
patterns a~n, in-ice.:es -(he number of features that a particular st age can learn (see [2] ).

Feature ca eý,---ca non in each stage is done according to the ART-1 learning allgorithnm.
If the input within a wvindow at the spatial location n is selfcted for learning. and if the Ith
neuron in the ! + P"*' *av-,( wins then the connection weights are modified as shown below.
The weights cox•,n,:ed ')etween / + 1th stage neurons in AJ'h plane and I", stage neurons
within a window. 1, 0. of it planue. is represented by c,• K, k. v). If the KI" node hasa already
learned a feartr,'-' and the input satisfies the vigilance test.

(K . k. I-) L. (t,(' .n + r) 0 I;(A. m .- ))

L,1 D ., I (4-nk. + r)

where the colstiint L > i1 and the efferent connection a,(l. k. ) = 1 if v,( ,. '. ') > 0 anpd 0
otherwise. If a iK"' node has not been allocated to any feature previously, thel

Ll '(A. n + 0)
'.1k.1) L - 29
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During propagation, at each point, the input within the localized window is multiplied
by the same learned weight matrix and thresholded to get the output at Us layers.

['s(A'. ii) = o (f Z (dA. k. i').'cI- l(k. ni + 7')
where the threshold function o(r.) = 1.0 if x > 0, and otherwise 0. 0, represents the threshold
value at P" stage to the afferent signal flow..

The size of each plane undergoes approximately a two to one reduction at the Uc layer.
The purpose of this is to allow the recognition of distorted inputs and also to cause a
compressed representation at the recognition la-er. Each neuron at the I c plane has fixed
constant connections from a small localized window D' of 0 neurons arranged in 3x3 array
from the Us layer just below it. Neurons a.t the (c layer perform ORing of inputs.

Ic,(k. n) = U,.,D'f s-,k.n ± +'0

The weights connected to the recognition layer are learned using a teacher. Once
the system recognizes the pattern after propagation through the afferent conectimis. the
efferent signal flow reconstructs the input pattern. The backlward p)ropagation of signals
is governed by the following equations.

K

I'c1 kn =F j~a,,jN.k-.tlts+(~
K'=u t _D

Ilsj(k.ii) = mini{-Us(n.k). Ic,(k.n/2)}

'The hierarchical structure of the interconnections between different kinds of cells are in---
dicated in the filuie(2). The * indicates a threshold control. At each stage the threshold
to the afferent ,-:Qnal was reduced until at least 50V of expected features are extracted. If
a stage fails to ,,rract sufficient amount of features. then the threshold of the very first
stage is lowered.

YnPut ' ,

stimulus~' o m~~-- u''~" u3~

RItconstructed 
1
Wil Wel 2 s13

Outout-r- 04 0#0 - -1- lit
ltO - one to one connectionsl wc3

MO eodiiahile connectionS
A" threshold control paths

Figure (2).

Simulatiioi Rle-mlt.

Ex.4 I:- The ne(T%\work was irain bd to recogniize three pattt'rsvi with vi\gilaice 08.. The
trained par tcrii, wheli preselnted at rhe ranmie location, were recognized miad relproduce(d
with 100VJ accura<y. It recogmnized all test inputs and iou nst rue ei-'rfe(-t lx abmut (30'/
of the imp ts. Othrs were eitl er partially i'Ccolistructod or l)rOcluced witli addcd nise.
"The reconstructed(1 outlputs of 13 t(est pattcems, are sh()wn iII figure (3).
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Tratnting Bnmolsrs

Input Output Input Output Input Output Inrut Output Input Outnit

Fipure (3).

Em 2: The network was trained to identify 10 digits 0...9 with a low vigilaice of 0.G.
The network recognized all trained digits and reproduced thlem with 100V accuracy when
presented at their original locations. It recognized about 907 of the tested patterns and
reproduced perfectly about 30'7, of recognizedl patterns. This distortion is due to the
low vigilance used l)ecause of memory limitation of the computer. If the uncompletely
reconstructed patterns were fedback at the input, most of them weie improved by the
network.

E.11: The network was tested to see its capability to incorporate novel training patteems.
The network was trained with digit 1 first. then 2. 3 and so on. The network was tested
against its perfornanlces to recognize and reconstruct previously learned digits after each
digit was introduced. It was capable to recognize and reproduce all trained digits even
after learning all 10 digits irrespective of the sequence they were trained.

Concluisi)li

Introduction of ART-- learning has improved the stability. speed and complexity of
Fukusllima's neocoguitron related network. The new architecture can aut omatically in-
corporate novel training patterns without disturbing previous trained information. The
network altpproaches an ideal real timie pattern recognizer and aiitoassociator when the vig-
ilance used for training approache:s unitv. The ieal netiwork ltrfornmailin is independant
of the nliunber'l" of patterin, incorpi wated as far as the nmemory is available. Our pre,'selnt
S~tuldy- is to IeC0::ze analog patterns and to reduce the number of weighted coiliectiOims
in the architecture usinog ART-2 learning principles.

[1]. Fukusliiia K.A N,eural Architecture for SlinciveAtiiioji in In Visual P'aitri e,- r'V gitiion'. Biological
"( , ch111 i 5s. 5r -15. 1 ¶1N3

[21. l1,-g (i. JaLuhowicz. 'iuhi-iayer .m .lti-fatiirfe MaI, .\A rruiinritirr for, nu uatijuj l (liaiy'.,. Piroce,-diiigs
of IELEL luntrai jonal .Joint (joiinfrviic, on \,'ural N.tworks. Jume ItAv..

faJ. Gcosslurg S. and ('arpeiner G..A.. "Ti, A10 of Adap!nxe 'iatotern lb.%ogiiou B A Self Organiznug

Neural Net 'w rk . (C ol uilr. Marci. 198s.
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A Decoder for Block-Coded
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The hardware model of a neural network for decoding block-encoded digital dati is presented. 7tis

neural network decoder is designed for use in channel coding digital communicatioil systems to ensure
that bits transmitted over the communications channel are received correctly in the presence of noise or

interference. Unlike a classical biological neural network, tihis artificial neural netWork requires no
training: all of its synapses have equal weights. It is the topology of the network, which is intimately
related to the topology of the Encoder, which embucs this Decoder with its error correcting capability.

"The purpose of a forward error-correcting digital communications system, such as the one
represented in Fig. 1, is to accomplish the transfer of information bits from Location A to Location B
with consistent accuracy in the presence of noise. By encoding the information to be transmitted, at

location A, a certain amount of redundancy (in the form of additional bits) is added to thi information
data. The decoder, at location B, applies its knowledge of exactly how this redundancy was introduced
to process the received data reconstructing the original information bits with as much accuracy as
possible. Within a particular digital communication system, the relationships which exist between the
complexity of the Encoder & Decoder, the level of noise on the Channel, the maximum attainable data
throughput (no. of bits/sec), and the minimum attainable Bit Error Rate (no. of errors/no. of bits) are
intuitive.

(Noise

S0-1 to Comm . onto
SouceEncoder Chne1Decoder n

Figure 1 A Forward Error-Correcting Communications System

Diagrammed in Figures 2 and 3 are a block encoder and a neural network decoder for a simple block
code. At the Encodcr, for every 4 information bits input, a total of 7 channel bits are Output. These 7
code bits (n) are comprised of the 4 information bits (k) and 3 parity bits (in). This (7,4) particular code
is known as a Hlamming Code1 .
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Those block codes (n,k) which exactly meet the inequality: 2!' >= n+-, where ni = n-k are called
Hamming Codes. By carefully studying the connectivity of the Encoder's parity bit generator and the
connections between the Decoder's Data Bit Neurons and the Ex-OR Logic, a definite relationship can
be recognized. This Decoder has been "taught" to decode this particular Encoder's output by the way it
was constructed. As in an evolving biological neural network system, a fully interconnected system is not
implemented, rather only those connections which are of importance in accomplishing the task at hand
are present. This artifical neural network will change the states of its neurons until attaining its the
"lowest energy level." If the number of errors introduced by the noise on the communications channel is
within the error-correcting capability of the block code used, the neurons will settle to the those values
representing the original information output by the Encoder. If the number of errors introduced by the
noisy communications channel is more than the error-correcting capability of the code, then as with
conventional decoders, decoding errors will be observed.

VI

p p d p dd

bi b2 b3 bh h5 b6 b7

Figure 2 A Block Encoder

"Ibis neural network decoder is composed both analog and digital circuits 2
. By implementing the

computations required in the tyje of circuitry most suited to to the functio. being performed, an area

efficient VI.SI system can be realized. One of the fundamental operations required within encoders and
decoders of binary data is rnodulo-2 addition, or the exclusive-OR operation. To accomplish this an

EX-OR "ncurally" would require a multi-layered neural network 3 . In performing the required
exclusive-OR operations digitally, the VLSI implementation is more cffi'-;cnt. In contrast, the summing
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of thc inputs to each Data Bit Neuron is best accomplished with analog circuitry.

I _E I E I

SI bKey 4 5 b6 L

I nh i bit Exc iteEx-0B
T o gglIe TogglIe Lo g ic Ne u roin

1 1 ýlBv-
Ne uron Neu ron Sh i Ft He g

T 0P 1/0 S t geG

Figure 3 A Neural Network Decoder for Block-Coded iData
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To allow tens and even hundreds of synapses4 to be connected to a single neuron, two separate lines
are used to sum the excitatory and inhibitory currents. Each synapse is a programmable current source
which controls a differential amplifier. In this manner a two-state synapse can be realized. The small
(on the order of 10 uA) excitatory and inhibitory currents generated by the Input Cells are respectively
summed (as per Kirchoff's Current Law5 ) and compared within the Data Bit Neurons. Whenever the
excitatory current exceeds the inhibitory current, the state of the binary Data Bit Neuron is toggled. The
quiescient states of the Neurons, subsequently achieved, represents the decoded data.

Analogous to the synergism of a system which combines the storage capabilities of a Direct Storage
Neural Network with the discrimination abilities of the Ilopfield Network, the design of this Decoder
combines the exclusive-ORing efficiency of digital circuits with the (current) summing capability of
analog circuits 6 .
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Abstract

In this paper we present a continuous speech recognizer which combines a two-stage hierarchy of neural
networks with a dynamic programming (DP) beam-search model. The neural networks encode short-time speech
units. The DP beam-search selects the output text by time-alipning the obtained code sequence with the phonetic
transcription of all allowable text for an entire continuously-spoken sentence.

Binary-tree structured neural nets, which are trained to maximize the average mutual information between a code
alphabet and an alphabet of phonetic classes, are used as encoders. The topology of the networks (i.e., the number of
interior nodes and their connections) is learned along with the set of weights from the training data.

Two stwges of speech representation, the acoustic frame and the acoustic segment stages, are formed. Each stage
utilizes an encoder attempting to retrieve the highest amount of information about the underlying phonetic classes of
speech units of that stage. Acoustic-phonetic features are extracted over moving time-context windows and used as
input into each encoder network. This allows the networks to form time-shift-invariant decision regions. The 2nd-
stage encoder takes as a part of its input the output of the 1st-stage encoder. Time compression occurring between
the frame- and segment stages allows wider time-context to be included into the 2nd-stage features thus making them
more informative.

Binary-tree structured neural nets scale up well to high-complexity problems such as speech recognition. The
amount of labelled speech data and training time required are reasonable.

1. Introduction

Recently there has been a growing realization that combining neural-net based classifiers/vector quantizers (using
local time-context acoustic-phonetic features) with DP-based time-alignment models such as HMMs (using global
time-sequences of phonetic codes with a language model) can lead to synthesis of a superior speech recfognition
system [Lippmann 89]. In this paper, we describe a continuous speech recognizer which attempts such a synthesis.

The recognizer uses local time-context acoustic-phonetic features for the encoding (in the information-thcoretic
sense) nf speech by means of two stages of binary-tree structured networks, with intervening segmentation between
the encoding stages. Segmentation can be viewed as fonning blocks of the adjacent codes thus allowing for a more
efficient block-coding. It can also be viewed as a time compression allowing incorporation of more time context
into the acoustic-phonetic features.

To get the text of the spoken sentence, the resulting segment-code time-sequence is then time-aligned with the
phonetic transcriptions of the grammar-constrained sentences by means of the DP beam-search algorithm using an
alignment score statistical model.

Binary-tree structured networks are trained as optimal encoders assigning maximally-informative (on the average)
codes to speech patterns at the appropriate stages. The task of training such networks has been extensively addressed
in the theory of binary decision trees. [Breiman 84] systematically considered binary decision trees applied to various
classification tasks. The processing elements used in the decision nodes of the binary decision trees included the
sigma-type units with hard limiter non-linearities. Training criteria ("impurity" criteria) for the binary decision trees
included the average leaf-node-conditional class entropy. Training was pcrformed in a top-down node-at-a-time
fashion, adding new leaf nodes and maximizing reduction in the average leaf node impurity attained by such
additions. It was demonstrated on many practical classification problems that the above procedure results in a
suboptimai but "good enough" tree.

[Koutsougeras 88] and [Sun 881 relormulated binary decision trees as neural networks and further developed
training based on the minimization of the average node-conditional class entropy (or, equivalently, maximizing the
average node-class mutual information). [Sun 881 also extended the type of the processing element used in the
decision tree to the single-layer perceptron with n1 output units. Most recently, [Bichsel 891 discussed usage of the
minimum conditional clas-; entropy criterion for training of general layered feedforwvard networks with hard limiters.

At SSI, we have been using binary-tree structured networks for maximum code-class mutual information
encoding in our speech recognition research for some time now. We describe here one of the more successful
recognizer architectures and present some test results.
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The remainder of the paper is organized as follows. Section 2 contains a brief recognition system overview,
Section 3 describes system training aspects, and Section 4 presents test results and discussion, Finally, Section 5
recaps major features of the system and outlines a possible generalization.

2. System Overview

A speech recognizer based on frame- and segment-encoder neural networks is briefly described below. A
continuously-spoken sentence's audio is sampled at 16 kHz and is converted into a time-sequence of pitch-
synchionous frames of 24 acoustic paramreters. At this stage, frames are encoded in such a way as to convey
maximum information about their underlying segmentation class identities (the set of 9 broad phonetic classes called
the "segmentation" classes is used to characterize acoustic-phonetic segmentation of speech).

To perform frame encoding, the frame time-sequence is scanned by a "moving time window" covering 3 frames.
A set of pre-defined feature vectors is extracted from the acoustic parameters of the frames accessed by dte window.
The frame-encoder neural network (further called "Frame Encoder") takes as input this set of the feature vectors (as a
single block-vector extracted from the 3-frame window) and outputs a code for the frame at the center -)f the window.
The Frame Encoder is trained to maximize the average mutual information between its code alphabet and the alphabet
comprised of the segmentation classes.

The resulting time-sequence of coded acoustic frames is processed by a Segmenter which forms acoustic
segments by merging time-contiguous blocks of frames using their codes and certain code-class statistics. The
Segmenter also assigns the most-likely segmentation class to each forned segment. The time-sequence of the
acoustic segments with the assigned segmentation classes constitutes the input to the segment-coding stage.

The segmcnt-ceding stage processing is similar to that of the frame-coding stage. Namely, segments are encoded
in such a way as to convey maximum information about their underlying dictionary class identities (the set of 50
phonetic classes called "dictionary classes" are used for transcribing words in the system's dictionary).

To perform segment encoding, the time-sequence of segments is scanned by a moving time window covering 3
segments. A set of pre-defincd feature vectors is extracted from the acoustic parameters of all the frames encountered
in the segments accessed by tih window. Also the most-likely segmentation classes assigned by the segmenter to
each of the 3 segments in the window comprise an additional, "phonetic feature" vector (with binary components
encoding the local representation of the class triplet). The segment-cncoder neural network (Further called "Segment
Encoder") takes as input this set of feature vectors (as a single block-vector extracted from the 3-segment window)
and outputs a code for the segment in the center of the window. The Segment Encoder is trained to maximize the
average mutual information between its code alphabet and the alphabet comprised of the dictionary classes.

Finally, the time-sequence of coded segments is processed by the Linguistic Decoder which retrieves the text of
the recognized sentence. It uses the DP beam-search algorithm to select the phonetic transcription variant of a
sentence best matching the sequence of segment codes. The match score statistical model is based on a variant of the
information-theoretic decoding model using the Fano nctric, see [McEliece 77]. The set of allowable sentences (word
sequences) is constrained by a finite-state grammar. Word transcriptions are selected from a dictionary. The sentence
text is read out from the matched sentence transcription.

3. Training

The Frame and Segment Encoder neural networks (as well as the Segmenter and the Linguistic Decoder
statistical models) are trained using labellcd frame data for the. isolated continuously-spoken sentences. To initiate the
training process, one of the existing Speech Recognizer models (originally trained with a large body of hand-labelled
speech collected at SSI) is used as a "bootstrap" model to proluce the labelling of the training speech.

The training sentence's audio is processed by the bootstrap Speech Recognizer model. The Linguistic Decoder is
then given the known sentence text and is instructed to directly output the sentence transcription best matching the
segment-code sequence in the form of segments labelled with dictionary classes (where several class labels may be
attached to a single segment). By an off-line process using certain segment code and dictionary class statistics, the
dictionary-class labels arc propagated from segncntus to their con-tituent frames. The obtained labelled data is
subsequently used for supervised training of the Frame Encoder, thu Segmenter, the Segment Encoder, and die
Linguistic Decoder parameters (the encoder training is described in detail further).

Once training is performed, the bootstrap Speech Recognizer model can be replaced with the one just trained, and
the training process is repeated iteratively until no improvement in recognition accuracy is observed. to our research,
we performed two iterations, but we also added more training data and slightly modified the labelling algorithin,
between the first and the second iterations.

The Frame and Segment Encoders are trained as binary-tree structured tictworks [3reimlnan 841 using
maximization of the average mutual information between the set of leaf nodCs and the set of utrget classes as the
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training criterion. Training is performed top-down, starting from the root of the binary decision tree. The processing
element associated with each decision node of the tree is a sigma-type unit with hard limiter nominearity [Rumelhart
86, Lippmann 87] which accepts the block-vector (of features extracted from the moving time window) as input for
each speech pattern. A set of training patterns which was routed to the node by the decision nodes along the path of
the tree already built is used for the weight computation.

Training of the processing element of a decision node is limited to subspuices of the weight space corresponding
to the feature (sub)vectors which form the input block-vector. Every such subspace is considered in turn, and optimal
weight vector components are computed for that subspace while holding the rest of the weight vector components
equal to zero. The optimization criterion (i.e., the reduction in the node's average class entropy) is evaluated using
the node's set of training patterns. The optimal weight subvector yielding the highest value of the optimization
criterion is selected among the ones for the weight subspaces considered. This (suboptimal!) training procedure gives
sufficiently good results. It effectively limits dimensionality of the weight space and, thus prevents data overfitting
(especially, ;n the "near-leaf' nodes). Also, it selects the most-informative feature at the given decision node of the
binazy decision tree.

To train the weights of a given weight subspace, we use the conjugate gradient based search [Press 86] where the
gradient of the criterion function with respect to tile weights is computed by replacing the hard limiter with the linear
threshold non-linearity and gradually annealing that non-linearity to the hard limiter. Once the optimal weights are
estimated, we use the hard limiter to send the patterns to the left or the right child node. We may decide to declare
the node a leaf node if the highest reduction in the class entropy attained by the "node split" is less than a certain
fraction of the node's class entropy.

After the entire binary tree network is created, its performance criterion (i.e. the average mutual information
betwcen the set of the leaf nodes and the set of target classes) is evaluated with an independent set of labelled data.

4. Test Results and Discussion

W2 used 8944 continucusly-spoken utterances from 8 female speakers (about 1105 utter.ances per speaker, 5.7
words per utterance, 41.7 segments per utterance) to train the Speech Recognizer model described in the previous
sections. The known content of the training sentences was used to label the frame/segment dats with their phonetic
class targets. The set of training sentences was specifically designed to be phonetically balanced. Estimates of the
average code-class information criterion for the Frame Encoder and Segment Encoder are given in Table 1.

Table 1: Training of Frame & Segment Encoders

#codes #classes avg. class avg. code-class info as % of
entropy, bits info, bits class entropy

Frame Encoder 712 9 2.66 1.83 68.6%
Segment Encoder 1016 50 4.85 3.18 65.5%

The time compression factor (avg. #framcs per utterance / avg. 4 segnmen,; per utterance) was 14.05.
Model buildkng took 10 weeks of processing on a Sun-4/280 (for the two iterations of labelling, see section 3).

Thle trained Speech Recognizer model was tested using independent speech data collected from tie 8 female
speakers used in training (dependent speakers) and from 4 additional female speakers ( independent speakers). We used
130 continuously-spoken test utterances from each of the above 8 speakeis. Average utterance length was 10.8
words. Fecognition was performed with a finite-state grammar with a perplexity of about 10 (a difficult artificial
test grammar), and with a vocabulary of 12195 words (containing about 15 distinut transcription variants for each
word entry on the average, i.e., about 180,000 transcription variants). Of the 2187 dlistinct words occurring in the
training set ',nd of the 646 distinct words occurring in the test set, there were 261 common words. A summary of
the test results is given in Table 2.

Table 2: Test Results

avg. word % correct avg. I sCgmentLs/Utt avg. decoding time, sec/utt (Sun-4i280)
8 training spcakers 87.1% 65.9 34.8
4 independent test speakers 87.9% 67.2 35.0

The results given in Table 2 indicate that a reasonable recognition accumracy can be obtained f'or a speaker-
independent and training vocabulamy-independcnt Speech Recognitino, model. The encoding is performed in real time
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on SSI's Phonetic Engine [Mciscl 89]. A decoding speed of about 7 times the utterance duration is achieved in a

general purpose computing environment (a Sun-4/280).

5. Conclusion

We have described a Continuous Spech Recognizer based on the two-stage encoding performed by binary tree
structured neural networks. Using acoustic-phonetic features extracted over the moving time window accessing
certain time-shifted context allowed the neural networks to form time-shift-invariant decision regions, The average
code-class mutual information criterion applied to the binary Liee structured neural network allowed a node-at-a-time
training of the retwork, with the data-driven network topology design obtained simultaneously with the weight
estimation. Finally, the time compression that occurred with segment formation allowed more time-context to be
included in the scope of the segment-stage acoustic-phonetic features, and reduced the number of codes conveying
phonetic information by a factor of 14. It also allowed staged encoding where the acoustic-phonetic features of the
codes output at the frame stage are used as input into the segmentation stage. The final time alignment between the
segment-code sequence and the sentence transcription was performed by a DP beam-search algorithm, The text was
retieved from the best alignment obtained.

One possible generalization of the given architecture is a multistage hierarchy of binary-tree structured encoders
which performs segment formation more gradually. The decision to declare the stage .terminal is made by analyzing
the time compression factor of that stage as well as the increase in the average code-class mutual information
extracted by that stage's encoder network. Also, the increase in the "bottom-line" performance, the speech recognition
results obtained by DP, should be used in making that decision.
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ABSTRACT: A two-layered neural network architecture for completing silhouettes from open
edges exiracied by classical early vision algorithms is proposed. The main processes involved in
the proposed architecture are the short-range competition, the center-surround competition and
the long-range cooperation between the orientations of the existing edges, along with the
hypothesis of locality, isotropy, symmetry. An example of the implementation of the architecture
is reported.

1. INTRODUCTION

Classical early vision algorithms of edge detection from real images give rise to many
problems about continuity and regularity of extracted edges: the edge of an object is generally not
well defined in an image and it depends on many conditions like position, illumination,
background, and so on [ 1].

Instead, the human eye clearly perceives the edges of an ooject, also when they are not
well defined: uncertainty and fuzziness are eliminated by a great number of low-level
elaborations of the perceived image. Moreover, in the process of edge perception some edges not
really present in the image are clearly seen, and other edges that are present arc. not clearly seen,
such as in Kanizsa triangles [2].

Ullman [3], Grossbcrg and Mingolla 141, Sejnowski and Hlinton 15], among others,
developed theories about the generation and completion of edges and suggested implementations
by neural networks.

A simple and efficient two-layered neural network suitable to complete edges detected by
early vision algorithms is proposed. The network is based on a competitive-cooperative
architecture and it is a refinement of architectures charactcrizcd by more layers and connections
previously developed by the authors 16,71.

A simulation of the network. architecture proposed with a limited angular resolution has
been tested on simple patterns of applications and the results seem to be promising.
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2. THE ARCHITECTURE OF THE NETWORK

The process of completion of the edges is assumed to be a local process which is also
isotropic and symmetric: the generated completing edges must be invariant with respect to the
position and the direction of exisaing edges. Completing edges are also locally generated: they
are generated only from the knowledge of tendency of the end parts of the local existing edges
and not from the knowledge of the whole edge of the object.

The neural network architecture proposed is based on competitive-cooperative
interactions between units. The network is made up of two layers: in the first layer only the
competitive interactions are carried out, while in the second layer only the cooperative
interactions are carried out.

The guide-lines of the network architecture are: the short-range competition between
orientations to recognize local prevalent orientation; the short-range center-surround competition
between neighbouring orientations to ensure line cuttings at the corners; the long-range
cooperation between the like-oriented units to force completion of non continuous edges.

The building block of the architecture is a cluster of some number of simple units, each
of them is sensitive to a specific orientation; the number of these units depends on the angular
resolution. Fig. 1 shows a cluster related to six orientations.

Fig. 1: A cluster related to siX orientations; the connections
refers to the horizontal sensitive units.

A mechanism of lateral inhibition is implemented allowing competition between
orientations be perfonrcd by units in the cluster: if the output value of an unit emerges, the other
units are inhibited; so a strong unit tends to become much stronger and a weak unit tends to
become much weaker.

Fig. 2 shows the basic scheme of the whole network architecture; for the sake of
simplicity the connections refer only to the horizontal sensitive units and the internal units and
connections of the clusters are not reported.

The first layer of the network is made up of orient;,tion fields: each unit in the cluster is
sensitive to orientations in a small window of the picture under consideration then it competes
with other units in the same cluster: winning orientation tends to emerge. The orientation fields
overlap in th; picture; this is to ensure a bctter interpolation of the change of directions of edges.

A short-range center-surround competition within each orientation is also performed in
this layer: each Unit in a cluster inhibits all like-oriented units in the neightburing clusters (fig.
3a); this is to prevent output lines flow out beyond their endings when a corner of the edge is
found.
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Fig.2: The neural network architecture; the connections refer to the horizontal sensitive units;
the other internal units and connections of clusters are not reported.

The second layer performs the long-range oriented cooperation between units: in the
cooperation process, each unit receives a strong activation from the like-oriented units of the
clusters in the neighbouring position of the previous layer (fig. 3b), to force a completion of the
open edge.

.- - " -' -. - . -

-- 3a) " ,.,..-"" 3b) -" -

Fig.31 Angles related to the connections of like-oriented units.

The transfer function of the units is chosen to be linear with a low threshold to ensure the
noise rejection: the units responding to short random lines do not cooperate with other
neighbouring like-oriented units so their low activations are rejected.

For the sake of isotropy and symmetry the weights of the connections are invariant with
respect to the position arid the direction: several weights of the networks are linked together, so
there are only a few weights to fix ... stage of the development of the network architecture
these weights are hard-wired with values empirically fixed through a process of trial and error,
so there is not a learning phase of the network.
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3. THE SIMULATION OF THE NETWORK ARCHITECTURE

An implementation of the neural network architecture with an angular resolution of six
orientations has been tested on simple patterns by using a neural network simulator developed in
VMS COMMON LISP running on a VAXStation I/GPX [8].

All the weights are real numbers in the range [-1,1]; as described in the previous chapter,
all the weights are initially hard-wired so they not change.

The weights of the connections between each orientation at the layers are fixed at 0.9, to
obtain a little loss of information between layers; the weights of the inhibitory connections
between units inside the ckuster are fixed at -0.6, to obtain a strong inhibitory process.

In the center-surround interaction process, each unit inhibits the like-oriented units at the
neigh'-,ouring positions. The inhibitory strength of the connections is a bell-shaped function of
the angular difference between orientations; the max amount of the inhibition strength is fixed at
-0.3 to obtain a weak inhibitory process.

In the cooperative process the weights of the excitatory connections between the like-
oriented units in the previous layer are also a bell-shaped function of the angular difference
between orientations, but the max amount of the excitation is now fixed at 0.8, to ensure strong
cooperative interactions.

The transfer function of the units in the layers are linear with a low threshold fixed at 0.2
to ensure the noise rejection.

Results of simulations of the network architecture are reported in fig. 4. Fig. 4a shows
the effect of oriented cooperation: the lines are correctly comoleted along their directions and
there are no activations between them in perpendicular directions. Fig. 4b shows the effect of the
center-surround interactions: the cooperation is actually inhibited around the corners of the
edges. Fig. 4c shows an example of cooperation between like but not equal orientations, along
with the noise rejection.

4. CONCLUSIONS

The neural networks architectures based on competitive-cooperative interactions, together
with the hypothesis of locality, isomorphy and symmetry, have been currently developed in
many machine vision tasks other to the silhouette completion, as in the stereo matching
algorithms and in the interpretation of apparrct mrotion [1]; these architectures are generally quite
simple and they seem t,:, L". very promising.

Future developments of the architecture proposed are oriented to build a more adaptive
architecture, with a learning phase to fine tune the weights and the thresholds by an appropriate
adapting law. Other developments are oriented to complete the architecture with some hidden
units which may build some sort of internal reperesentation of the task described.
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ENHANCEMENT OF DETECTION OF DENSE MULTIPLE TARGETS
THROUGH LATERAL S UPPRES S 1ON AMONG OVERLAFFI NG

NEURAL NETWORKS
Mohammed Arozullah and William J. Semancik

The Catholic University of America
Washington, D. C. 20064

Abstract

The problem of detecting point targets in images
takes on many aspects of the equivalent radar
problem The mmin difference is the dimensionality
of the problem Common signal processing techniques
place an evaluation window around a point or pixel
of interest and make an estimate of the background
noise intensity to determine a detection threshold.
Many of these techniques suffer considerable
degradation in the probability of detection of thr.
desired signal or increased false alarm rate in the
presence of multiple strong targets within the
evaluation window. This paper utilizes a neural
network approach to processing the input data
whereby detection decisions are used to suppress
the effect of strong interfering targets in the
decisions made in adjacent windows. This enhances
the detection of weak targets.

Introduction

This paper addresses the problem of detecting
multiple closely spaced targets in infrared imagns
against a homogeneous background. One typical
method of determining the decision threshold is to
evaluate the arithmetic average of the signal
intensity oi all pixels wit-hin a window. Nitzberg
[11 analyzed this type of processor for its
performance versus the performance of the optimum
Bayesian detector as a function of false alarm
rate. Gandhi and Kassam (21 furthered the analysis
of this as well as other types of signal processors
when interfering targets or clutter edges are
present. The latter effort showed vulnerability of
the arithmetic mean processor to clutter edges and
multiple targets. We propose to modify the
arithmetic mean processor through the use of the
neural network shown in figure 1. The advantages of
this technique are that it can process an entire
image array with a processor with a complexity on
the order of the input array itself and that it
will process the entire input array simultaneously
thus reducing the time required to reach target
deci sions.

Network Description and Principles of Operation
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The two output classes from the problem as stated
can be separated linearly. Therefore only a single
processing l ayer is needed in figure 1. The
processing nodes are allocated one per evaluation
wi ndow. Only the pixel at the center of the
evaluation window directly connects to the
processing node for that evaluation window. Output
decisions from the processing node are fed back to
a gating layer node. The pixel at the center of the
eval uati on window al so connects to the gating
layer. The gating layer turns off the output of the
p ixel if a positive target detection decision is
made. Since all other processing nodes that require
the data from a pixel receive it from a node in the
gating 'layer, the effect of a target detection is
to remove that pixel from all other eval uation
wii ndows.

The statement of the problem is such that it is
was possible to derive the exact performance of
the network using known weights. This enabled the
theoretical comparison of results using this
natwork topology against those achieved with more
common procwssors: Thisc do-s not imply t•hgat Al y
the fixed weight case is of interest.

Theory of Operation
On the initial pass of data through the network,

each s ubnet will act exactly as the arithmetic mean
processor that has been analyzed by others. For a
single fluctua.ting target in homogeneous background
with an exponentially distributed background, the
performance is given by: [ 21

1) Pd = 11+T/(1+S)I-N

where 'd - th( probability of detection, T - the
proportionality constant (the weight in the neural
network, S = the signal to noise ratio of the
target, and N = the nominal number of pixels in the
evaluation window. The probability of false alarm
iv given by settig S equal to zero:

2) Pfa = [I +Tj -44.
Figure 2 shows the performance of this processor.

Reference [ 2] also covers the case of r
interfering targets:

3) Pd [1+.(l+I)T,(1+S)1-r[1+T,(l+S)Ir-N
4) Pfa =[ I+(l+I) TI-r[ I+T]r-N

where I is the signal to noise of the interfering
target.

For the neural network model wi th l ateral
suppression, equations 3 and 4 are modified as
shown below for the two interfering tarqget case.
The overall probability of detection for target: 1
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is then given by equation 5.
5) Pjj'= I1-Pd2IPdl + Pd2[l+T/(1+Sl)l-N.
Let Pdi be the probability of detection of target

1 without suppression and is of the form of 3)
where S1 refers to target 1, r = 1, and I refers to
target 2. Similarly Pd2 is of the same form where
S2 refers to target 2 and I refers to t-arget 1. T
is given again by equation 2). Pd1' is plotted in
Figure 3 with fixed power in the primary target and
varying power in the secondary target. Figure 5
shows the results of a simulation where the primary
target power was 3 dB below the secondary target.
Without suppression, the weaker target was not
found.

The three target case was also eval uated. The
resul ting Pd contains terms covering oases where
neitiher secondary target is detected, either is
detected but not both, and when both secondary
targets are deteoted. This is plotted in Figure 4
with fixed power in the primary target and varying
but equal powers in the secondary target. This
situation was simulated where one strong target and
two weak but unequal power secondary targets were
present. I n oases where the neural network
processor found all three targets, the arithmetic
mean process or could find only the strongest
target. A sample simulation output is shown in
figure 6.

Disc ussicon of Results
The neural network processor did increase the

probability of detection of multiple targets over
that of the arithme£tic mean processor. As can be
seen from Figures 3 and 4, initially there is a
decreased probability of detection as compared with
the single target case as the secondary target
inoreases in power. As the power continues to
increase in the secondary target, the probability
of detection rises and in the 1 imit, the
probability of detection surpasses that of the
single target case. This is actually reasonable to
expect since the threshold will decrease due to
fewer points being averaged to form the threshold.
The cost of this rise in detection is an increase
in the probability of false alarm.

Concl us i ons
The use of neural networks and lateral

suppression techniques appear to have promise to
handle the multi p1 e target detecti on probl em,
Further work musti be done to adapt the network to
handle non-homogeneous background,
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Multilayer Back-Propagation Network for Learning
The Forward and Inverse Kinematics Equations

Francisco J. Arteaga-Bravo
School of Information Technology and Engineering

George Mason University
Fairfax, Virginia 22030

Abstract
Forward and Inverse Kinematic Equations (FKE and IKE) are very important in Robotic Manipulators. An
approach is presented for solving them by means of Multilayer Neural Networks (MLN) and the Back Error
Propagation (BEP) Algorithm 11). The Solution for the analytical equations is compared with the Network
output. The Simulation is performed in a Two Degrees-of-Freedom (DOE) Robot Arm and the Results are
plotted. The Neural Nets learn successfully the indicated path . The Network Architectures are shown as
well as the parameters involved duulirg, the Simulation. The approach given here can b-! expanded for other
types of Manipulators by adapting the Network Architecture.

1 Introduction
The Solutions of the FKE and IKE are time-consuming tasks. For high number of DOF the IKE can
result very complicated to tolve. D)ifferent methods for solving this equation have been developed 121,131. In
simple cases, a closed form solutiou can be accomplished by geometric relationships between joint angles and
cartesian coordinates. For non-redundant manipulators, or for manipulators with redundant DOF, numerical
methos can be implemented to deternmine the joint displacements 141,[51. This type of slubition is generally
mouch slower than the corresponding closed-form solution. An alternative solution is the application of Neural
Network Processing for solving the FKE and the IKE.
An approach for the solution of the uifferential motion relationship

i = (.9f/O9q)4 (1)

where a- anrd q are cartesian and joint velocities, respectively, and Off/oq is the rn, x..l Jacobianr matrix J, has
been presented by v(uo and Cherkassky 16). This approach was based on the Jacobian C:ontrol Technique.
A similar approach by Yetung and Bekey [71 shows a Neural Network which learned to control a robot arm
by learning independently the different entries of the inverse Jacobian matrix A roiher approach, presented
by G;uez and Ahmad 14], consisted in a hybrid solution using a Multilayer Feedforward Network to obtain
an initial value and providing it to an iterative algorithm.
The FKE can be expressed as x = f(q) (2)

where f is a continous non-linear function with known parameters and structure, and each joint vector
q(n x 1) is associated with a cartesian vector a;(m ,. 1), and also deals with the solution of the Inverse
Kinematics Equation (IKI ;) q - f '(2) (3)

where this inverse iiapping may lieve many q's associated with each x.
The nai n ubjective in the pap er is to demonstrate the capability of learning differern ttrajectories by usinrig
the HI-'1 Algorithm. The MI LN is trained to learn a particular path (input, vector x ) with Ihe •orresponling
vector q. Tben, the network is testteId with all iinput a,2 , in the same circular pat h as r- '[lie valties for the
output vector q given by the NIL N are very close to the given by the IKE. G, ood results are also obtained
fur the case of the FKE.
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2 Statement of the Problem
A representation for the two DOF manipulator is shown in Figure 1.

y (x,y)

q 2

0
Figure I. Two DOF Planar Manipulator,

2.1 Forward and Inverse Kinematics
For a given joint vector q the corresponding coordinates z and y can be determined by:

x = licosq, + 12cos(q1 + q2) (4)

y = 11sinq1 + 12 sin(q1 + q2) (5)

A closed form solution for q2 can be derived from the manipulator geometry as,

q2 = cos-'[( I + y2- - )/2Lj1] (6)

and q1 can be determined in terms of q2, z, and y as:

q, = tan-'(y/x) - tan- 1 (132inq 2 /(ll + 12cosq2 )) (7)

2.2 Neural Network Learning
A circular path for the 2 DOF manipulator is determined from the expressions:

= rcosl3 (8)

y sing (9)

For increments A/# in the angle [1 (and a fixed r), a circular path is derived. For different Ao0 (same r),
different values for z and y are obtained, and q is determined from the IKE.
The Network can be trained to learn a first vector z, and the corresponding vector qJ. For the same path,
but different AO3, the network is given a vector z2 as input. The MLN output (vector q2), is expected to be
similar to the one yielded by the IKE. Same task is performed for the FKE and the MLN.
Once the Network has learned a specific set of input and output vectors and we make an appropriate
distribution of the values in the desired data universe, this Network can give very approximate output
results for other set of input vectors. This is the main motivation for this paper.

3 Technical Approach
A three layer feedforward Network with 2,4,and 2 nodes for the input, hidden, and output layers, respectively
is used for simulating the FKE. A Multilayer Feedforward Network with 2 hidden layers, 4 nodes in each
one, is used for simulating the IKE. For the case of FKE, q is the input vector and z is the output vector.
The Network is trained to learn the cartesian coordinates for a specified set of joint angles q, and q2. For
the case of the IKE, the 4 layers network is given z as input and q as desired output (training data) , so
the Network learns joint angles for a specified set of coordinates. The BEP algorithm is applied in both

simulations. The BEP Multilayer Simulator is available on the VAk 8530 (Computer Science Dept).
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4 Examples and Results
A set of data for the 2 DOF manipulator (with 11 = 2 and 12 = 1) was obtained from (8) and (9) le'tting r -- 3
and /3 varying from 00 to 900 in steps of 10 degrees. The 2-4-2 and 2-4-4-2 Networks were trained to learn

the FKE and IKE respective'y, for the specified circular trajectory. The MLN learned these training data

very well with 77 (learning rate) equal to 0.9 in both cases. The momentum term constant a was 0.9 for the

FKE case and 0.3 for the IKE case. In the same path (r=3), /3 was incremented from 5' to 850 (A3 = 50)
and last value /3 = 90'. A set of data (z, y) obtained from (8) and (9) was given to the 2-4-4-2 Network just
trained. The results were very approximate to the obtained with the IKE, as we can see in Figures 2 and
3. The maximum magnitude difference is about 0.08 (for z coordinate) when /3 = 900. The results for the
comparison FKE and the 2-4-2 Network are shown in Figures 4 and 5. The maximum difference was about
0.30 (for qi) when a = 600. The training data was mapped to values in the range [0,1] in order to make

more efficient use of the activation function and to obtain better results in trainig the Networks.

5 Conclusions
An approach for the solution of the FKE and IKE has been presented. The solution is based on Multilayer

Network for learning different paths with the BEP algorithm. The simulation results for the two DOF
manipulator indicate the possibility of applying this approach to other types of manipulators. Training
the MLN appropriately yields very good results and can save the effort of computing the FKE anA IKE
each time. Future research tasks will focus on modifying the BEP algorithm and adapt it to the particular

manipulator environment in order to obtain better results.
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NEUROMORPHIC COMPUTING ARCHITECTURE FOR ADAPTIVE
CONTROL

1zhak Bar-Kana and Allon Guez
ECE Dept., Drexel University, Philadelphia, PA 19104

ABSTRACT
A neuromorphic unsupervised parallel distributed adaptive controller for nonlinear systems is

proposed. It is shown to provide bounded tracking and asymptotic regulation following an
arbitrary 'teacher'. A two degrees of freedom robotic simulation example is provided.

1. PROBLEM FORMULATION
An unsupervised distributed parallel computing architecture is proposed for the adaptive control

of nonlinear dynamic systems of the class

x (t) = A(x)x(t) + B(x)u(t); y(t) = C(x)x(t) + D(x)u(t) ()
The proposed controller is depicted in Figure 1 below: It consists of a teacher model which

contains apioii knowledge regarding the desired input/output plant response as well as the
repertoir of reference commands that the system may be subjected to.

U t TEACHER 1.1 PROCESSCON TROLLER U-:

REFERENCE Eq. (2) Eqs. Eq.-E. () UTPU(T
CONTIROL

Fig. 1: Proposed Neurocontroller
The teacher dynamic model is assumed to have the following representation:

xt(t) = At(xl)x,(t) + Bt(x,)ut(t); yt(t) = C,(x,)xt(t) + D,(xt)ut(t) (2)
It is emphasized that the dimension of the model is unrestricted, except that dim(yt) =

dim(y).The parallel distributed adaptive controller has structure similar to the LMS adaptive layer
[Widrow and Stearns, 1985], and to many other neurocontroller architectures [Guez, 1988]. It
receives the input 'features' vector f(ut, x,, y) and generates as an output the process contorl vector
u, where u(t) = K(t)f(ut, X,, y) and where K(t) is the adaptive gain matrix of appropriate
dimension. Each Kij gain monitors the sensitivity of the i-th control loop, namely ui, to the j-th
feature of the system, namely fj(ut, xt, y). The Kij gain adjusts its value independently of, and
simultaneosly with all other gains, according to:

Kij(t) =Mij(t) + Nij(t) (3)

Mij(t) = °ii(Yti - Yi )Yj (4)

d
d--- Ni(t) =- ijNij(t) y ij(Y - yi )fj (5)

where (xij, Dij and vi are positive constants. We emphasize that the adaptation law (3)-(5) is similar
in structure to the Cidrow-I toff rule [Widrow and Stearns, 19851 modified with a momentum
teni. As we show later in the paper, the modified structure also includes a supplementary term
which takes care of the stabilization of unstable system. It is performed in parallel and in a
distributed fashion, that is, the K1l gain only needs data from the j-th feature and i-th
output components. Thus, very [arge scale dynamic systems may be considered for this
controller. The adaptive gains consist of two terms: a "proportional" term, Mij(t), and an "integral"
term, Nij(t). Notice that the role of the teacher (2) is to dcmonstrate to the adaptive controller what
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should be the appropriate and desired response Yt for any specified reference input ut. Since the I
teacher's model is incorporated in the controller structure (Figure 1), it yields the so-calledn
'unsupervised' learning or adaptation.U

For the above described control architecture we use recent results by [Bar-Kana, 1989] to I
show that, under some realistic assumptions, large classes of nonlinear plants of the form (1) with I
adaptive controllers of the form (3)-(5) can perform good trajectory tracking and also guarantee
robust adaptive stabilization in the presence of any bounded input commands and input or output
disturbances. Furthermore, this controller shows good graceful degr-adation ( or fault resistant )
properties [Morse and Ossmnar, 1989].

MAIN RESULTS
We describe below a summary of our main results regarding the performance of the controller

in (3), (4), and (5). We will assume that if the plant is stabilizable the resulting stable configuration
is "exponentially stable," namely that all solutions x(t) satisfy the relation lx(t)I <ct Ix(0)I "3
[Hahn, 1967].

ThIEOREM 1 [Hahn, 1967]: Let the right hand of the equation x (t) =f(x,t) have bounded
continuous first order partial derivatives. Let the equilibrium be exponentially stable. Thcn
there exists a Lyapunov function V(x,t) which satisfies estimates of the form

3) 2 ia1 xt• xtl2,i!2...
1.1)0;1 Ix(tQI <V(x, t) ---c02 Ix(t)I2; 1.2)M(x, t) _<-c• 3 Ix(t)I2; 1.3)-O--i -<•4 IxtI, il

Because we restrict o'ur discussion to nonlinear systems linear in control of the form (1), we
assume that exponential stability of the autonomous system (1), with u(t) -0, implies:

ASSUMPTION 1: Exponential stability of the autonomnous system (1) ,with u(t) 0,
implies existence of Lyapunov functions of the form V(x) = xT(t)P(x)x(t) and derivative of the

form Mx) =- xT(t)Q(x)x(t), where P(x) and QQx) are positive definite for all x e. Rn.
After establishing the basic definitions and facts, we c:an start presenting the properties of the

adaptive controller. The following result shows the stabilizing properties of the main term of the
adaptive controller that we propose:

RESULT 1: Let us assume that the plant

Sx (t) = A(x)x(t) + B(x)u(t); y(t) = C(x)x(t) (6)
can be stabilized by sonme constant output feedback, Ky,. In other words the fictitious closed-loop

sysem s "po..,-.-.-..,"l"'y ostable'" according to assumiption I1. Let us udefile ya(t) = y(t) + Kiy utt),
and use the adaptive algorithm u(t) = - K(t)ya(t) with the integral adaptive gain K(t) = N(t) given

d
by cli i = TiY•~Yaj"This simple algorithm then guaruantees boundedness of all values involved in
the adaptation process, and asymptotically perfect regulation for the augmented system (Fig. 2)

x (t) =A(x)x(t) + B(x)u(t) ya(t) = y(t) + Kyt'u(t) =C(x)x(t) + K~u(t) (7)
The gains reach some constant values which allow perfect regulation[Guez and B,-r-Kana, 1989].

Fig. 2. The closed-loop control system.
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We want to use this stability result in order to implement a stable trajectory-following adaptive
algorithm. Let the teacher generate the desired trajectories that the plant must follow. Let f(ut, xt,

Y)= [ (Yt - y)T, xt , 1]T where the feature vector f(ut, xt, y) uses all values that can be measured,
like the input commands, the teacher's states, and the tracking errors. We are aware that the perfect
integrator used for perfect regulation in result 1 increases without bound whenever perfect
regulation is not possible. Since the nonlinear system includes uncertainties that we do not assume
to know or identify, and since moreover, input and output disturbances may usually be present, we
do not try to prove perfect tracking, which could be obtained in some ideal situation, but
concentrate on the proof of robust stability under nonideal conditions. By "robust stability" we
mean boundness of all values involved in the adaptation process like states, adaptive gains and
errors, and tracking with arbitrarily small tracking errors. Perfect tracking in idealistic conditions is
a particular case of the general robust tracking under nonideal conditions. The term .. OijNij(t) in
(8) and the proportional adaptive gain (7) lead to the following result:

RESULT 2 : Under the assumptions of result 1, the adaptive algorithm (3)-(5) guarantees
robust stability of the system (7) [Guez and Bar-Kana, 1989].

Let us assume that the plant needs some general dynamic configuration to reach stability.
Specifically, let 11: {Af, Bf,, Cf,, Df,} be some LTI dynamic feedback controller that guarantees
that the closed loop system is exponentially stable according to assumption 1. Then we can state
the following result:

RESULT 3 : Let G(O) be some nonlinear system of the form (6) and let H: {Af, Bf,, Cf.,
Df,} be a stabilizing controller under assumption 1. Then, the adaptive algorithm (3)-(5)
guarantees robust stability of the augmented system Ga(-) = G(') + H"I (Guez and Bar-Kana,
19891.

More important, when improper linear controllers H are needed to stabilize the nonlinear
plant, we can use their proper inverse in parallel with the plant. This way, we only use the
knowledge on the existence of an improper controller and actually use a proper configuration in
parallel with our plant. Specifically, as in the case of nonlinear robotic manipulators, PD
controllers of the form H(s) = K(l+qs) can stabilize the manipulators, and if K is very large, we
can get very good tracking in ideal situation. However, in practice we do not want to use
differentiators or high gains in control loops. In our approach we only use the knowledge on theirD
mere existence to implement simple first order poles of the form H' (s)= D-•'s" in parallel with the

plant, where D= KI can be a very small gain. Notice that we do not guarantee any more that the
plant is perfectly tracking, because the best we can obtain is ya(t) = y(t) + Du(t) -> yt(t), although

we actually want y(t) -- yt(t). Still, if the maximal admissible gain K max is large compared with
the gain of the plant, then ya(t) = y(t) + Du(t) = y(t).

ROBOTIC EXAMPLE
The proposed controller (5)-.(8) was applied to the nonlinear robotic system[Desa and Roth,19851:

=X 2 [ *-(2=D')IBJul )xi2(2X3)]/B 2
x =x 2 ; x 2=D 1u1+x2x4 (B1 -B3)sin(2x 3)]+dil(t); x3=X4; X4=[U2-(2[2)(B1-B3)sin(2) 2+

2 2 2 3 2
di 2(t) with D = A,+ mJ3LU+Bl3cos x3+B3si x3, L1  .1 m, A, =.01 kgm , min = .6 kg,

12(t 3i 23 LB1 =.06 kgm2 2 =.01 gm, B3 =.05 kgmr. The output measurements are yj = x1 + d0o(t); Y2 =

x2 + d( 2(t), where di and do are the input and output disturbances. The teacher was given by the

simple decoupled model x11(t) = -2 5x 1(t) + uq1 (t); xt 2 (t) - -25xt2(t) + ut2(t); ytj(t = Xtl(t);

Yt2(t) = xt 2(t) and it was tested with demanding square-wave input commands.

In paralel with the plant (21)-(24) we employ the sup~plementary fccdforward [LBar-Kana,
19891 y.] (s) = 0.01 U1s(s)/(I+s/10); y, 2(s) = 0.01 u52(s)/(l-4s/10). Supplementary disturbances
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dil(t)=5; di2(t) = IC sin (100t); dol(t) = 0.1; d0 2(t) 0.2 sin(120t) were added to check

robustness, and the adaptation coefficients were a., = "i= 100,; Pij = 0.1
Results of simulations are shown in Figure 3. Figure 3a compares the first plant and model

output, and figure 3b shows the second output. Figure 3c shows, for ilustration, the behavior of
the adaptive gain K22(t). It can be seen how the adaptive gain moves up-and-down in order to
maintain small tracking errors. Figure 3d represents the norm of all plant states, to show that no
hidden state diverges. The input disturbances were introduced from the start and their effect is
hardly felt at the output. The output disturbances were then introduced at tL = 0.16sec and t2 =
0.23 s. All values remained bounded while the plant tracked with small errors, although we used
only position (no velocity and no acceleration) output measurements.

W .5

I-IF

Figure 3. Example: (a) Output y,1 (t), yl(t); (b) Output yL2(t), y2(t); (c) Gain K22(t);

(d) Norm of all plant states.
CONCLUSIONS

"This paper. p-resents a ne-rrnorphic computing architecture for ,adaptive control. Starting with
some prior assumptions about stabilizability of the plants it results in a stable unsupervized
architecture. The feasibility of the method is demonstrated on an example of robotic manipulator.
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ABSTRACT

Neunal networks have been applied to many types of machine vision problems. This paper presents a
Hopfield net, a previously little used type of neural network in machine vision, that detects vertical
synrmetry.* Hopficld net has been applied in many optimization problems, including The Travelling
Salesman Problem [4], VLSI cell placement [2], and electric power load distribution [5]. We have
implemented a Ilopfield net which successfully detects mirror symmetry along a vertical axis. The issues
of scaling, noise, and choice of parameters are also addressed.

INTRODUCTION

Most man-made objects exhibit symmetry, however, symmetry can be observed in several distinct levels.
In other words, the definition of symmetry is often unclear. Therefore, it is often difficult to make a
machine recognize symmetry. In this paper, images consisting of sets of segments are used and an image is
considered to be symmetrical if all segments are symmetrical about the Y axis. A Hopfield net is utilized
to recognize pussible yymmcIzuy iii the input scginiens.

The. structue of the problem is as follows: given X, Y coordinates and lengths of an even number of
segments, do these segments exhibit mirror symmetry about the Y axis? (Fig. 1) The difficult part of the
problem is in pairing up possible pairs of segments. Since the order of the segments are random, any given
segment may be symmetrical to any other segment. The Hopfield net solves this pairing problem by
choosing a set of pairs of segments which are most likely to be symmetrical to each other about the Y axis.

Y i th column

Segment # 0 1 2

Valid Group

_ 1h of Paim,

Legt Inva!li GroupLength 3 09 of Pairs

X2. Y2

Fig. I A typical nick input Fig. 2 Network architecture

* We wish to thank Prof. Tomaso Poggio of M.I.T. for first suggesting the symmetry problemn.
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NET ARCHITECTURE

The pairing of segments is performed by treating the problem as an optimization problem. One can define
a function S,

S(segA, segB)= (X !A+X 1B+X2A+X2B+Y 1 A-Y1B+Y2A-Y2B) 2 + (LengthA-LengthB)2,

which is a measure of how symmetrical the two segments are to each other. The output of the function is
inversely proportional to the degree of symmetry exhibited by the two segments. So to pair up all
segments in the input vector, one would minimize the sum of the symmetry function of the pairings that
the net generates.

The architecture of the net consists of a matrix of nodes, each node representing one possible pairing of
segments. Each segment is identified by its position in the input vector. For example, in Fig.2, the upper
left node would represent the pair of Seg. 0 and Seg. 1. In a network that pairs up N number of segments,
N/2 processing elements would eventually be on, identifying the most symmetrical pairs.

Each node receives weighted output of all other nodes, the old input, a bias, and a small noise c:

Ii= TijjO + Ii.old + Bias + E

j (1)

The old input is used to simulate a node with long RC constamt Wilson and Pawley have found that if one
uses a RC constant of 1, oscillation between small and large values occurs.[6] We avoid this problem by
using the old input, with the result of the net converging seven times more quickly. The bias value is use
in conjunction with the B term in the energy equation (see below) to favor N/2 numb- r of nodes becoming
on. The noise is added to help the net escape local minima. The node sums up all inputs and generates the
output through the sigmoid function.

S= !4tanh(A)+ 1.002)
2 10 (2)

1.002 is used instead of 1 used by Hopfield and Tank because if the node converged to value 0 and 1, then
the node with output 0 can no longer inhibit other nodes. However, by having the node converge to 0.001
and 1.001, the nodes with low output can still inhibit other nodes. Also note that I0 determines the slope
of the sigmoid function. 10 would be adjusted as the net converges to speed up convergence.

The energy function that is minimized by the net is presented below:

N- I X-1 N-I X-I

E A, VxiVYj - A. Y VxjVyj
2X i X-jor i-= Y2 X i X-Yandi-j

or X-Yor i-j

N-I X-I+~~~~ -- vX, )2
2 2 X-1 ij.

N-I X-i
+ C-, I Z (Sxi + syj) VxVY

2 X-1 i-4 Xj tnd ioY

and X.Yand ioj (3)

"The first two terms of the equation represent the constraint that given a node Xi, all other nodes Yj that
pairs segments that are already paired by Xi are inhibited by the factor A. This constraint prevents the
invalid solution of having a segment paired to more than one other segment. The third tcnn rcpresents the
constraint that N/2 nodes should be on when the net converges. This constraint prevents all the nodes
being off. The fourth term constrains the net to converge to a group of nodes that exhibit the most
symmetry.
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The weight matrix that would minimize the above energy equation is:

Txi.yj = -A(I- (I- 8xy) (1- 8xj) (I- SYO (I- 5j)) + ASx-y&j
- B- C (1- 8xy) (1- 8xj) (1- 8y) (1..- 8) (4)

where 5ij denotes Kronecker delta function. Both E and T are modified versions of the original function
described by Hopfield and Tank.[4]

The fist two terms restrict the net from having outputs that pair one segment to more than one other
segment. The third term encourages the net to have a total of N nodes on when the net converges. The
last term is a function describing how closely the pairs of segments represented by the node are symmetrical
to each other. By varying variable A, B, and C, different level of performance can be achieved. Much work
has been done that deal with setting these parameters.[3] In this experiment, the parameters were generated
through trial and error. Our experience in setting these parameters will be discussed in the next section.

Akiyama eL al. have shown that random noise and simulated annealing improve the convergence rate and
reduce the number of invalid solutions.[l] In this network, a noise e is added to the input of each node.
The noise is a random value generated linearly between -D and D. The slope of the transfer function of the
nodes is also gradually increased by gradually decreasing I0. The net starts out with very low slope transfer
function, thus the net can search through more surfaces by having analog outputs from the nodes. The
increasing slope then forces the output of each node to become more binary and increases the rate of
convergence, which occurs when all the nodes take on one of the limiting values.

The annealing of the network allows the network to be less dependent on the initial input and seek out the
global minimum while still converge with relatively short number of cycles. Both D and T0 are adjusted
with the hyperbolic function:

Tot - o irdt D _ Dim
1 + t/To 1 + t/T 0  (5)

where t is the number of current cycle and To determines the annealing schedule.

RESULTS

The Hopfield net described above was simulated on a SUN 3/60. Random segments were generated for both
the four segments problem and the ten segments problem.

For the four segments problem, the net successfully paired up segments that were symmetrical. When the
segments were not symmetrical, the net would still try to generate pairs that are almost symmetrical.
Dependiug on how symmetrical the segments in the pairs are, the net may have only one or no nodes on.
Thus, one can detect symmetry by counting how many of the nodes are on.

After the net successfully paired up perfectly symmetrical segments, noise was added to the inputs by first
generating a perfectly symmetrical set of segments, then spinning each segment about its center by a
random number of degrees within a predetermined interval. It was found that by refining the symmetry
function in the energy equation, the effect of this type of noise can be eliminated. For example, when a
segment is spun around its center, its endpoints' X and Y coordinates would change, but they will
compensate for each other, i.e. while X1 and Y1 would increase, X2 and Y2 would decrease. Also, the
length of the segment stays the same. Thus, by emphasizing the length and by summing all X Y
coordinate differences together before squaring, as opposed to using the sum of the absolute value of the
differences, tie noise introduced by spinning the segments can be ignored.

In other words, one can tailor the energy equation to one's definition of symmetry. If equal length is more
important than orientation in determining symmetry, one can emphasize the length component in the
energy equation.
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In the ten segments problem, a lot more possible combinations of pairings can occur. The net parameters
used for the ten segments case are: A=100000, B=400000, C=5, I0=2000000, T0 =2. The nets usually
converges within 40 cycles, which takes less than 20 seconds to simulate on a SUN 3/60. The net
successfully paired up all segments in symmetrical cases. For asymmetrical cases, the net pairs up all
segments that it considers are closely symmetrical. Thus, sometimes the net would have two nodes in the
same column on because it considers the particular segment to be symmetrical to two other segments. This
behavior is due to using a large B value. Variable B constrains the net to have five nodes on at
convergence, so the net picks the five best pairs it can find, even if some segments end up being paired to
more than one segment. One can prevent this behavior by increasing variable A, thus emphasizing having
valid solutions over having 5 nodes on at convergence.

Our experience in scaling up the problem size concurs with Hegde's[3]: the larger the problem size, the
more critical the parameters become. We were able to choose a set of parameters for the four segments
problem easily. However, the parameters for the ten segments problem were chosen by observing the net's
output at every cycle and adjusting the parameter values to avoid oscillation and local minima. The
parameters A, B, and C determine the solution that the net converges to. As mentioned previously,
increasing B has the effect of favoring final states with N/2 nodes on. If we prefer nodes to be on only
when pairs that they denote are absolutely symmetrical, we can increase A. Then only segment pairs that
are absolutely symmetrical would be represented by a node that is on.

We did not have many invalid solutions due to the nature of our problem. When two segments are
asymmetrical, the weights between the node representing this pair of segments and other nodes are large, on
the order of 106. Thus, it is unlikely for this node to be on because it is inhibited greatly by other nodes.
The large sensitivity of 1he weights to the degree of symmetry of the segments makes this p-obleu le.s

prone to invalid solutions.

The value I0 and TO affect how quickly the net converges. When the problem size is increased, 10 has to be
increased as we!l to ensure unsaturated output from nodes because each node receives input from more
nodes. If 10 were not increased, all nodes would saturate right from the beginning, and the net will have no
way of distinguishing between nodes that are less inhibited from others. The result would be that the net
would converge to a false minima where all nodes are off. Too rapidly annealing the net by having a small
TO can also lead to this problem. We usually start with large I0 and To to ensure correct solution, then try
smaller values to improve the rate of convergence.

CONCLUSION AND FUTURE WORK

A Hopfield net has been implemented which can rapidly pair up symmetrical segments. The output of the
net can be passed on to other nets for further processing. The parallelism exhibited by the net enables
parallel implementation in the future which would speed up execution greatly. Rotation and translation
invariance will be implemented in the future to allow broader applications in machine vision.
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Abstract

We offer a method for designing matched filter edge detectors in which a neural network is trained
as a local template operator to detect the location of edges in digital images. The resulting templates
are shown to detect edges of given orientations and reject edges of other orientations better than
other suggested template detectors. A Markov chain model for edge arrivals is presented.

Introduction

In digital image analysis, proper identification of the boundaries between homogeneous regions can
ease computation in subsequent analysis. Edge detection, the identification of discontinuities in the
image, represents one methodology for image segmentation which has achieved success in a wide
range of applications[ 1]. Numerous methods for edge detection exist; most consist of a filtering
step, in which a set of two-dimensional templates or masks are convolved with the image to
produce edge-enhanced image data, and a classification step, in which classification of the resulting
edge data produces a binary image with edges identified. Research in two-dimensional edge
detection has led to solutions which include template matching[2], extensions of one-dimensional
optimal filtering[3], biological analogy[41, and least-squares surface-fitting[5].

Choice of template coefficients for the initial filtering step is crucial for the success of subsequent
edge labeling decisions. Since edge detection is a local operation, coefficients based upon 3x3
template sizes have been offered and include the Prewitt[6J, Sobel[7], Compass[61, and Kirsch[8]
operators. Templates for identifying the eight edge orientations at e = (-135%, -90', -45%, 0%, 450,
90', 135', 1800) for each of the four operators are shown in Figure 1. Each of the templates in any
eight member set constitutes a filter which matches the sloping surface for edges of the particular
given orientation. Their operation loosely approximates a derivative by a finite difference operation
in the direction of an edge and reduces noise in the derivative estimate by averaging data values
along the edge.

While the template operators given above produce peaks at edges, they also respond significantly to
edges with orientations which are +/-45 degrees from the ideal edge orientation. This effect is
undesirable from the standpoint of identifying edge orientation, in which we desire peak output
from only one template filter for a given edge orientation.

We propose a method of two-dimensional filter design consisting of a nine-weight network
followed by a three-level sigmoidal nonlinearity. We train the two-dimensional filter using the
least-mean-squares (LMS) algorithm[91 to detect a particular edge orientation using a finite state
Markov chain which models edge arrivals to the filter. The resulting filters are shown to reject
edges at orientations other than the desired edge orientation better than the filters mentioned
previously. Moreover, this schcme may be applied to real image data to produce tCemplatCs which
are best matched to the aberrations and edge profiles for the particular class of images being
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analyzed. We now describe the filter structure and adaptation scheme.

Network Structure

Figure 2 shows the structure of the proposed filter, which is a single-layer feedforward neural
network with a 3x3 array of weights W, which filters scanned image data X to produce output y.
The output passes through a memoryless nonlinearity and is then subtracted from a synthesized
desired input d to produce an error signal e, which is then used to adjust the weight coefficients W
according to the LMS algorithm,

Wk+1 = Wk + 2 9ekXk.

The nonlinearity consists of a sum of two hyperbolic tangent (sigmoid) functions which have been
coordinate-shifted and amplitude-scaled to produce the family of composite curves shown in Figure
3. The resulting function resembles a three-level quantizer but is smoothly differentiable at all
points and maintains the relationship f(y) = y at the desired decision outputs (y = (-1, 0, 1)) and at
the midpoints between desired output values (y = (-0.5, 0.5)). This three-level form of
nonlinearity is desirable in edge detection for it enables reduction in the number of template masks
used from eight to four, as an edge which has been rotated 180" can be sensed as a maximum
negative output from a properly-oriented template, assuming odd symmetry along the length of the
edge. Equivalently, eight templates could be trained, one for each of the eight edge orientations,
using a two-level sigmoid nonlinearity centered at y=0.5.

Training the Edge Detector Network

A Markov chain model for two-dimensional edge arrivals has been developed for training the
network and is shown in Figure 4. The parameter X determines rate of edge arrival for the
thirty-four-state chain, which for low values of ?, remains in the two no-edge states shown at left
and right. Flow through the state chain proceeds clockwise around the diagram, with the
probability of following any one edge path from one no-edge state to the other being an equally
probable X4 for each of the directed paths. This Markov chain simulates the scanning of an edge
detector across an image and therefore for suitably chosen values of ), can be tailored to model any
rate of edge arrivals to the edge detector.

A desired response for the filter is synthesized according to the particular edge orientation to be
detected, in which case (d=l) is the desired response to a centered positive-going edge of the correct
orientation, (d=-l) is the desired response to a centered negative-going - of the correct
orientation, and (d=O) is the desired response for all other input. Thus, we train the edge detector to
give maximum output only at the center of correctly-oriented edges and to suppress output at
adjacent points in the edge scan as well as at locations of differently-oriented edges.

Results and Conclusion

The above model was used to train two edge detector neural net templates, one to recognize vertical
(0") edges, and one to recognize diagonal (-450) edges, with .=0. 1, P=0.01, and a=20 for 5000
steps of the Markov state chain. After approximately 500 steps, the system attained a low average
error, and the resulting templates were then tested on all states in the chain to see success in
producing peaked output at an edge with the desired orientation, and reduced output to either side of
the peak and to edges with other orientations. Figures 5 and 6 show the absolute value output of
the four fixed coefficient matched filter detectors from Figure 1, the linear output of the neural net
detector y0,, and the nonlinear output of the neural net detector 9k, on a set of ' I templates which
represent either a positive or a negative edge in the state model. All filter output has been-
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normalized by the maximum output for a detected edge for comparison.

As can be seen, the neural net edge detector produces a linear filter which rejects edges of other
orientations better than the aforementioned fixed template filters. For a vertical edge detector, peak
output for a diagonal edge for the neural net edge detector linear output is (.57), whereas the best
linear matched filters produce an output of (.67). Results for the diagonal edge detection case are
similar. Moreover, the nonlinear output for the neural net shows peaked output for the desired edge
and greatly reduced output for points adjacent to the edge and for edges of other orientations; this
rejection aids in the setting of thresholds for binary decisioning on the edge detector output and can
lead to a more accurate edge map which does not require edge thinning.

We present a methodology for the design of edge detector template filters which uses a single-layer
neural net trained through the LMS algorithm on data generated from a finite state Markov chain
model for edge arrivals. The resulting edge detector templates are shown to provide better
classification of edge pixels through the rejection of edges of differing orientations and the
suppression of filter response adjacent to an edge. This methodology can be extended to real image
data to produce matched filters for a given class of images being analyzed.
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Abstract:
Biological/neural processes have long been motivations for better and faster machine

vision performance. Convcntianal machine vision normally makes use of an image that is
uniformly fine in resolution throughout the scene.This contrasts with human visual perception
where the retina forms images that are graded in resolution across the forvea, yielding
forveal and peri/paraforveal images on saccardic movements or on instances of
attentionallforveational image sampling.Instead of considering this multiresolutional
mammalian-retina structure as an undersirable feature, we investigate if such a
multiresolutional forvea-centred (MFC) image could have desirable properties for machine
vision.We present a simple model of machine vision processing for object perception making
use of some of the known anatomical/neuronal and physiological characteristics in human
vision perception.This model makes use of multiresolutional forvea-centred image samples
that enable the model to perform object perception using preattentive and focused-
attentional phases that are characteristic of human object perception.The model also
shows that the MFC image which is basically low-pass channels also provides bandpass
channels on saccadic jumps, though we are not sure how this could be be put to good use. It
will be seen that this model lends itself quite well to a hardware implementation usingi
su'itable optical front-end image acquisition hardware or with digital signal processing
(DSP) matrix convolvers, thus affording a possibly real-time solution to some machine vision
tasks.

INTRODUCTION. engineer systems[Alek84] that can pro-
Neuronal/Connectionist networks have vide real-time solutions to some vision

been used for image processing tasks tasks,using multiple discriminators. The
mainly as pattern recognition, classifica- human visual perception must be using
tion, completion models with the corn- the range of mechanisms of
plete image usually having been segmented neural/algorithmic processing at all levels,
(ie.object/s of interest are available to from the most elementary neuron level to
the network).These tasks can be per- the higher brain functions, that ultimately
formed using higher-level symbolic pro- give human perception this supreme abil-
cessing making use of the associative and ity. Machine vision can be distinguished
generalisational properties of neural-like from pattern recognition,for which much
networks,tor which sometimes, conven- connectionist systems are directed
tional algorithmic machine vision would towards,by the fact that one of the aimns
findsimilar tasks difficult.[Fuku86J. of machine vision is scene description or
However,it would be more difficult to discrete object labeling[Fu1982].There has
use purely neural-like networks to pro- been a growing awareness of the need
cess images containing multiple objects at to incorporate somic of the
low-levels requiring models of semantic neuronal/physiological processes to
segmentation and action- oriented machine vision tasks (robot
processing,that is known to occur vision,visual inspection and object
in human perception (for which algo- recognition) [Marr82, Bar/Ten78, Tani8O,
rithmic machine vision is more capable). Uhr72, Han,'Ris78]. This paper cxamines
Notwithstanding these ditficulties,neural.- how the retinai image in its multire~olu-
like processing with random access tional form can he used as the basic image
memory elements have been used to acquisition model for machine vision tasks
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pointing out some of the advantages and porate a MFC images since the intrinsic

limitations of such an approach, images are of aimed at providing a richer
description of the scene.Such pyramidal

NEURONAL AND BIOLOGICAL structures are then available for faster
MOTIVATIONS. and more robust processing in hierachi-

We are now more aware of neu- cal coarse-fine computations.Although it
"ronal processes in the visual is quite difficult to imagine how the inter-
pathways(Hubel/Wies62]. While research nal image representation in humans
continues to explain how processing is could exist in the form of these distinct
really done at neuron/synaptic level at the pyramidal image layers, such pyramidal
retina,the physical structure of the human structures do avail themselves to
retina is quite well known [Dowling87]. pyramidal/cellular machines for purposes
Psycho-physiological studies,[Triesman7F] of computation.
indicate that human object perccption is
"characterised by two distinct Fhases of THE MULTIRESOLUUl IONAL
Global Preattentional and Local focused- FORVEA-CENTRED (MFC) IMAGE
"attentional mechanisms occuring in most REPRESENTATION.
visual tasks-It is also now quite accepted The Human Retina:Brief background.
that in adult vision,the spatial informa- A simple cross-section of the vertebrate
tion is processed in parallel using a retina shows that the photoreceptors (rods
number of distinct spatial mechanisms and cones) are distributed in a spatially
tuned for orientatiors and size in spatial graded manner with highest concentra-
frequencies [Julesz81]. It is conjectured tions at the forvea area and less of the
here that those mechanisms that provide photoreceptors further away from the for-
humans with such characteristic manner of veal area. At any instance the nnage that
object perception may be related to the is acquired is an incomplete multiresolu-
unique way in which humans acquire the tional image but with a small central area
images of the world as multiresolutional that is at the highest resolution.
forvea-centrcd(MFC)samples. Formulation of the MFC Image.

In this model two MFC images are
RELA.XED MULTIRESOLUTIONAL used,namely the Global MFC (GMFC)and
IMAGES. the Local MFC (LMFC) images

Minsky[Minsky75] advocated the need corresponding to the images obtained in
for a 'planning' proce:,s in problem the global preattentive and the local
solving and Kelly[Kclly7,1 was one of the locused-attwxtoual phases of perception
earliest to use a mutitresolution model as shown in fig I.The GMFC is obtained
for 'planning' to obtain the outline of by generating a multiresolutional image
a human face.Uhr[Uhr72] used the pro- for the whole scene (scene sires are
cessing cones as a model of vision process- 256x256 grey levels of 256 intensity lev-
ing. Tanimoto[TaniS0J used pyramidal els) of 7 rusolutional levels. The LMFC
rnultiresolutioi it image structures to is generated during focused-attentional
perform certain machine vision tasks image samplings and are of 3 resolu-
iFnvolving searches .'tc.One of the charac- tional levels of different dimensions
teristics of the above multiresolutional from the GMFC images.Further the
models is that the image is decomposed computational descriptions provided by the
into distinct layers of a pyramid with each LMFC can be richer (as it is oses a mloi-

layer having a constant reduced resolu- tively small computation window).1he
tion and reduced dimensions being n- structure of both the (3MFC and LMFC
logarithmic to the layer n. Most of these are shown in fig 1. The GMGC image is
models dto not explicitly incorporate a obtained from the original imiage lo~as a
forveal r-:a;olution image in the centre of set of n annular reduced-resolu Lion images
the reroi at'onal images as in the MFC jlg} of resolu[ion r,, a'id area an.
model J1:hough the intrinsic images of (MGFC { Ig l,Ig2...lgn}
Tenuzrnbaum could conceptually incor- each Ig being generated by a
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causal(i.e.single- line scan) of n adjacent a weighted computation of both fine-
pixels in Io,as shown in the diagram level forveal and coaser periforveal
below: The LMFC image is a set of 3 features,giving it a better performance
resolution images representing a image under noise.An example of a LMFC for
area of 27 by 27 pixels but weighted edge orientations is shown in fig 3
according to their distances from the for-
yea centre.The computation results DESIRABLE PROPERTIES OF THE
returned by the LMFC is more complete MFC MODEL.
(ie.includes spectral quantities and spatial The MFC model shows the following
relational quantities of first and second desirable features:
derivatives) as in fig 3. These descriptions a.The MFC model provides a more
fall under two classes: i.a set of values natural way of using global preattentive
called spectral quantities and focused-attentional object perception
(mean,variance,etc) 2.a set of values as is known in human perception.
based on the spatial relationship of image b.The degraded resolutional images are
pixels. (dicontinuities of more gradual in resolution -reduction
edges,orientations,signal-to-noise ratio of than the non-causal models(window of
edge eiements,dominance of edge more lines) of multiresolution reduction
orientations,etc). These returned values as in conventional pyramidal images,thus
are used to provide the actions required giving a more 'traceable'image.
for the forveation process (e.g. where c.The existence of the central undegraded
should the next forveal inspection be forveal image provides a guide in the inter-
located). polational description of the MFC.

d.The LMFC buing of a Nmaller area can
SEMANTIC OBJECT SEGMENTATION. be used to generate a richer,weighted

Semantic object segmentation is essen- description of the forveal region without
tial in obtaining the object of interest (or high computational overheads.
area of interest) from a visually com-
plex scene where non-semantic segmenta- LIMITATIONS OF THE MFC
tion using global thresholding or texture APPROACH.
segmentation may not yield desired The MFC approach for machine vision
results.It represents one of the most essen- is basically based on a coarse-fine-coarse
tial stages of machine visionor pattern relaxational search using hierachical
recognition as it implies the mechanism of model descriptions of the object of
selective attention . A simplified exampnlc interest. it depends on the robu:;tncss
on the use of the MFC image representa- of the model description in performing
tion for a machine vision task of seman- the search and for visually complex scenes,
tic object-segmentation is described below: it may be difficult to generate a good
a~generate the coarse-level and fine-level model description. For real implementa-

description of the model of the object of tion, it depends on the ready availability
interest. of the multiresolutional images that need
b.Generate the GMFC. to be obtained in real-time. Present
c.Using the coarse model and the object perception methods based on

GMFC,generate the likely candidate areas action-oriented searches are not popular as
of interest. pactical machine vision prefers the use of
6J.Perform focus-attentiounal forveation global search methods (eg.Houghi

on the likely area of interest. Transforms) using specifically preen-
e.Match the LMFC with the tine-level gineered sceues. (silhouettes etc).

model of object of interest.
f.lterate from I1 to U Until fail or success. CONCIUJSION.

The MFC" model for machine vision is
"The key to the robustness (0f the above presented as afi cxplMua toly solution where
procedure is that at step d,the richer semantic objects/areas of interest are
descriptions of the LMFC is obtained fromn required to he obtained from a inorc visu-
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Abstract

Directional selective unit or velocity sensitive unit is the mechanism in a vision system
which responds to motion in a specific direction. This paper analyzes a model for directional
selective unit proposed by Barlow and Leveck. This model employs the inhibitory mecha-
nism. Several parameters of the model are defined and examined. The analysis shows that the
range of the response of the unit can be adjusted through the parameters, that the specific val-
ties of the parameters are not as important as the relative values of the parameters, and that a
family of velocity-sensitive units with different ranges can be used to achieve velocity-specif-
ic detection.

Introduction
Directional selective unit, or sometimes called velocity sensitive unit, is the mecha-

nism in a vision system which responds specifically to motion of a certain direction. Usually
the unit has a preferred direction and a null direction. When the motion stimulus is in the pre-
ferred direction, the unit respnnds favorably; when the motion is in the null dirccti-m, there is
no response coming out from the unit.

Barlow and Leveck [1] proposed a model for the explanation of the velocity sensitive
units in rabbit's retina. T'he model employs the inhibitory mechanism as opposed to the exci-
tatory mechanism. The main reason for this is because the observed behavior can be ex-
plained better by the inhibitory mechanism than the excitatoiy mechanism.

In this paper we explore further the Barlow-Leveck model using the approach of pa-
rameter analysis. We define a number of parameters for the model in an attempt to quantify
the model. These parameters are examined with the intention of using the directional selec-
tive unit as a building block for computer vision. The main findings of the study is the condi-
tions of forming the preferred-null directional selectivity. it also demonstrates that the range
of the response can Le adjusted through the parameters and that the ,oecific values of the
parameters arc not as important as the relative values of the parameters.. This knowledge is
needed to better understand the behavior of the inhibitive directional selective unit and its
potential usage in the computer vision system.

The Directional Selective Unit

Two models of directional selective units can be devised. One is the excitatory mech-
anism, such as the Reichardt model 121; the other one is the inhibitive model, to which the
Barlow-Leveck model belongs. Figure. 1 shows a schernatic for the excitatory model, which
works by the principle of excitation coincidence. When the stimulus is moving in the pre-
ferred direction, the response of siensor n on which the stimulus falls at the mornent goes
through a delay ci, to reach neuron ,n-+ I in the preferred direction. During the propagation of

the rcsponsc, the stilus ite';lf is moving to sen:sor n+1 in the preferred direction. When the

tPart of the work rcp rted ifl this p[jxcr was canied out ii ihe EOcLCL D-,'parmeicrii, Cilarkson UJiversity, P otsdam, New York.
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response from sensor n reaches neuron n+l, the response from sensor n+1 may have trav-
eled down through delay c. to reach neuron n+1 at the same time. When this happens, the

total stimulus to neuron n+1 exceeds the threshold, and an output response is generated, in-
dicating the movement is in the preferred direction. Since the two sensor responses will coin-
cide only when the stimulus is traveling under a certain speed in the preferred direction, the
output response is velocity-range specific.

C h E " h

Preferred Null

Figure 1. Excitatory mechanism

On the other hand, the inhibitory model works by the principle of inhibition avoidance.
Notice that the input to the neuron from the neighboring sensor is inhibitory. This inhibitive
signal creates a 'window of inhibition' during which the neuron in consideration is sup-
pressed of any output. When the stimulus travels in the preferred direction, the response go-
ing through the delay e. to the neuron is not inhibited since the window of inhibition is lag-
ging behind. This response is therefore output by the neuron. But when the stimulus is trav-
eling in the null direction, the window is also traveling in the null direction. If the stimulus
falls on the neuron within this window, the output of the neuron will be suppressed.

Preferred Null

Figure 2. Inhibitory mechanism

Parametric Analysis of the Inhibitory Model

In this section we analyze in detail the behavior of the inhibitory directional selective
unit through parameter analysis. First we define the parameters of the model:

d: distance between sensors
v: velocity (positive values for preferred direction, and negative values for null direction)
Eh: time delay of inhibitory signal from sensor to the previous neuron

ES: time delay of response signal from sensor to its corresponding neuron

ch: inhibition recover time, i.e. the time needed for a neuron to go back to the excitable

state from inhibitory state
One dimensional space x is used for the ease of analysis. We assume a stimulus is
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moving at velocity v across the space. When v > 0, the stimulus is moving in the preferred di-
rection; and when v < 0, the stimulus is moving in the null direction. Without loss of generali-
ty, assume sensor Sn is located at x = rid, where n is an integer, positive or negative. The

moving stimulus is at x = 0 when t = 0.
If v > 0, the stimulus crosses sensor S. at ti = (nd)/v. The response of the sensor

reaches neuron N, at ti = (nd)/v + -s.

When the stimulus moves to the next sensor, the inhibition signal reaches N. at t.

(n+l)d/v + eh.

Now if th > tn, the inhibition signal arrives too late, and there is no inhibition at Nn.

Since the motion is in the preferred direction, this is what we want.

Rewriting the condition with model parameters, we have

(n+l)d nd
v + £h> 7sV 1V S

or
d

-V-> Eh.

Here if es < Eh, then Es -- Eh < 0, and for any v > 0, the inequality is always satisfied.

This means we will have the response in the preferred direction as long' as the sensor delay
is less than the inhibition delay.

If on the other hand e, > eh, then v < dI(Es.-h) is the condition to elicit a response at

neuron n in the preferred direction.

For v < 0, the stimulus traverses in the null direction. Note that with the assumption
we have, n < 0.

In this case we have ts = (nd)/v, rt = (nd)Iv + e, and th = (n+l)d/v + Eh. Since this is

in the null direction, inhibition is needed. To inhibit output, we need
th < t n < th + ch

Similar analyses can be carried out for conditions like es - Fh > 0, Es - Ch = 0, Cs- Fh <

0, and es-Eh-ch>O,Cs-Ch-Ch=O,Cs-Eh -ch<O.

The main results

The main results of the ariaiysis are the following:
1) When e. > Ch, v it. the prefer.red direction will elicit output only when v - Ch).

2) In the null dircction, in addition to the condition of P; > E, if - Ch < 0, then

h,- Ch- Ch> --d
El";, - Ck• - Chl

will inhibit output at Nn. In other words,

d _ < d
Fh - Es - Ch Cs - C),

is the raiige a response will be seen at neuron Nt.
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Examples
Some numerical examples are shown here:

1) IfEs = 10, Eh 9 , ch = 100, d = 1, then -0.01 < v < 1

2)IE .1.0, £h=0.9, wth the same ch and d, then -0.01 < v < 10

3) If es = 0.1, Ch 0.09, then -0.01 < v < 100
4) Now if =s = 1.5, and ch = 1.4, since the difference is still the same as case 2 above,

the response is the same: -0.01 < v < 10.

Grouping of the Directional Selective Units
Since each directional selective unit is sensitive to a range of velocities, a family of

these units can be grouped together to give information about specific velocities.
A possible scheme is to use the lateral inhibition to single out a velocity. As shown

in Figure 3, a number of directional selective units are connected through lateral inhibition.
The velocity range of unit 0 is the lowest (-0.01 - v0 ), that of unit 1 (-0.01 - v1 ) is higher
than unit 0 (v0 < v1). The ranges gradually go up to unit 6 (-0.01 - v6), which is the highest
in this example. If the stimulus is traveling with a velocity between v2 and v3, then units 0, 1
and 2 do not respond while units 3, 4, 5 and 6 responds. But the responses of units 4, 5 and 6
are laterally inhibited (treat unit 6 as a special case), only the response of unit 3 goes
through. Thus the family of units have combined to indicate that the stimulus is traveling in a
velocity between v2 and v3 .

High
V6V 4V 3  V2  V1  V0

Figure 3. Lateral inhibition for specific velocity Specific velocity
output

Summary
in this paper we briefly analyzed the inhibitory directional selective units with the in-

tention of exploring the possible usage of these units as building blocks for computer vision.
We demonstrated that the range of response of the velocity selective unit can be adjusted
through the parameters ,, ch, and ch.

Parameter ch can be used to control the null range. We want the starting point of the
null range to be as close to the origin as possible. We also found that the specific values of
the parxameter is not as important as the relative values of the parameters. Finally we
showed that a family of these directional selective units can be grouped together with lateral
inhibition to generate velocity-specific responses.

References
(1] H.B. Barlow and W.R. Lcvick: 'The mcchanism of dircctionally selective units in rabbit's retina,'

Journal of Physiology London, pp. 477-504, 1965.
[21 J.P.It. van Santen and G. Sperling: 'Tempotal covariancc model of human motion pcrccption,

J. Opt. Soc. Ant, Pp. 1024-1028, Septcmber/October 1983.
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Competitive Activation Methods for Dynamic Control Problemst
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Connectionist models often use competition between nodes to achieve a coherent overall behavior.
Usually, these competitive interactions between nodes are implemented structurally with inhibitory
(negatively-weighted) connections. In constrast, with competitive activation mechanisms, competitive
interactions are implemented functionally through the competitive allocation of node output [5]. With this
technique there is often a substantial reduction in the number of links required for implementation and
node fanin/fanout. Unfortunately, developing a specific competitive activation mechanism for a given
application can be quite challenging. Competitive activation mechanisms have previously only been
developed for "static" pattern classification and non-linear optimization tasks [1, 4, 6, 7]. In such
"static" tasks, an input pattern is given, the network reaches equilibrium with an output pattern, and

information processing is complete.

We have recently begun to explore whether competitive activation mechanisms can be developed for
"odynamic control problems where input is an ongoing, varying function of time. In this report, we
describe the first competitive activation mechanism for time-varying control problems and the results of
its experimental testing. The reasonably good performance of this model suggests that competitive
activation mechanisms may have substantial applicability to control problems.

The Camera Control Problem

The connectionist model developed in this research is that of a simplified "camera tracking" con-
trullur. Figure I -iae a pictorial representation of the problem considered here. In this version, there are
three tracking cameras that can move horizontally along the bottom edge of a 15 x 20 array of terrain
locations, each of which can potentially contain a photographic target. The targets propagate as shown
from the top edge of the array (row 1) towards the bottom edge (row 20), within one of the columns. The
targets move downward at the rate of on. location per time step of the simulation clock, modelling enti-
ties whose photograph is desired as they approach and pass under a spacecraft. Each camera photograph
covers a one row by one column field of view in row 20 of the target grid and can move horizontally one
column per time step. The objective of the control system is to maximize the number of targets photo-
graphed. The global constraints can be summarized as:

Cl: Targets propagate one row per time step.
C2: Cameras move at most one column location per time step.
C•: Cameras take a picture when a targeL is in their curret flreld of view.
C4: The number of pictures taken of targets is maximized.
C5: Only one camera takes a picture of a particular target.

In the implementation, three node sets are used to represent the problem: Terrain nodes, Camera
nodes and Position nodes. The Terrain nodes represent the terrain location grid. There is a node for
each grid location. Terrain nodes are active when there is a target at their location in the array. At each
time step in the simulation, activated Terrain nodes pass their activation along to their neighbor in the
next row of the same column. In this way, the Terrain nodes implement the first global constraint of the
problem (Ci).

The Position nodes form three rows, each row being connected to a separate camera. The fifteen
Position nodes of a row represent all the possible positions that their camera could be occupying. The
activation values of these nodes represent the level of demand for camera coverage in that paiticular
column position. The Position nodes in all three rows compete for Terrain node output (described below),
using a competitive activation mechanism.

tSupportnd by NASA Award NAC31-9so and by 1/.' Award I1R-841•40o. Dr. Rrtggla Is also with rapt. of Neurology (UMAIl) and Ulvnlvsity o Mmnrylmnd Institute

for Adv nced C(biuj•er Stuoldr.
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There are three Camera nodes, one for each camera in the control problem. At each time step in
the simulation, each camera 'moves" towards the most active of its Position nodes, thereby moving
towards the column location with the greatest demand for camera coverage. On each time step, the cam-
eras also check (before they move) for a target to photograph in their old position in row 20. If there is
an active target in their field of view, the Camera node turns on (takes a picture), and cancels the target.
Global constraints C2 and C3 are thus handled directly by the Camera node processing.

Competitive Activation in the Network

The last two global constraints C4 and C5 are addressed by the competitive activation mechanism
(summarized here; details in [3]). The Position node competition for the incoming targets is intended to
maximize the camera coverage of the targets, and to minimize the camera coverage overlap.

Terrain nodes use two different activation output functions. They output their entire activation
value to their Terrain node neighbor as described above; the weight on this connection is always 1.0. In
contrast, Terrain node output to a Position node is proportional to the Terrain node's activation level,
the weight on the link to that Position node and the activation of the destination Position node. This
activation method is competition-based since the Position nodes actively compete for a Terrain node's
activity. A Position node's competitive strength is determined by its activation-link weight product, rela-
tive to its competitors. The three Position nodes of a particular column compete for activation output by
each Terrain node in the column.

The exact output at time t from Terrain node i to Position node j is formulated as follows:

ot(tt) = -) Wtf ajt,)
Ytf~t = a~)+6 tid

k

where alt) is the activation level of Position node j at time t, wt.# is the weight on the link from Terrain
node i to Position node j, and d is the Terrain node's distance from the photographic edge (row 20) of the
target array. Output from activated Terrain nodes near the photographic region is thus larger than from
those farther away (due to the factor d- 2), since imminent targets require immediate attention. The con-
stant 6 is a very small number (10-1); it is used to avoid a zero divide situation.

Implementation and Testing Scenario

The camera tracking connectionist network was imp!emcntcd using the general-purpose network
simulation system MIRRORS/Il [2]. Each test run had a duration of 1000 time steps of the simulation
clock. During a simulation, photographic targets were randomly generated at various constant rates (den-
siti,.s) according to a uniform distribution. Performance was measured in terms of the fraction of the
total targets passing by the photographic region of the target array that were pnotographed (row 20).

We analyzed the performance of our implementation by comparing the system performance at vari-
ous target densities to three other measures. The first measure B (blind cameras) is the small fraction of
targets that would be photographed by chance by three "blind" cameras (either stationary or randomly
moving). Specifically, B(t,c) = t*c where tf[0,11 is target density and cf[0,11 is camera density, i.e.,

c=• I for n, cameras and n target field columns. The other two measures represent ideals which the
Ti

model could not possibly achieve, particularly at high target densities. The measure U(unrestrained cam-
eras) estimates the expected maximum number of targets the system could photograph without any con-
straint on the camera movement (C2). The function U is U(t,c) I l iin(n, i)z_ : -/i}. Value i is a discrete

random variable with probability P(i) which follows a binomial distribution 11(n, ). The measure F (for-
tuitous cameras) estimates the expected maximuni number of targets the system could photograph, with
constraint C2 in p)lace but with a fortuitous distribution of random targets (e.g., targets in each row
widely spaced). The function F(derived in [3]) is

It- 3,14
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where i is the number of targets in a row and f, E = >3Fi) + E. /i).
i-O ni-nc

Results

Performance results at various target densities t are shown in Figure 2 for the intact system and for
two odamaged" versions (one camera removed, two cameras removed). Also shown are the B, U and F
values described above (n, = 3,n = 15,c = 0.2). For very low target densities-which would presumably
be the operating situation-the model performed close to the F measure. As target density increased, the
fraction of targets photographed decreased, but so did the F values. Even with two cameras disabled, the
remaining system, having one camera, operated well above the level of performance of the three "blind"
cameras (B values).

Conclusions

When fully operational, the connectionist model performed well at low target densities, suggesting
that competition-based connectionist models may have potential for control applications ini this range.
Even at higher target densities, the system's performance can be viewed as quite reasonable. As noted
above, the measures U and F substantially exceed the true upper bound on performance possible with any
optimal system operating under constraints CI-C5, particularly at higher target densities. The U meas-
ure assumed unconstrained camera movements, while the F measure was derived based on overoptimistic
assumptions (e.g., the targets being photographed at each instance are far apart) [3]. In fact, as target
density approaches 0.2, more than three targets per row become frequent, while at most three targets per
row could be photographed.

The robustness of the model is demonstrated by the fault tolerant performance of the system under
various degraded conditions (excessive target densities; damage to one or two cameras). This property of
fault tolerance is essential in the design of systems which are intended for remote operation.

Future work could investigate a number of possible improvements to the performance level. A
better activation rule, or permitting network weights to be altered during learning, might produce better
performance. An important extension of this work would be to observe the system performance with
other target generation functions, such as interdependent targets and targets which move diagonally.
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A Neurocontroller with Guaranteed Performance for Rigid Robots

Allon Guez J.W. Selinsky

Drexel University, ECE Department
32nd and Chestnut St., Philadelphia, PA 19104

Summary
In this article, we propose and evaluate a neural network based adaptive controller for rigid

robots. The proposed neurocontroller incorporates a priori knowledge of the robot's dynamic
structure so as to provide proven trajectory tracking and parameter identification. A theorem
regarding constructive sufficient conditions for asymptotically stable closed loop learning is stated
and used in the design of Exploratory Schedules (ES). ES are reference trajectories which are
specifically designed to provide efficient learning. In neurocomputing, ES are the training
samples/examples that are used to modify the network architecture during learning. We specify the
ES as a desired trajectory that is to be followed to do learning while the manipulator is not doing
other useful tasks.

Simulation results of a 2 degrees of freedom (DOF) manipulator are given.

Rigid Robot Dynamics
The Lagrange-Euler formulation of rigid robot dynamics [ 1], has the form

t = Y[q,5j,4,10 (1)

where Y[q,Cl,4,tJ is an n x p time varying matrix of known and generally nonlinear functions, 0 is
a p x I vector of constant parameters, T is an n x 1 vector of joint torques, q is an n x 1 vector of
joint coordinates, and n is the number of degrees of freedom.

NeuIrocontj-oller Desiign
When (1) is written in terms of the individual torques at each joint, it can be viewed as a single

layer linear network, where the inputs to the network are the Y,;[.] and the weights are the 0;
[2],131. The Y1j[.1 are transcendental algebraic functions of the manipulators states and may be
realized via feedforward neural networks that are trained with a suitable learning algorithm.

Let qd, ld, qd designate the desired trajectory. Following [4] define the virtual reference
trajectory q., qr' and the virtual trajectory velocity error

lr=Zd-Ae, Z, ir=Zid-Aý, e=et-qk +Ae (2)

where elt] - q[t]-qdIt| is the joint coordinate error, and A is a positive definite matrix with constant
coefficients.

The output of the neurocontroller implements the control law
P

Ti Y i j I q , ý1, + K dii ýri j = 1,2,..., n , (3)
j=l

where • denotes the estimate of 0. Equation (3) has been shown to be asymptotically stablc when
the learning rule

11 - 3.17



n6Jj=- I - Yij [q, 4l,4r, 4ir] 6ri , j = 1,2,... p. (4)

i 1 aii

is used [4].
Notice in equation (4) the similarity to the LMS learning rule (see [5]) where the weight change

is proportional to the error c and the input features X. In equation (4) the input features are the
YiJ[-] functions and the error is ., .

Figure 1 shows the internal structure of the proposed neurocontroller for joint i. Each
feedforward network module is trained to provide one of the Yij[q,4,k,4r] functions. This
training can be done offline since the Yij[q,4,r,,4r] functions are known a priori
and are the same for all rigid robots of the same kinematics and number of
degrees of freedom. The inputs to the neurocontroller are the components of the trajectories as
required. The outputs of the neurocontroller are the control torques to be applied at each joint of
the manipulator.

Closed Loop Learning and Tracking Via Exploratory Schedules
Theorem 1 [6]: If p < n, and if

Rank Y[ qcd14d.' }
1i. t-> 00 (5)

then the controller specified by equations (3) and (4) guarantees global asymptotic tracking and

parameter identification i.e. q(t)-> qd(t), and 0(t) -> O(t).

Lemma 1 [7]: • -> 0 V 0 c Rk, k _ n, such that 0 is not contained in
N Y[ qdq'q'q

Nlira t- ' (6)1'11
where N(.) denotes the null space of the matrix (., and denotes the parameter estimation error
vector. The implication of lemma 1 is that if, k!rn. parameters are not in the ntull space of equation
(6) then the components of the parameter estimation error vector corresponding to the k parameters
are zero.

Design of Exploratory Schedules
Lemma 1 implies desired trajectories (which specify qdAd,•d ) can be designed such that k~n

specific columns of Y[ q dtd'l ] will be linearly independent in the limit. The exploratory
schedule then consists of a sequence of desired trajectories which are designed to learn different

components of the parameter estimation vector 0, where the number of desired trajectories is such

that all p components of 0 are identified.

Simulation Results; 2 DOF Manipulator
The simulation results reported were obtained using exactly computed values of the YiJ.]

functions, rather than the three-layer neural network form. This simulation provides expcrimnental
verification of lemma 1. The dimension of Y[q, C!, C;ri] in the 2 DOF case is 2 x 5 so that p>n,
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and at most 2 parameters can be guaranteed to be learned simultaneously.
The Exploratory Schedule for the 2 DOF mwnipulator (see figure 2) consists of a sequence of

three desired trajectories so chosen as to guarantee learning of different parameters. In trajectory 1,
04 and 05 are learned. The time period corresponding to trajectory I is 0 •_ t < 4.2. In trajectory
2, 03 is learned. The time period corresponding to trajectory 2 is 4.2 _< t < 7.3. In trajectory 3,
01 and 02 are learned. Trajectory 3 corresponds to the time period 7.3 < t 5 10.3.

The time period corresponding to identification of 04 and 05 is 0 < t < 4.2. As can be seen in
figures 3 to 6, the parameter estimation error for 04 and 05 approaches zero as all joint errors
approach zero at t= 4.2. The time period corresponding to identification of 03 is 4.2 •! t < 7.3.
The parameter estimation error for 03 approaches zero as all joint errors approach zero at t= 7.3.
Parameters 01 and 02 are identified during the time period 7.3 < t 5 10.3.

4.
"- - --- " -:d- 7

I - d2
3 .

Yiq 2 ...... ..2... ...... .......... ....

Kaii s

0 1 2 3 4 5 6 7 8 9 10
time (sec.)

figure 1: Neurocontroller structure foi link i. figure 2: Desired joint positions during ES.
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figure 3: Joint position error during ES. figure 4: Joint velocity ri-or during UIS.
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Multiple-Order 11MM Based Speech Recognition Using Neural Network

Isao ltayakawa and Seiichi Nakagawa

Department of Information & Computer Sciences,
Toynhashi University of Technology
Tenpaku-cyo, Toyohashi, 440, Japan

A BSTR ACT
In this paper, a multiple-order hidden Markov model which is approximated

by a neural network is proposed. It is the extension of a sequential network and

is cal led by the name of 'Neural Markov Model'tNMM).

The NMM with two states achieved a comparable recognition rate with feed-
forward type neural network. The recognition rates are 65.4% and 65.0%
respectively on the experiment of speaker-independent speech recognition of

Japanese syllables Eba). [be], [bo), [dal, [del. Hdo) , (gal, [gel and [go).

I Introduction

As the methkds of speech recognition. DR matching and 1IMM have been

established from the past. DP matching allows warps of time sequential patterns

on time domain. It matches a reference pattern which is standard for recognition

unit (for example, word or syllable) with all input pattern by expanding and

contracting tie input pattern non-linearly. This method is powerful for

fluctuatiohts r.f time domain structure of time sequential patterns. but has

we kitcss in the poin: of flictuations of spectral patterns which occur by

teil viduality of the speakers.

11MM captoures and absorbs the fluctuation-, of the spectrum and tine doma in

si ructur,. It describes the recugnix ion units by a probabilistic state machine.
The parameters of 11MM are estimated to absorb the flu:tuations of spectrum and

time domain structure by training samples

For the reasons mlent ioned above. IIMM has advantage than DP matching

principally But if we would like to describe patterns by HMM minutely, because
of increase of parameters. the accuracy of cst imated parameters becomes worse.

Thus. actually patterns should be described by coarse models.

Recently, applications of neural networks to speech recogniition ary1  being

at tc~lptcdl by using its feature ext rac t io ability and learning ability LBut
when we woold like to apply neuraI networks to speech recogn it ion. arise a

pro0b I • n how to deal the time sequent i a I lat t erns and its flex i hi I i ty of time
domain nt r'ucture From this diff iculty. ino cont inuous spee'c recogni it i n systems

"us; lIk net Ura * o , ta I -.. - M;'s L. i C C s y7,te-a, have1 uss-a the neurc.
networks only means; oi leature ext :et {in and then been iroccased based on the

o tie r m e t h eod .; ( I i k e I1M M o r DLP m a t sIt tog ,

A s eqluential network, ant architecture otf neural network intended to deal
t iiei sequent ial patterns by its r I -rreiit structure, has been propose,.d by Jordait

are atlt te.d to speech recoolgnit ion . We tote thgt a sequential inetwork can i1c

ro t; ile red a:; a '; It f Ia r model wi t one 1 state C limM In tht is p)aler, we proposf a it
a rh it c-tu re hlt c It is cal led by the name of Neural Markov Model. It approx I ma tev

"I l tLi I I It 1c o rild e r 1lMM bIy ext e id i n•g a s' tquenit t t a I tie two rk I his node I couis its of

on I y t,.u r ta i1 v t work w i th ltou I us. e ut other t rad i t I ona I met hod or" I oi ia I
, o,110 it , o n t ,W- (Ie r t: b r i le as - o I I "w' t Ithr ic; it I I a o I N NMM a p1) P i 1 c d t ii s l, c e h

F c o Kit i t ; o it o I j ;t pia e1C s e a y I I ahl I :

S. ii m t I a r i t y bet ween Seqi cin t ia I Ne tworK and 11MM:
3
)

I I ir't: I sr wi a seque t it - I it v tw -) r'k w i t t It is e v I ayye r' a. t i ' ,; nie (two r k h a s a

I' t f- r ' iii st I u ".i r c t lit at Ieed c i 'Pa , v ttf' u tj ilt I I lt) itn t I o u t 1)u t Ila ye r to a

Cdto , x tx layer wh i ch , Ie I ot f. 1 to itr' ir t pat lacer . a Ind cac It nl) tr itl t Itho cot t c.x
I y,-f Ita . a ,c I I Iio ( , an d 1 d c oI , t I I I it, t I otililli c1t sit) 1lit c':0 itt x t I a yer I i so .; rd,

It po '1 i i. I t! - d.r ltc o I tt t I of r te.vi 0 ,I :;oas ti te 1 i t, li: i wo t .k Soit • sLt -oe t Itat tlt:

a t I V.1 t I tilt I oV hf I ( I t1:e Ott i l t i l hi tl,. t 1) U I J C ;C wa tI A I a ir ('I t.o 1 0 %lt. v i-t1 thi'

illlu t J'aI t. it a !,'o c Ia I Cs, t o th It Ull , I I. alll, 0o thr ) 0 h, 1 )cc ll I t i3oil r'C5su I t

vh LIII 1 whI I:ifh 0 r " 1' ) o 11i to the Itlaix rli.1Jhl j ,t iValt l oln Va lu V
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IIMM hIis several states, output prohabi it ies arnd transition probabilities.

Transition probability is the probability of state to state transition, and

output probability is the probability that generates a label when the transition
is occurred. The recognition result is the corresponding category to the model
presenting the maximum likelihood.

To consider these similarity, each output unit corresponds to each HMM,
weights of connection among units of the network absorb the parameters(i.e.
output probability and transition probability) of HMM. and the activation of
each output units corresponds to the forward probability of HMM.

Further, since the states of the network at proper time is affected by past
output of the network, the sequential network approximates a multiple-order HMM.

3 Neural Markov Model

The NM M, described in this paper. has several states, arid each state

corresponds to one sequential network. This NMM is intended to built the model
consists of the concateriat ion of these sequential networks trained
independent ly. Fundamental structure of the hlMM is shown in Figure 2. This
network approximates a multiple-order 11MM with two states, and consists of two
sequent ial networks through "connect unit . The connect unit has a self- loop

like a uo it in the context layer, and accepts the copy of act ivat ion level of

the output unit in the preceding network.
Fach of these two sequential networks is trained independently. The connect

unit is trained to control the network behavior uof -active- or "non-active-

Fo r ex a nip I e , sup 1 is e tha t he p rev i ou s network was tra ined to c I ass i fy A-

and -I-V. the following network was t rained to classify "C' and ID'. In case that

the time sequent ial pattern _AD' is given to the network, first, the act ivat ion

Sthe uniT is corresponding to A in t e p pr ccc d i n g nc two rk bccora•es a h i glh va I u c

wIh IC the input pattern belongs to 'A-, and the state of the following network

becomes "act IVC- Next, the input pattern comes to the paart of 'D7. the

actIvat ion value of the unit corresponding to -A begins to down, arnd the

at ivat ion value of the unit corresponding to -D' in the following network
rises

4 Exper iment i

4. 1 Speech Data

The N!MM was appl ied to spe.1ech recognit t ii of Japanese syllailes [baj. tbei,

[ o] . (da .I [ de . [do) , [gal . [gel and [go] These dat a was extracted from 216

words a iii 80 foire i gn word-s spokenu ny 6 ma I e s 1 ieake rs IiU. MA, NO. S-. SN a rid TI

Th,, e sic'h 0 I :,ia 1', wc -i amled Vt i OkrHz ind i rarisfo rmed To 10 coef ctie ent s

of LPC reel cepst rum every Sms by thn: l1l-oriter LI'C analysis TlrainIng speakers of

the networks were IllM, MA, (K aniil S I Two other speakers SN and 1I were used to

test the n)etworks The amount al sylla)les for trainIiig is 2116 and for test is

1 08, respect i ve y

4 2 Ne t wit r P A r v It i It r e ii r ' a rid Tr a I ii ring
The( MN M fo r this task is s[hown I ii Figure 3 SInct'e one basic sequential

ire twit k t, air t i sr ' r ih e l arg, uViii t ptla tI i S by i t s I i [Il itat ion of I ITUmbe 1 of

co llilett i iii. lhrf're ure., we choosev the phoneme for recogni t ioil unl t of a

sequeni ia I networI-k We t Ia ielid two sejqueiit ial networks iindependeint ly Olne

c lass i tI es thle vu , cd cunisonan tn /a I it , I d/ andl /!I I)Gnie t), t lie other t I. e vowe I%

/a , el a/ ii / o / ( Ai( tie t)
Bo t Ih the It106i It and thIe Alt0itne t have 20 i input un i ts, 3 coiitext Uni ts (which

CcTfC i f ' n.I ot s eI f - I ilop is 0 I 1. 10 hi ilderi n u its and 3 output Un its,

r C s p c t i vc: I y 1 Ie r I Iliu t p)a t tCe r H w aS g i VCe n t lie i II mI t I a y' r, r CouplA Ied I ti " f r a Ie,

ariA sti lIed every I t [aie Each output Uo it ioirrcspolids to each [ iphoieine The

a c t i v a t i o in v a I ue o ( t he ou t 1p It u Uh i 1 s wa s s C t t o I 0 w I t, i a ii i nipu iit p a t e rn 1

corn l esi')rol t1 u LIIt Url I aold thie othe'r Uiilt to I S t 0 0 Furtlher, th, ALOl uit has
a C oit oI Icu t a i II t - w i i cI i s t ri 1 1id to t i It l 0oI t lie he Ira Vii i 1 of the ne t w(i kl.

"act i o , r non11 al t I VeV WIN en the tworP i; at i'r v c t It i I two W Lcij C I oll-,

i'V co l ,n11 1 1i all u 1 Ut lie i lli Ut u t I c r it a i, whIc i ni nii a c t i v , t i: c ou t pu t va I ue o I

the I ir toI l' .k Is a V I ' re o
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4.3 Recognition Results

The recognition rate of the BDGnet applied to test data of /b/, /d/ and /g/
was 70.1%, and the recognition rate of the AEOnet was 87.7% on the test data of

/a/. /e/ and /o/

Then these networks were combined with the connect unit and applied to the

speech recognition on the test data of the syllables. The recognition rate of

the NMM became 65.4% for test data (better than 70.1%x87.7%•61.5%). These
results and the results of the other methods on the same task are shown in Table

1. The performance of the NMM is comparable with a feed-forward neural network
which recognizes syllables as static patterns. The NMM has some advantages as

being able to treat time-sequential patterns with variable length and to
construct a word pattern (network) from basic-unit patterns. The transit ifon of
activation level of output units is shown in Figure 4.

The problems of the current NMM is as follows;

*T he e f f ec t of connec t OL i t was no t su f f i c i en t f o r t he targeted f u it c t ion
When the activation value of the BDGnet felt, the activation of AFOnet
also felt. As the counterplan for this problem, the self-loop and it-
coefficient was added to the connect unit. Thus, the AEOnet retained its

act ivat ion value.

*The activation values of the BDGinet did not decrease for the sect ion of
the following vowel In most cases of this problem, the activation values
of B)Ciiet was retained its values on the vowei section(see Fignre 4.

idea I ly. the activation va Ite falls on the vowel sect iol). "iThis was
caused by the fact that vowel patterns were not used for the BDGnet
tra i n in g I f t ite new t r a in i n g o f BDG n e t w i t h counlter categories I i kte
vowels i done, the per formarice of the NMM wi l be imp roved hy comb in ing

w !th AitOnet added self- loop.

5 Conci usion

We have proposed the NMM and showed the prospectivenecs of the NIMM for tinme

!sequenit ial patterns by the exper Iment of speech recognition of Japanesc

s y I I at) I C s
We are going to attempt the word recogni t nit by an improved NMM in nicar

future
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Figure 3. NMM with 2-state:; for Figure 4: The transition of activation
syllables [Ila]. [bc], [bo]. [dai,. level of NMM's output units

T a b l e I : R e c o g n i t io n R a t e s o f s v l ]a b l e -

, t hiods Recogni t ion Con tents

Rate }

NMNrV 65. 4 See Figure 3

Sequent ial Network , 5. 4 Input: 20. Context: 9. Hidden: 10, Output: 9

Feed-Forward 65. 0 Input: 150(for 15 frames), Hidden: 10. Output: 9

11 MM .52. 8 5-state lefI -to right type

Re f c r eii cc•s

I )R 1' l iplll1u1i n "HevIew oi Neural Networks fur St)eech Re CognWition, Neural
('ompu l) u i at i o i Vo I I No I , pp I 38 (I 98 )

2) - Anler, r.ou 4,t a I i)ynia mi c Sp lir c Hrco g 1i t 1on11 wI t h Rcc or re r nt Networks"
"I -'hnii'i , , ReI l rt , Ild i an i la n yev r. i y (1988)

3)11 Bour I a i l alld C J Wi I I kci(, i "L iks t we cii Ma rkov mole Is and mu II i Ila ycr
ti, r,-rp)ti roIl , P're ii t rClid atI INN . Ph i I 1 ', i c S ea relh l. a (198 8)

I1 - 354



The Use of Modular Neural Networks in Tactile Sensing
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Abstract

In this papei, we propose modular back-propagation neural networks to implement a task by separating the tsk
into related subtasks, training a smaller network module to learn each subtask, and combining the modules to form a
network that accomplishes the entire task. We show the advantage of using modular neural networks by using
tactile edge detection as an example.

Introduction
As a neural network grows large, current backpropagation based learning tends to become more difficult due

to an increas.;d number of local minima, speed of learning, anid the CPU time associated with implementing large
neural networks. Furthermore, the internal representation of the learned task tends to be more distributed in large
networks and therefore more difficult to understand--espzcially when the network is unable to learn a task. Smaller
networks learning the subtasks are fa.x;ter in leaining, easier to understand internally, and can be used as building
blocks for different applications. This approach works especially well when subtasks are related; when the
subnetworks are combined the related areas aid in the combining process.

in order to empirically study the use of modular neural netwomks, we selected an application in tactile sensing.
Speci•ically, we are interested in determining the position and orientation of an edge (with respect to a frame fixed
at the center of the tactile sensor) in a thresholded tactile image. This informatioa is important in dynamic ob ject
exploration where the. goal is to fit these pieces of information together in order to determine the shape of an object.

Approach
Figure 1 show, a 4 by 4 grid that was chosen as the input to a neural network. The task is to learn all 2 unit

horizontal (H), vertical (V), +45 degree diagonal (DR), and -45 degree diagonal (DL) lines; based on that training,
the network must identify if the line on the input grid (whinc may be a 2, 3, or 4 uoit line) is a H, V, DR or DL line.

Using standard backpropagation tecbMiques as described in El] and implemented in [2]. we first trained a
backpropagauion network (Network 1) to ientify 2 unit horizontal (H), vertical (V), and diagonal (D) lines--it, this
case +45 degree and -45 degree diagonals were grouped into the diagonal class. The network was able to learn the
t and correc:tly- identify the 3 aid 4 ui•i t Ili x:, Training toOk 1042 epochs to achicve a total error of 0,004 and
8600 epochs to achieve a total error of 0,0001. The nezwork's hidden layer contains seven bidden urits. Figure 2.a
shows Network 1 combined with Network 2 (describec below) combined in paralle!. The input units, hidden units
16-22, and output units 29-31 of the final network compose Network 1; the unit numbers of the original network are
ijentifled in Figture 2a.

"1 o understand the internal representation of the input data, we plotted the activatjon levels for the different
input classes al. examined the conniection weights and biases. From this data we obseried that the network formed
distinct representations for each class of data; furthcnnore, we found ihat other information, such as an indication of
the active row for an H input, was present in the representation. We observed that for diagonal inputs the nctwork
represented right div-gonals on the main diagonal differently (liar, tlose off the main diagona; however, the
representation for % righ,' on-,main diagonal was identical to that for a left off-main diagonal and vice versa. We
observed other interesting tendencies of tie ne:work such as weight combitations; space consideration.; p.e'.'ent us
from describing the other charactenstics further.

We thenonlified Neiwcrk I by adding an additional outpMt. Now the outluts w'.,m to identify if ar. input line
was H, V, DR oi I.)L, again based on leaming the 2 unit input hiues and geuieraliing to 3 and 4 unit input lines. We
perfulimed eiThtr tials in an attempt to traim the netwoik: in each trial we used a difierent set of initial weights to
allow tWe- gradien: dc:'cent plocess to be.in at a difffer.nt init-al point. In each trial the network was only able to
l.arn pavt of th. ta-,k. For e.-iample, ir, one aial the nletw, ork cu-re.,.v identified all H. V. and DR inputs, but
in..orrectly identified all 1)1L inputs; in another trial the network correctly identified all 11 and DI. inputs but
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incorrectly identified the V and DR inputs, and so forth. In each case, the network correctly identified all elements
of one or more classes and incorrectly identified all elements of the other classes.

Next, we added more hiddern units to the network. We attempted four more trials with up to thirteen hidden
units; the network behaved as above. In addition to those hidden units, we added a second layer of hidden units
containing two units. We performed several additional trials with the second hidden layer connected to both the
inputs and the first hidden layer ard with the second hidden layer connected only to the fist hidden layer. Again the
network correctly identified all members of one or more classes, but incorrectly identified members of the other
classes.

The above results do not conclusively mandate that the task is an impossible one. Certainly by changing the
learning rate and momentum parameters in conjunction with the nimber of hidden units the task should be
learnable; however, the results of the above experiments do indicate that this might be a reasonatle tisk to break
into -ubtasks so that the overall task might be accomplished by using a combination of smaller network modules.

Network 1 can identify lines as H, V, and D. Since Network 1 cannot distinguish between diagonal slopes
(which may explain the difficulty in training the network to identify DR and DL inputs), a reasonable separation of
subtasks would be to use that network and onother (Network 2) which can identify the slope of an input diagonal
line as -t45 degrees (DR) and -45 degrees (DL) to form the overall network. Note that these two subtasks overlap--
the D output of Network 1 will be on whb.n the DR/DL outputs of Network 2 are valid. This overlap is useful in
combining the two networks.

Network 2 consists of the sixteen unit input layer, a six unit hidden layer, and a two unit (DR, DL) output
layer. We trained the network to identify 2 unit diagonals as being +45 degree (DR) or - 45 degree (DL). No H or
V inputs were shown to the network. The network took 1484 epoclhs to learn the task with a total error of 0.001 and
7157 epochs to achieve ý. total er-ror of 0.00O01. We rested the network -ith 2, 3, and 4 unit diagon-l inputs and it
correctly classified all inputs. Once again, due to the small size of the network, the internal representations of the
classes of p-tterms were fairly easy to analyze and understand. Figure 2a shows Network 2 (input units, hidden units
23-28, and output units 32 and 33 of tOe final network) with the unit numbers of the original and final network
identified.

To sum: Network 1 learned to identify whether an input was horizontal (HI), vertical (V), or diagonal (D)-
independent of s!ope; the Network 2 learned to idcnti-fy the slope of an iop t, diagonal line as +45 degrees (diagonal
right, DP) or -45 d1egrees (dia'onal left, DL). The nctworks were trained on 2 input units only--both networks
correctly iearned to idenltify 3 and 4 ul'n inputs constiucted from the 2 unit building blocks. Network 1 was trained
on 2 unit horizontai, verticaj, and diago'al lines and correctly identifies 3 and 4 unit lines constructed from the 2
unit lines. Network 2 was trained on 2 unit diagonal lines and correctly identifies the slope of 3 and 4 unit diagonal
lines constructed frcm the 2 unit lines Fse two network modules were then combined to form a larger network_
which accomplishes the, etti.re task of iL.... ,ing 2, 3, and 4 unit H, V, DR, and DL inputs.

Combining Modules
We combied the networks using two configurations. The first is a parallel configuration in which the hidden

layeks were cor iu.ned and the output layers were combined. The "esulting network has five outputs (H, V, D, DR,
DL). Since Networt 2 has undefineA o.utputs for horizontal a'nd vertical inputs, the outputs of the combined network
must be decotied so that invalid states (DR and DL active during H or V inputs) can be ignored.

The second combination netwofi, again combines hidden units but makes the D output of Network 1 a second
hicidvn layer unit. This unit is used to iohibi, (via two added connections) the DR and DL outputs of the Network 2
whenever the inrpit is horizontal or vertical. Thus, no output decoding is necesrary in this configuration--the outputs
of the network are the four desired outpuLs. Using a custom program, we combined the weights and biases of the
two networ" Modulefs in the two configurations above. Figure 2 shows the two combinations with the module unit
numbers and te f c,.Ial unirt numbers are dentified.

There i% an interesting note on the second combination: the D output of Network 1 is active whenever tic
input is a 'ijgonal line. Sino:- that uxtit inust inhibit the DR and DL outputs of Network 2, the sense of the output
rmst be rever-&ed; i.e., I ihou)d (-," off whenever the input iL a diagonal and on whenever the input is 1-1 or V so thaw
DR an- DL- can bk udubited. To accompish this, we sign reversed all connection weights that axe input to D (unit
29 il tLhe final network) amd we rev.rsed the unit's bias. In this manner, inputs that tended to turn on D now turn it
off, aid inputs that tended to turn off D now turn it on when they axe present. Thus D has been "comllnemented" in 4
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sense. We gave the two weights that were added from the D unit to the DR and DL units values that caused the
product of the D unit activation and the connection weight to exceed in magnitude the maximum of all other sums of
products to the DR and DL units and to be of the proper sign to inhibit the DR and DL outputs when D is active.

We tested the two combined networks--each performed identically to the component module networks.
Additionally, we trained the second combination network to provide all zero outputs for an all zero input and the
sixteen possible 1 unit inputs. This took required an additional 174 epochs of training to accomplish.

Training an Equivalent Larger Network
The two modular networks combine to form a network that contains thirteen hidden uni.s arranged in two

layers of twelve units and one unit, respectively. Since this configuration is known to work, it seemed plausible that
one network should be trainable to accomplish the entire task--as was conjectured in the beginning expeiiments. In
keeping with the known working network, we constructed a neural network containing two layers to learn the task.
The first hidden layer contained fourteen units, each connected to all the second layer units and all the outputs; the
second layer contained two units, each connected to all the outputs. The same training patterns and learning
parameters that were used in the module training were used in tiaining this network. We performed three trials with
different initial starting weights ; in each case the network failed to learn the task.

We dien eliminated a number of the connections from the network so that the structure of the network was
nearly identical to the second combination network. The only difference was that each hidden layer contained one
more unit than the combination network. Again, we performed several trials using identical learning parameters as
the component modules; again the network failed to learn the task.

Next, we used the combination network structure shown in Figure 2b. We performed several trials on it with
random initial weights and the same initial weights that were used in trairung the modules. The networic failed to
learn the task using the same learning parameters. However, by setting the learning rate to a lower level (0.05) and
using the initial weights used in the module training, the network began to learn the task. By tweeking the learning
rate as the processing continued, the network was able to learn the 2 unit H, V, DR, DL classes after 1800 epochs
with a total error of 0.005. We then tested the network on the 3 and 4 unit inputs; the network had relatively large
errors on seven patterns (fully activating the correct output but partially activating others as well) and incorrectly
identified two others. Thus its performance was not nearly as good as the combined modular networks. However,
after 80 additional epochs of training on all patterns, the network learned the overall 2, 3, and 4 unit task.

Thus, by tweeking the learning parameters, a network with the same structure as the combination modular
network was able to learn the 2 unit task; however, it did not generalize to the 3 and 4 unit inputs as well as the
modular network.

Conclusion
In this paper we have given an example of using modular neural network techniques. A task (to classify input

lines as H, V, DR, or DL) to be implemented using a backpiopagation neural network was separated into related
subtasks (classifying H, V, and D1 lines and classifying the slope of a diagonal line); these subtasks were each
learned on small neural networks, which were combined to form a network to implement the overall task. Each
module's internal representabiot was a-nalyzed and understood, due to the small number of hidden units.
Additionally, the training of the modules thermselves was modular--the networks trained on 2 unit input lines and
Ti 'n were teteed on 3 and 4 unit lines comstructed from the 2 unit lines. By understanding these modules, their use
"as components in other networks, some of which may take advantage of some of the internal representatiorns not
exploi:ed in the present problem, is tnade possible. Furthermore, knowing the intemal functioning of the modules
allcws them to be adjusted (as in the complementiUg of the D unit in the example) to fit a given need. Once
combined, the res.tlbani network is able to learn additional tasks.

"Ibs work is not an effort to prove that modular networks learn btter tha larger networks, or that larger
networks cnnot learn the same tasks; rather, its purpose is to show through an example how modular ncurid
networks provide a working rietwork wittD componets that ax,2 easily understood in tenu, of their internal
mepre.'rntation aux fir~ct;on. To use modular neu-tral n'tworks ffectively, one ntust Le able to separale the task into
subtawks that are related or indejpendent so that the combination of dWe modules is siraightforward and advantageous
over training an overall network. Modulair tr'ii,?3 rcquiies similar needs.

11,i nodutar neural networks, basic building block-s can be trained for use in constnrcting larger
networks which use :,nilar functions. As a librxay of functions is assimilated, training tibae for larger networks may
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be reduced through the use of the modules. Current applications being explored at Carnegie Mellon Unversity

include the ones mentioned above and control of CMU's Direct Drive Arm 11.
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Classification of Unaveraged Evoked Cortical Magnetic Fields
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1 Introduction

Signal transmission from one neuron to another in the brain involves electric currents. When thousands of
neighboring neurons act together, the currents produce a weak magnetic field that can be detected outside
the skull. The recording of these fields is called magnetoencephalography (MEG). The only sensor sensitive
enough for MEG is the Superconducting QUantum Interference Device or the SQUID. The MEG data used
in this paper were measured in the Low Temperature Laboratory of the Helsinki University of Technology
using the 7-channel SQUID magnetometer constructed in the laboratory [4].

In our experiments, the subject was presented either a low or a high tone pip and was instructed to
respond by pressing a button with the left or the right thumb, respectively. The purpose of this work was to
study the feasibility of classifying individual MEG responses into the two categories with pattern recognition
and neural network methods. Such analysis may prove useful for diagnostic purposes (c.f. [21).

The conventional approach is to use averages computed from a large number ot individuaL responses. As
shown in Fig. 1, this method can result in effective noise cancellation. Note that "noise" here includes all
ongoing brain activity not associated with the response itself. Our approach, however, is to classify single
measurements. While a successful system based on this approach would have many advantages over the use
of averages (e.g., in diagnostic work or in monitoring patients), the high level of noise in a single measurement
data vector makes signal classification very difficult.

2 Data analysis

2.1 The experiment

Our experimental data were gathered during several measurement sessions, each of which consisted of about
100 low-frequency (500 lIz) and about 100 high-frequency (1000 H1z) tones presented in random order. The
magnetometer was placed on top of tie subject's head giving equal weight to the motor cortex responses
originating in the two cortical hemispheres. The data were gathered from 7 MEG channels at a sampling
frequency of 400 tlz for an interval of 1.5 s. We have analyzed responses from two subjects, two measurement
sessions per subject. To study the feasibility of signal classification, an interval of 150 ms (60 points)
following the pressing of the button was extracted from each measurement. We also experimented with the
time interval following the stimulus presentation but the resulting error rate turned out to be quite high.
Probably the location of the magnetometer was too far from the auditory cortex, which is the primary source
of the responses during this time interval [3].

2.2 Preprocessing and spatial filtering

During preprocessing the data from each channel of each trial (600 points) were normalized to unit standard
deviation and a linear trend was removed from the data by subtracting the best least-squares straight line.
Next, the appropriate 60 data points were extracted from the trial.

"Author'3 addrrsa: Roif Nevwtilinn& Ltmtitute: Teollisuuskatu 23, SF-00510 Helsinki, Firdand.
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Figure 1: Single vs. averaged measurements. (a) Single normalized measurements: one trial with a low
stimulus (solid line) and one trial- with a high stimulus (dashed line). (b) Averaged measurements: the
middle solid line is the average of 92 trials with low-tone stimuli, while the middle dashed line is the average
of 94 trials with high-tone stimuli. The data have been shifted so that all responses are aligned at 0 ins. In
addition to the two averages, a,(f), also the quantites ai(t) - bi(t) and ai(t) + bi(f) are shown, where bi(t) is
the standard error of the mean of ai(t). Vertical scale is the same in (a) and (b).

The data were filtered using a noise-canceling filter [7, ch. 12]. Channel 4 (the sensor placed in the
middle of the subject's head) was chosen as the primary input which is thought to consist of signal and
uncorrelaced noise: d(t) = s(t) + n(t). The remaining channels were used as reference inputs x(t) E R 6 to
derive an estimate ii(t) of n(t):

, = arginia j ,•" rD,{ ) - , I,.r( )))}di,

i = IWpt)))

The filtered signal is then d(t) - ii(t). Here f(w; x) is either wTz (a linear spatial filter) or the output of a
feedforward net with weights w (a backpropagation spatial filter).

Next the filtered data were decimated to 20 components by segmenting the data into 20 separate parts
and by calculating the averages of the data inside each segment. The results constitute our patterrn vectors
which were classified with several different feature extraction and classification methods.

2.3 Feature extraction and classification"T . ,i p t T'L..- - I ^- g.. ..

..... to be 5. esmp ature vecbors were obtained by direct
decimation from 20-dimensional vectors to 5-dimensional vectors.

The second feature extractor was designed with the SFS (Sequential Forward Selection) algorithn [1, ch.
5.6] based on maximizing the estimated Euclidean inter-class distance.

The third feature extractor was based on projections on the eigenvectors of the average of the class
conditional covariance matrices, P= C, + P2C,. Here PI, P and CI, C2 are the a pno,-z probabilities
and covariance matrices of the . classes, respectively. If U is the 20 x 20 matrix whose rows are the
eigeuvectors of Sw, i.e., the Karlhunen-Loeve basis vectors, then one can transform the pattern vectors
x G RP2 to y = Ux and apply the SFS algorithm to select the best 5 indices (in the sense of inter-class
distance) from the y vectors. This leads to a feature extractor y = Vr, where V is a 5 x 20 submatrix of
U. The feature extractor obtained in this way was somewhat better than the c t obtained by arranging
the eigenvectors with a standard criterion designed to maximize the ratio of the inter-class distance and the
intra-class variance [1, ch. 9.6].

The 5-dimensional feature vectors were classified using several conventional classifiers (see, e.g., [8,1])
and a nearest-neighbor classifier trained with the LVQ algorithm of Kohonen [6,5]. The linear classifier is
obtained by solving for wi, i = 0,... 5, the (overdetermined) linear least-squares problem

U/0 + tv T 1 for each r: x a design vector from class I
-1 for each x: z a design vector from class 2
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Figure 2: Stopping rule for a backpropagation classifier. Shown are the object function (dashed line), and
classification error rates for the set D, (dotted line), set D2 (dash-dotted line) and an independent test set
(solid line). The aim is to find a minimum of the solid curve when only the three other curves are known.

Feature Classifier Feature Classifier
extr. min. I par. eztr. amin. par.[

lin. dist. Bayes LVQ BP lin. dist. Bayes LVQ BP
Decim. 23 18 22 22 20 Decim. 22 17 22 24 20
SFS 21 21 19 24 20 SFS 17 17 18 18 21
KL-SFS 17 18 18 21 19 KL-SFS 23 18 22 25 21
Ni -- . i i -I i ___,-

(a) (b)

Feature Classifier
exir. Mill. p ar. l

Figure 3: Averages of classification error percent- lin. dist. Bayes BLVQ 13

ages. (a) Linear spatial filter, average over the four Decim. 17 17 17 17 17
sessions. (b) Backpropagation spatial filter, average SFS 15 13 16 17 17
over the four sessions. (c) Session "hi02" with a lin- KL-SFS 17 19 17 14 K 5
ear spatial filter. No extr. I [ __ 17

(c)

The classification rule is to assign an unknown vector x to class 1, if wo + wTx > 0 and to class 2 otherwise.
The tuiiiiinuni-distance classifier refers to a classifier that issigns an uinknown vector x to that class, whose
mean vector is nearest to x. This classifier was constructed both using Euclidean distance d(zy)2

(x - y)r(x - y) and using weighted Euclidean distance d(x,y) 2 = (x -- y)7Sw- (r - y). The parametric

Bayes classifier is the Bayes classifier minimizing the probability of inisclassification assuiiling tile data com11cs
from normal distributions with the class conditional mean vectors and covariance matrices estimated froni
training data. The LVQ algorithm was initialized by first running the K1ohonen feature map algorithm with

zero neighborhood radius on a randomly selected set of reference vectors from the two classes.
The 20-dimensional pattern vectors were classified with a backpropagation classifier-a feedforward net

with 20 inputs, 5 units in the middle layer, and I output. Such a net contains 1II adaptable weights but
we had only about 100 vectors to design the classifier. In this case the backpropagation approach is akin
to solving an underdetermined nonlinear least-squares problem. The error can then be brought down to
zero but then there is no guarantee as for the quality of the resulting classifier. We solved this problem by
stopping the optimization at all early stage. To this end we divided the design vectors into two bets, D1 and

D2 , trained the network with vectors D 1, and monitored the classifying performance of the network with
vectors D2 . We selected those weights that gave the best classifying performance during the minimization
for the set D2 -see Fig. 2 fir an illustration.
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3 Results

The data vectors were divided into two sets: A and B. The filters, feature extractors and classifiers were
designed on the basis of set A. The performances of the classifiers were assessed with set B. Finally the roles
of A and B were reversed. This gave us two classification error percentages per session for the conventional
classifiers, aod by using several random initializations, 10 for LVQ and 12 for backpropagation classifiers.
Fig. 3 (a) and (b) summarize the results and Fig. 3 (c) shows the results for our best session.

4 Conclusions

The particular classification task considered in this paper is difficult because of the high level of noise and
the relatively small number of training vectors available for feature extractors and pattern cla.sifiers. Nev-
ertheless, the results obtained do appear to suggest that pattern classification is feasible. To be of practical
use the error rates must, however, be further reduced. It is our belief that this cannot be achieved by experi-
menting with new feature extractors and classifiers. Instead, more measurements per session are needed and
a better use of the available multichannel information is called for. The considerable variation of error rates
between different sessions suggests that the experimental setup should be better controlled. Neural network
methods appear to be competitive with more traditional approaches. The multi-layer feedforward net is
easy to implement, it can be used in spatial filtering and it combines feature extraction and classification.
However, especially with a small number of training vectors, one has to monitor the training of the net in
ordcr to prcvent over-lea--i'g.
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Abstract

Real-time visual tracking is a difficult problem requiring high speed processing. We have previously reported
a fast tracking algorithm (the Line Correlator Tracker (LCT) ) [1,2] capable of estimating displacement for a
sequence of images using a conventional rectangular sensor. When used with a logarithmic-spiral sensor [3]1
changes of scale can also be estimated. Although the algorithm can be implemented using sequential or parallel
digital processing, a Hlopfield-Tank (HT) network implementation is potentially simpler and faster.

1. Introduction
Velocity computation using neural networks has recently been reported by several researchers [4,5,6,7]. In

this paper a two-layer HT network to estimate 2D motion based on the LCT is described. The HT network is well
suited for small optimization problems. The LCT is used to compute individual row displacements, implemented in
the first layer of the HT network. The second layer is used to combine the individual displacements and then pro-
duces the overall horizontal and vertical displacements. The use of two layers increases the probability of conver-
gence and reduces the sensitivity to initial conditions and to constant parameters. To support the claims, we present
the simulation results on both synthetic and natural images. Due to lack of space, computer simulation on natural
images will be presented at the conference.

2. Line Correlator Tracker
The LCT was developed for real time tracking applications as part of a system with biological vision features.

The system has two sensors, a conventional uniform rectangular grid and a grid of exponentially increasing rings,
conformally mapped to a computation plane by the natural log function. The LCT uses the rectangular grid for
translation in image plane and the log-spiial grid for scaling and rotation about the optical axis. Details of the archi-
tecture and results of simulations are given in [2,3]. For the rectangular grid, displacements in the x direction are
given by

E- I/ - j~7(.~

AX/k ý- (1)
jax (l)),

where I and k are indices within a tracking window of size nx(2rn+1). R and T are two successive image frames.
The overall horizontal and vertical displacements are given by

AX A~xt

AY = k (2)

respectively. The Aik is the average row displacement in the kth column. The index k is calculated by

c = rain . ... o,.A-) (3)

P (y) = - (min = o ))=k (4)

where (Y. is the standard deviation of n estimates for the kth column and f is a one to one function which maps the
Y, to its index k.

The above algorithm utilizes only polint-to-point correlation, not full correlation. It was shown in I I i that com-
putation tinie of 40%, or more, can be saved over toe conventional correlation algorithm. Furthermore, simulatiun
results with real imagcs have shown that the algorithm possesses goodl noise immunity and it can be applied directly
to a tracking window without segmentation.
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3. The Network Architecture

The network is a two-layer HT network. The first layer consists of (2m + I) planes. Each plane contains n HT
networks. There are (2D + 1) neurons in each network, where D is the maximum row displacement. The row dis-
placements are computed by each of these networks. The output of these networks are fed directly to the second
layei. Thbis layer computes the overall displacement based on the outputs of the first layer. There is a single plane
containing (2m + 1)x(2D + 1) neurons in the second layer. The outputs from the second layer are the horizontal and
vertical displacements. Figure I illustrates the overall network. The following subsections describe the energy func-
tions of the two layers.

3.1. The First Layer

The model in the first layer contains binary neurons representing the iow displacement between the two
images. We use nx(2m + 1)x(2D + 1) neurons. For implementation, we discretize the row displacement by letting
-D <5 j5 +D. We also let [Vj]lk represent the state of the jth neuron of Ith row and kth plane. When the neuron [Vjl,,
is 1, this means that the row displacement for the Ith row io the kth plane is i. If subpixel accuracy is desired, one
can simply increase the number of neurons within the tracking window. For this model to function, an energy func-
tion must be developed such that only one neuron within each row is turned on when the network reaches stable
state. The energy function for the /th row of kth plane is given below.

Elk = [vi] Vj -1k '[[V ]k (5)

where

S• = I - .:Rj .. "Rt-; C - " AXRk -T 1; 0 < E5C1
j I aox~+•j (i + k) 2 ' k O<

The first and the second terms in (5) provide row inhibition and global inhibition, respectively. These two terms
assure that there is one and only one neuron "on" for the lth row of the kth plane when the network reaches the
stable state. These two terms are also known as the constraint terms. The last term is the data term or the objective
term. Without this term, a neuron will be on randomly. Notice that this term is taken directly from (1). By manipu-
lating (5) and then equating it to the general energy function given in [8], the weight connection matrix and the bias

First Layc r

k=-1 -Second Layer

k=() n2D Ilopfie' Vertical
k0 ________)______ -----9 Network D~isplacemecnt

InputirnaI V~ i~lp.1Id

Horizontal Displacenient

Figure 1 The Network Structure
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input (excitation term) are derived as
I TidJ Lk =-a(1 - ij)- B

L] [ , . 2 (6)
[Ij A +B -- C'SSt - Q. i]

ik 2

Notice that the quadratic terms ii, the energy function define a connection matrix and the linear terms define input
bias current.

3.2. The Second Layer

The second layer contains binary neurons representing the overall row and column displacements between the
two images and consists of (2m + 1)x(2D + 1) neurons. The horizontal displacement is discretized by letting
-D < j S +D. The vertical displacement is represented by index k. Vkj represents the state of the kjth neuron. When
Vkj is 1, the horizontal displacement is j and the vertical displacement is k. When the network reaches stable state,
there should only one neuron on for the entire layer. Since this is a 2D problem, a 4-dimensional energy function is
required. Using the x and y subscripts as the row indices and the i and j as the column indices, such an energy func-
tion is given by

E=A I- 8;iy + 12V/4l 7E yl v = Z Z vvyj 1-8,YEj - 1) -C IZ Z v' vi (7)

The first term provides row and column inhibitions, and the second term global inhibition, thus assuring that only
one neuron is turned on for the entire layer. The last tenn forces the neuron corresponding to the object translation
to turn on. The V', is the newron output at the !th row of the first layer. By summing up the neurons from the dif-
ferent rows at the saone column for a given kth plane (corresponding to the xth row in the second layer), we can pro-
vide proper excitation for each neuron in the particular location. For example, if I neurons in the jth column of the
kth plane in the first layer are all l's or nearly all l's (few O's), then the output of the neurons in this column should
have a minimal standard deviation. Thus, it is appropriate to add the sum of all neurons in this column to the excita-
tion term at xi position, where x indicates the corresponding kth plane and i is the index to the column which
corresponds to the most consistent estimates (the column whose standard deviation is minimal). Through similar
analysis as in the first, layer, the weight connection matrix aid the bias input are derived from (7) as

T~i~y A = [ 1-A 5 I 4,,j -B

l ,i = B + C [v'i1 (8)

As can be seen, the weight connection matrices for both layers are fixed and independent of image sequence
frames. Thus, once the weight matrices are set, they can be used for the entire tracking task. hi addition, the constant
,A., B, and C for both layers are also insensitive to the image sequence frames. Motion estimation is carried out by
neuron evaluation. Each neuron asynchronously evaluates its state and readjust itself according to the sigmoid func-
tion in [8]. The network proposed here calculates the motion based on each individual row of the image. Thus, the
size of the network representing the row is relatively small. This increases the convergent probability of the net-
work. In addition, the output of neurons is not sensitive to their initial states. The simulation results shown in the
next section support the claims.

4. Simulation Results and Conclusion

To simulate the network, the differential equation shown below is used.

dUtt-+ U Z'",j+(9)

Equation (9) was numerically integrated using the simple Euler method. The constant values are
A =500, B =200, C =50, and E=0.03 for both layers. A binary image used contains 9 different objccts whose motion
directions and actual displacements are given in Table 1. Figure 2 illustrates ihe, two successive frames of the
image. Notice that small portions of object (8) arid (9) are occluded. The occlusion is allowed in order to test the
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robustness of the network. A tracking window of size 10x9 was used. That is, there are 10 HT networks per plane
and 9 planes in the first layer. The maximum row and column displacements were limited to 4 pixels. Consequently,
there are 81 neurons in the second layer.

Obie Moving Acmai Eszumau
Number Direction[ Dispiwnait Disicomnei

(1) SP (3.2) (3-2)
(2) SE (2.1) (2)
(3) SW (-1.2) (-1.2)
(4) Sw (-'22) (-2.2)
(5) NE (2-4) (2.4)
(6) SE (2.4) (2.4)
17) sw (-2.3) (-_23)
(8) NW (-2,2) (-L')
(9) SE (2.2) 12,27)

Figure 2 The First aaid The Second Image Frames Table 1 Simulation Results

As shown in Table 1, the erdimated displacements for every object are very a,,curate despite of occlusion for
object (8) and (9). During the simuiation, we also found that the network seems to converge rapidly (less than 50
iterations) and also that it converges to the correct displacement every time regardless of initial conditions. In addi-
tion, the convergence seems to be less sensitive to the network constants. However, for a large displacement or a
large percentage of occlusion, the network either converges to an incorrect state or does not converge at all. For a
larger value of constant C (100 or larger), the network seems to converge faster, but sometimes it converges into an
incorrect state. We believe that, for a large value of C, the objective term overwhelms the energy function, thereby
not assuring a valid result.

Acknowledgements This research was sponscred by the Strategic Defense Initiative Organization through the Air
Force Armament Laboratory and the US Army Strategic Defense Command.
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ABSTRACT

An artificial neural network is used o ;.nodel the characteristics of a system con-
taining multiple input-output mnppin•; in a dynamically changing environment.
Biological properties for learning ai, d:-.ta representation have been used wher-
ever possible. These include Lopcicgy preserving mappings, logarithmic input
representation, and localized sensory data. The network learns to achieve a goal
based on the current state of th- sy bem. The network is capable of producing
the desired control signals even thl,, 1 it must deal with delayed performance
evaluation, incomplete input ,;pecifi- ation and non-linear functions.

INTRODUCTION

One of the problems with tiadi;onal approaches for modeling a system is an
incomplete input-output rneciiication. For a system of any reasornable size, it
is impractical or impossible to provide complete mappings of the operating en-
vironment. By using an extension of Kohonen's sclf- organizing feature maps
[1] and proper input representation, a more robust system can be developed.
The system is capable of achieving its goal even with random trajectory start-
ing points in previously untrained environments. The network outlined in this
project uses a centralized view of its environment. The environmental informa-
tion is obtained as if the sensors were mounted in the robot. This is important
since precise fixed frame of reference information could be difficult to obtain
during run time processing as is the case in real animals.

THE AUTONOMOUS AGENT PROBLEM

The goal selected for this project was the control of a "space-lander" or iso-
morphically an autonomous undersea vehicle. A one dimensional system of this
type was outlined in [2]. The goal of the network is to safely land a space craft
in a two dimensional space. Safely in this case means with a minimum vertical
velocity and within a minimum distance of a randomly selected base location.
Mountains having random location and height are placed on the surface of the
planet to complicate the landing. One possible starting environment is shown
in Figure 1. The network is to select the proper value for four thrusterb which
determine movement in two directions.
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A X A - LANDER
X B - BASE
X I - MOUNTAIN
X X

X X X
X X X X
X X B X X

Figure 1 - Initial Environment

One pair of thrusters control the vertical path of the craft and the other control
the horizontal path. These thrusters can range in value from 0 to 9. The gravity
of the planet and the variation in the mass of the craft due to fuel consumption
are implicitly accounted for in the simulation.

INPUT REPRESENTATION

There are e2ight input variables to the network. They are : Altitude, Distance
to Base, Angle to Base, Distance to Mountain between craft and base, Angle
to Mountain Top between craft and base, Magnitude of Velocity, Angle of Ve-
locity, Distance to Closest Mountain in current path. A distributed value-type
representation of the input was constructed. Figure 2 shows an example with
%aItLudu equal W 135 (izax wum 250).

Example : ALTITUDE = 13S TOTAL RANGE [0..250]

0 0 0 .3 .7 1 .7 .3 0 0

1 2 3 4 5 6 7 8 9 10

Figure 2 - Smeared Input Representation

In order to have better resolution on the critical variables, such as Distance to
Mountain, a logarithmic distributed representation is used. In the current im-
plementation Altitude, Distance to Base, Distance to Mountain between craft
and base and Distance to Mountain in current path are all represented log-
arithmically. Each of the distributed input variable vectors are concatenated
together to form one large vector that is 80 cells long.

OUTPUT MAPPING

Two self-organizing 15x15 Kohonen networks are used in a hidden layer of the
model. One for coarse control and one for fine control. Only one of the networks
operates for any given input. The coarse control is used if the craft is greater
than a threshold distance from the base, and the fine netwk~rk is used if the craft
is less than the threshold distance fronm the base. The learning of the network
and the modification of the thruster maps is similar to the rule used by Ritter
[31 to learn Visuornotor-Coordination. The error-correction rules are
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new old old
W W + ETA( X - W ) (1)
r r

new old old
0 =0 + ETA( T - 0 ) (2)

r r r

where W = weights, X = input vector, 0 = output value, and T = desired
output. The r subscript denotes the winning neuron. Both the network and
the thruster maps have their neighborhoods adjusted to preserve topology. The
simulation program is run by a human teacher (i.e. pilot) and the events of the
flight are recorded including pilot selected thrusts.

One objective of the system is to provide for robust operation with mini-
mum training. Although the exact number of training vectors needed can not
be determined, an incremental approach can lead to an acceptable solution with
a minimunum number of vectors. Training may start with five successful landings
and then testing performed. If the behavior of the system is inadequate re-
training with 10 landings can take place and so on until the desired result is
achieved. Twenty successful landings generate approximately 500 unique input
vectors for this project.

An interpolation process is used for inputs that do not match a winner well.
Since the sample thrust map is topologically order even with only a few training
trajectories linear interpolation is advantageous. A sample thrust map showing
topographical ordering can be seen in Figure 3.

2 0 2 2 2 5 4 2 3 -1 -1 0 3 3 2
0 2 2 2 1 3 3 6 3 -1 -9 1 4 3 2
0 1 3 3 3 2 0 2 0 -3 -4 -1 4 3 3
0 0 3 3 3 2 2 3 4 0 -5 -1 1 1 1
3 4 3 3 3 3 3 3 4 5 0 -3 ? -1 0

7 5 2 4 4 3 3 4 4 3 2 -1 -1 -1 0
5 4 3 8 4 3 9 6 2 2 2 1 2 1 1
5 5 3 3 2 2 6 3 3 1 2 2 2 2 2
3 4 3 2 2 2 3 2 0 0 3 2 2 2 2

3 3 5 3 2 3 2 1 1 0 3 2 2 2 2
2 3 2 3 2 2 3 2 2 2 2 1 3 2 4
3 2 3 2 2 9 2 1 0 2 2 3 2 9 3
2 3 2 2 3 2 2 1 2 4 3 2 3 3 3
3 3 2 1 2 2 2 0 1 2 2 3 2 2 0
3 3 3 5 2 2 3 1 0 2 2 3 1 2 1

Figure 3 - Sample Thrust map.
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RESULTS

Currently a 100 percent success rate has not been achieved. The network's
average error on training exemplars is less than 0.5 of a thruster value. Some
trainings produce as little as 0.1 average error. These values are dependant on
the number of unique input vectors and the artificial decay rate ETA. The lander
with coarse and fine networks and logarithmic input mapping has been able to
achieve a 50 percent success rate. This is with totally random initial conditions
including altitude, velocity, mountains and base location. A successful landing
is one where the craft impacts the surface of the planet with less than 15 units
of velocity and within 20 units of the base, There were no successful landings
without the coarse and fine networks and modification of thrust based on input
distance from the exemplar. It should be noted that even in the unsuccessful
landings the network is never behaving eratically. The thrusts selected appear
to be appropriate, but simply not adequaLe. It is believed that this can be
improved with greater input resolution and a larger network. A slower decay in
ETA may also improve performance.

CONCLUSIONS

There seems to be promise in the use of artificial neural networks for black
box control problems. Any system with arbitrary input-output mappings can
be learned with the architecture outlined. There is a direct improvement in the
topology of the output map with an increase in the magnitude and radius of the
input magnitude of distributedness. The distributed representation outlined in
Figure 2 produces an average distance of adjacent neurons of approximately 0.2
(maximum distance = 1.0). The average distance without any smearing is about
0.5. The method outlined holds promise for systems with multiple outputs based

on the same inputs. Each output need only have its own output variable map
in parallel with the networks output map. This reduces computation tir.e to a
simple look up for each desired output.

The system outlined here is complex with multiple dependacies. Its solution
should provide insight into the develomnent of systems for real applications.
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A multi-layer neural n tAwork model is presented which is able to distin-
guish distorted multi-spectral signals in noisey environments. Discrimina-
tion is by signal shape recognition and not by Fourier trantforms. Theie-
fore in contrast to most other signal recognition models recognition is by
visual means rather than auditory. The model is a sirrulation of the visual
retino-cortex system and employs Iccalized recepti.,e fields, lateral inhibi-
tion utilization in both learning and recognition and multiple resolution.
Localized inputs and lateral inhibition incurs speci.i pro;lems in learning
and these are described.

Introduction

Many times signals are distinguished by visual means as opposed to auditory
means. Often times isolated features are sought for and are more distinguishable
visually bectuse of the segmentation and localization capabilities which are
highly developed in the vision system. Multi-layered localized receptive field
neural models of which Fukushima's Neocognitron [i] is most notorious offer a
high potential for excellent visual recognition. For this reason we have developed
and utilized such a model for multi-spectral signal recognition. The network has
previously been used in the recognition of patterns of spatially related objects
and has been described in Jakubowicz [2]. Since that version we had increased
our recognition capabilites by modifying the learning rule. This learning rule

"Spormored by the Air Force Office of Scientific Research/AFSC, United States Air Force,
under contract F49620-87-R-0004.
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requires a system of localized lateral inhibition and incremental activation via
differential equations. In simulation the model is capable of recognizing 18
distinct multiple-spectrum signals. Since the model has been described in the
earlier paper [2] we will present only a summary of the network architecture
here and then procede to describe the lateral inhibition.

The Multi-Level Multi-Feature Localized Recep-
tive Field Architecture

The network architecture consists of 5 levels of neurons which have localized
5x5 receptive fields. Each level consists of 100 two dimensional planes, each of
which contains neurons sensitive to only one feature. The input plane consists of
three feature planes, one for each sensor. In the simulation to be described the
input has 289 pixels arranged in a 17x17 grid. One dimension represents time
and the other signal amplitude. There is an approximately two to one increase
in receptive field size as the signals propagate up the levels which means the
number of neurons at any level is approximately cut in half at the next higher
level.

Each lev'el contains two layer of _-lnes. A US plane intecrates inputs from
all planes in the preceding level while a UC plane merely performs a spatial-
temporal integration (spatial-spatial in vision). In some instantiations of the
model the third level only contains 25 planes or features. The top level con-
tains only 18 nodes which are taught with a teacher to identify complete input
patterns: this is the recognition level. Learning of all levels other than the top
one procedes via the usual Kohonen self-organizing feature map methods. A
diagram of the architecture is presented in figure 1.

Lateral Inhibition in Localized Receptive Fields

A major disLincLiu. . f i.atu..a. vis.on. syste.s is the p n localized ..f.. I
tive fields and localized lateral inhibition. The ranges of each neuron's local re-
ceptive field and independently their local lateral inhibition always overlap with
those of many other eighboring neurons. At each retinotopic location ther is a

column of many neurons each of which is sensitive to a different input feature.
Biologically synapse growt, is commonly believed to occur by either chosing
a winner within the columns or by using a non linear Ilebb related law where
the stronger I/O correlations produce a much greater change in the weights and
the weaker produce virtually no change. However since neurons at an adjacent
spatial locations (same hypercolumn according to the Hubel and Weisel conven-
tions) have close to the same receptive fields and there are thousands of neurons
in a hypercolumn many neurons will be feature detectors for identical features
which are merely displaced by one or two cones (when projected backwards to
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the retina). This results in an extreme inefficiency of natural resources which is
contrary to nature in systems with limited resources. This has been the reason
that ANS modelers choose only one winner in a hypercolumn instead allowing
one in each column (see Fukushima's Neocognitron or Jakubowicz's Visually
related Situational Analysis System). Each of these two systems has rule-based
approximate methods for choosing a winner. However the Neocognitron method
for selecting winners doesn't work for analog inputs or images with regions of
varying luminance and the Situation Analysis selection process still has a finite
degree of redundancy.

Therefore we've considered a closer look at biological systems and propose
a more biologically accurate solution. The network's performance is not limited
by analog signals or images with non constant regions of luminance as in the
Fukushima hypercolumn model, nor by partial redundancy of feature detectors
as in the symmetry selection rule. Instead we have good capability in analog
images and in regions with lower output or luminance. This obliterates the
problem of redundancy in the form of features which are merely translated in
the window.

The resulting system consists of localized inhibitory fields which tend to
produce only one winner in a spatial neighborhood and feature column.

Simulation Example

We have simulated the architecture described above with incremental activation
differential equations, lateral inhibition and the learning rule referred above on
a SUN 4 computer. Eighteen signals were taught to the system, each of which
had inputs from three different types of sensors (e.g. microwave, infrared and
ultraviolet). All eighteen were recognized correctly, even when slightly distorted.

In the top line of figure 2 we illustrate the infrared components of four of
the signals. The microwave and uiraviolet components were of comparable
complexity. In the next four lines of figure 1 we present the outputs of four of
the eighteen output nodes in the form of hitogra.r. Proper identific ation of
each of the signals is evident from the histograms. The outputs of the other
fourteen nodes have small or zero activation values and were not illustrated
here.
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Superresolving Neural Network for Deconvolution

Peter A. Jansson
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Results of spreading and blurring phenomena encountered in science, engineering ano
analysis may be described by the convolution of two functions. One of these functions character-
izes an original object or time series as it would be observed in the absence of spreading. The
other describes the spreading process. Frequently, one wishes to recover the original object, given
only the spread function plus the image or smeared data. We show how this may be accomplished
by processing the image with a mulvilayer, feed-forward higher-order neural network containing
sigmoid nonlinearities. Because of physical re",izability constraints imposed through nonlinear
processing, this network is capable of restoring frequencies in the image that have been completely
obliterated by a band limiting spread function. Although the principle of this network1 was shown
in 1968, the relationship to the connectionist viewpoint has not been previously demonstrated.

Convolution and Deconvolution

For illustration, let the object of interest be a function of one independent variable, a hy-
pothctical spcc--•m,.-,(x) as it would be obscrved by a p.rfectly resolving spectrometer, and let s(x)
be the spread function, where x is the independent variable of measurement such as wavelength or
wave number. The image or observed spectrum is then described by the convolution intcgral

i(x) = f s(x-x') o(x') dx'. (1)

A large literature2 exists on the extraction of o(x) given i(x) and s(x). The classic solution
is given by inverse filtering. In one expression of inverse filtering, the data i(x) are convolved
with a function y(x) to obtain an estimate o(x). The optimal filter is the Wiener inverse filter.2 No
linear restoration method can yield a better result than this when judged by the minimum mean-
square-error criterion. The Wiener inverse technique can be applied to time-series data by em-

piomga Smpe tppd dla lie r sit rgi.ster, an to' imgswt Loeent optic;
Deconvolution employing such linear methods has enjoyed only limited success. Its diffi-

culties are legendary. One of them is extreme sensitivity to noise. Small contaminants in i(x) give
rise to great uncertainty in o(x). Spurious solution components appear that are not possible in the
physical context represented by the data. Furthermore, the blurring process is often band limiting:
frequencies beyond a certain cutoff are removed from the data. Good results require restoration of
the lost frequencies. Although at first glance this seems to be impossible, it has now been clearly
demonstrated with a number of nonlinear tethniques3 that employ additional a priori knowledge.
It was the effective use of such a priori knowledge, beginning with the principle employed in the
present research, that has widely extended the practical application of deconvolution. 4

A Nonlinear Solution

Equation (1) may be sampled and gi icn the discrete representation

S1 -1n on. (2)

m

1II- 375



It has been shown1 ,2 that superior solutions for o(x) may be obtained by making use of the
knowledge that solutions rnmast be physically realizable. For absorption spectra, o(x) may only as-
sa-le values between abscorltance bounds of zero and one. Such physically-bounded results are
achieved by modifying a traditional linear iterative method used to solve the above set of equations.
In the traditional method (successive overrelaxation), estimates of the object o(x) are given by

Sn(k+1) = k+ JL iD Sn- an o (k+l) - (k) (3)
m<n mýn

Here, K is a constant coefficient that weights the correction terms applied to the 6n(k) with each
iteration. The first estimate On01) is usually taken to be in for n over the range of the data. In the
original research, it was observed that samples of the solution in the physical region near the bound
needed relatively little correction, and that samples in the middle of the physical region would
benefit from more adjustment. Samples in the unphysical region would require correction with
sign opposite to that given by the linear method, in which unphysical components grow with suc-
cessive ite-rations. Superior restorations with no unphysical components were obtained by replac-
ing the constant weight K by a function of On(k+l) in order to meet these requirements. The non-
linear function chosen was K[&n(=)] = K (1- 2 1 6n(k) - 1/2 1 ) and is illustrated in Fig. (1).

The Neural Network

The deconvolution process may be implemented in either analog or digital hardware. 5 In-
put time-3eries data are clocked into an image-data shift register from the right side as illustrated by
the top row of triangular symbols in Fig.(2). Convolution (symbolically "0") by spread function
s(x) is inpl,.mented by applying weights represe.ted by co..ic.t.iis slowublow the shi.i r.gis-
ter. For purposes of illustration, the trivially simple case of a three-sample spread function is il-
lustrated. Also note that a true discrete convolution is illustrated for simplicity (simultaneous
o-errelaxation). The summations in Eq.(3) employ contributions from both the (k)th iteration
samples and the (k+l)th iteration samples ksuccessive overrelaxation). With either simultaneous or
successive methods, a linear PE (processing element), shown where the connections from the shift
register converge, forms the sum and passes it to a siglra-pi unit. 6 At the sigrna-pi unit, the sum
is multiplied by a signal from tho shift register that has passed through a PE having the nonlinear
transfer characteristic K[ink]. The product is summed in the sigma-pi PE with another signal from
the input data shift register. Resultant values transfer to the left in a new shift register with each
clock pulse. In this new shift register, the values are available for the convolution require.d by the
stage below, which represents the next iteration of Eq.(3). The design of the rest of the neural
network follows this example, one shift-register layer corresponding to each iteration requircd.

In the implementation described, there is one sigma-pi unii and one shift register pei layer.
Alternatively, the top row of Fig.(2) could represent a row of linear buffers operating in parallel
and receiving parallel data. Beneath them would be a layer of linear summers, a layer of nonlin-
ear PE's, a layer of sigma-pi units, and so forth. Although we have thus far considered one-
dimensional data, the analysis is readily extended to higher dimensionality. In two dimensions, for
example, we draw the analogy with biological retina. The first layer of linear summing PE's
yielding i - s 0 8(x) is indeed like the visual opponent-response receptive field. Thus, even in this
first stage some sharpening of 6(x) occurs. It is interesting to speculate on the degree to which the
biological analogy could be carried to higher stages of vision. Humans ad have the capacity to in-
fer the underlying sharp content of blurred images.

It is also noteworthy that the nonlinearity employed may be expressed as the first derivative
of a sigmoid-shaped function of spliced parabolas (Fig.(3)). Specifically, we may write
Kc(6) = do(6)/d6, where cv(6) = Ko06 2J for 0<1/2, and u(3) = -wo[ 2-2 +1/2 ] for - > 1,2.
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Over part of its range, a(6) is qualitatively similar to exponential-based sigmoids 6 used in back
propagation and other network paradigms. However, it loses its monotonicity in the region
representing unphysical solutions. This characteristic is responsible for its effectiveness in
enforcing the bounds and may be useful in other neural-net paradigms.

Simulation

The network was simulated on an Apple Macintosh II computer. An absorption spectrum
object containing two pairs of closely spaced lines (Fig.( 4)) was syn:hesized. The absorption co-
efficient profile was chosen to be Gaussian for each of the lines. The large peak absorption coef-
ficients of the leftmost two lines gave rise to considerable saturation and some peak flatness when
the absorption coefficient was converted to the illustrated absorptance via exponentiation. The
spectrum was then blurred by band limiting its Hartley 7 transform with a triangular transfer func-
tion. Frequencies beyond the cutoff were set to zero.

Because simulations of even inferior methods with noise-free "data" can give unrealistically
good deconvolution solutions, uncorrelated gaussian-distributed random noise of 0.25% of full
absorptance range rms was added to the object. Results of a seventeen-layer simulation are illus-
trated in Fig.(4). Polynomial smoothing2 convolution layers were employed between the first fif-
teen layers described above. They were omitted from Fig.(2) for purposes of clarity.

Results illustrated in Fig.(4) show clear resolution of both pairs of lines. The steepness of
the rising Gaussian profile near the baseline is well represented. Also shown in this figure are the
Hartley transforms of the simulated data, the restoration, and the original synthesized spectrum.
These transforms show restoration of some frequencies lost in band limiting. Naturally, the high
frequencies farther from the band limit exhibit increasing error. Even restoration of lost fre-
quencies close to the band limit is notable, however, in view of severe attenuation by the u-iangular
transfer function in this region.

Conclusions and Future Research

We conclude that it is possible to perform deconvolution by use of a higher-order neural net
architecture, and that physical realizability constraints implicitly contain sufficient information,
when used in conjunction with information present in the data, to restore some of the frequencies
absent from the data. We also conclude that control of the shape of sigmoids and other nonlinear
transfer characteristics employed in the network can be used to enforce constraints on the outputs.
While it has been known for some time that bandwidth extrapolation is possible when using con-
straints in conjunction with other methods, it has not been widely appreciated that the first of the
successful constrained methods owes its success to the restoration of lost frequencies.

All the weights in the network were specified in advance. Whereas no learning method
was employed in thi:s research, it is clear that the prespecified weights may be regarded as initial
values of weights in a network to be trained via back propagation or by other means.
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Design of a saccadic motion generator that learns

J.D. Johnson and T.A. Grogan Department of Electrical and Computer Engineering
M.L. 30 University of Cincinnati Cincinnati, Ohio 45221-0030

1.0 Abstract

This paper will report on current work on the design of a neural network based artificial vision
system. The system, called VisSac, utilizes neurons capable of real-time learning mechanisms
and classical conditioning phenomena to learn sequences of human-like eye saccades necessary
for the recognition of objects.

2.0 The VisSac System
2.1 Architecture. The VisSac system[l, 2] (Figure 1), simulates the human early vision sys-
tem which utilizes eye saccades that foveate those image features important for recognition.
The VisSac system moves a small (in comparison to the input image size) window about the
input image. These saccade-like movements of the window (fovea) are to positions the system
has learned are sui[cient to distinguish the image from all other images it has learned. The
Low Level Feature Extractor (LIFE) is responsible for classification of the input set based
on low resolution features. The Innate Saccade Motion Generator (ISMG) is responsible for
generating saccade sequences in untrained VisSac systems. The Learned Saccade Motion
Generator (LSMG) is responsible for learning the correct saccade sequences necessary to
differentiate all input images. The Recognition Net is responsible for correlating the saccade
information and input image identities. The Critic rewards or punishes the system based on
whether recognition is successful or unsuccessful.

input
image

{L1 j eye scene

SLLI F s LSMG [ISMU

iirplit class II eye

HN yeps Critic

_us's

Figure 1. The VisSac System

2.2 The Low Level Feature Extractor. The LLFE is responsible for the clustering of the
input image set into subsets of images based on common features. The output of the LLFE,
the Class Indicator Signal, will be used by both the Learned Saccadic Motion Generator
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(LSMG) and the Recognition Net (RN) in the development of a unique saccade sequence for
each image subset capable of distinguishing all the images of that subset.

2.3 The Innate Saccadic Motion Generator. The ISMG generates saccade sequences that
are the basis for learning by the LSMG. These saccade sequences are random in nature
and the neurons governing these saccades have fixed weights, thus eliminating the likelihood
that a specific saccade pattern will begin to dominate the ISMG output. It is important
that all saccade positions have the same likelihood of generation by the ISMG, otherwise,
those saccade positions that are not generated will never be candidates for the final szccde
sequence learned by the system.

2.4 The Learned Saccadic Motion Generator. The LSMG is responsible for learning the
correct saccade sequence necessary to identify the individual elements of the input set. The
input to the LSMG is the Class Indicator Signal from the LLFE and the PUNISH and
REWARD signals from te Critic. The output of the LSMG drives the motor neuronm
controlling the saccades. The LSMG is composed of several banks of neurons. The Class
Indicator Signal selects a unique bank for each class the LLFE has created, and that bank
is responsible for learning the saccade sequence necessary for distinguishing all members of
that class. Initially the weights from the LSMG to the motor neurons are smaller than the
fixed weights from the ISMG to the motor neurons. This results in the ISMG winning the
competition between the two generators for control of the saccade sequence. However since
the weights of the LSMG can grow, the ISMG looses control of the saccade generation after
sufficient training. During training, the values of some of the weights from the LSMG to the
motor neurons will be increased through positive reinforcement while others will be decreased
through negative reinforcement. Positive reinforcement (REWARD) occurs if recognition is
successful and strengthens the dominance of that saccade sequence. Negative reinforcement
(PUNISH) occurs if recognition is not successful and weakens the weights of the winning
saccade sequence allowing a new saccade sequence to gain control of the motor neurons.

2.5 The Recognition Net. The RN is responsible for recognition of the input image based
on thie information received from the LLFE and M By the natu.e f t i st
the RN must be capable of recognizing a temporal sequence of inputs.

2.6 The Critic. The last component of the VisSac system is the Critic. The Critic judges the
response of the RN and determines whether or not it has successfully identified the input. The
Critic rewards the LSMG strengthening the saccade sequence responsible for the successfil
recognition and increasing the likelihood of that saccade sequence gaining dominance over
other sequences. Punishment of the VisSac syswem occurs if two input images generate an
identical RN output. In such a case, the positions of the saccades are not sufficient to
extract the distinguishing features of ',he input images. Punishment of VisSac alters the
LSMG, suppressing that saccade sequence and allowing another sequence to elnerge and be
tested.

3.0 Three-from-Six Saccade LSMG
A Learned Saccadic Motion Generator was designed capable of learning a three sequence

saccade (Figure 2). The LSMG uses a slight modification of the Drive-lieinforcement Neu-
ronal model developed by Dr. A. Harry Klopf[3]. The LSMG design (Figure 2) reserves
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o. 3 neuron for each possible saccade position. The inputs to all neurons are the Punish
and Reward USs, as well as one CS for each possible saccade position. Each neuron has an
inhibitory US described below, as well as an input from the ISMG. A MAX operator is used
at the output of the neurons. The MAX operator passes, unchanged, only the strongest neu-
ral output, all other outputs are zero. Equation 1, which governs the learning of the Klopf
neuron, is modified to include the MAX operator. For the ith weight of the keh neuron:

Awki(t) = Ayk(t)Azk(t) ci I wi(t - j) I AXAi- j) (1)
j-=1

With the inclusion of the Azk(t) term, weights will only be modified if the positive
change in the input resulted in that neuron having the strongest output yk(t), and therefore,
a nonzero Zk(t). (The AzA(t) helps alleviate the credit assignment problem.) To prevent
multiple saccades to the same location during any one sequence, an inhibitory US has been
supplied to each neuron. This US is driven by an R/S flip flop, the input of which is that
neuron's z(t) output of the MAX operator.

Pu~kish USs 2'--

Inpu cs - 0

ISNIG 0

oMAX fl.

0

* 0

IS NIG,

Figure 2. The Three-from-Six Saccade LSMG

The goal of the experiment was to determine if this design could learn a saccadc sequence
consisting of specific saccade positions. Three (3) saccade positions were arbitrarily chosen
from six (6) possible. positioris as necessary for distinguishing all input images in a given
(ISMG det( rmined) class. These positions are 1,3, and 4, though order is not impoirtant.

The inputs to thc LSMG were artificially created, but designed to correspond to the inputs
the LSNMG would receive from the other components of the VisSa~c system. After every
three saccade sequelce the LSMC _ was either rewarded if the saccade positions it generated
mhatched the dcsired positions or punished if there were any discrepancics. The CS input
to the neurons is the output of a 1-of-6 encoder, where each saccade in the sequence has

a tunique code. Since saccade position, as well as scene iiforination, is encoded ixt(o the
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CS, this uniqueness is guaranteed as long as a saccade position is not repeated in the same
sequence.

In Figure 3 the results of the experiment are shown. Each tick mark along the time axis
corresponds to a Punish or Reward signal and signifies the end of a saccade sequence. The
LSMG eventually learns and remembers the saccade sequence 3-1-4. The time taken to learn
the sequence can be altered by strengthening or weakening the influence of the Punish and

Reward USs.

Ii'i i , I ' I

0ni

42 4 ~ ýU -I I'

1'' i u li i

Figure 3. Saccade Positions Selected by LSMG

4.0 Further Research
Further modification of the Klopf neuronal model is necessary to prevent weight value

runaway, due to continuous rewarding. Research into the other components of the VisSac
system is also underway.
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A MULTILEVEL NEURAL ARCHITECTURE FOR

ROBOT DYNAMIC CONTROL

A.KHOUKHI

T616com Paris ENST D6pt Reseaux 46 rue Barrault
75634 Paris cedex 13.

and
ESIEE D6pt Automatique CiW Descartes 2 Bd Blaise

Pascal 92634. Noisy-le-Grand. France.

Summary:
In this paper we consider the problem of the design, trajectory planning and on-line
control of robotic systems. A new approach based on the neural networks
architecture is developed. This approach operates at three levels:
First, the optimal design of the mechanical structure. The geometric and kinematic
parameters such as the length of the links and the maximum and minimum of the
joints are optimised. The optimisation process is accomplished according to a new
function giving the maximum mobility of the robot. To do so, a six layers network
is simulated, corresponding to the desired manipulator (six degrees of freedom).
Second at the learning level where the trajectory planning problem is solved by
determining the motor commands from a goal of the movement and the
optimisation of a time-energy creteria.This is represented by a weighted
multiobjective nonlinear function. A modified backpropagation gradient algorithm
is developed and simulated.
The third level is that of the on-line and feedback control of the robot.
Special architectures are described in the literature (1), and it is shown that these
controllers are more efficient than the traditional controllers such as the linear and
nonlinear control schemes based on the Jecoupling or adaptive control theory.(2).
The main contribution of the feedback approach proposed in this paper is however,
in taking into account of the environment evolution and associated constraints.The
neural network developed for the feedback control and the on-line tracking is
composed of ten layers, six,6 correspond to each degree of freedom and the last
fourth are designed such that each direction of thie end effector is associated with a
layer. The results of experiments repported consider only the kinematic
caracteristics of the environment. An extention to dynamic evolution of the
environment is now being pereformed and specialiy is applied to a multi-robot
control system.
"The neural networks developped are siMulted on a Vax workstation and first results
are promissing in perfomances and time computation and show the efficiency of this
control scheme compared with the traditional control schenves.
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MSK Signal Noise Estimation Using a flopfield Neural Network
G. J. Klein

The Johns Hopkins University Applied Physics Laboratory
Laurel, MD 20707

Neural networks are attracting much attention because of their ability to perform complex pattern
recognition tasks. This paper discusses a Hopfield neural network used to estimate thc probability amplitude
distribution of a noise source which is interfering with a communications signal, Accurate estimation of a noise
source is useful when one wishes to cancel the effects of the noise upon a desired signal. The estimation problem
is formulated such that the interference amplitude distribution is viewed as a pattern distorted by a known
Minimum Shift Keying (MSK) communications signal. Available to an observer is a distorted pattern, the
received signal amplitude distribution. The network estimates the original pattern (i.e., the interference
distribution) based upon the distorted received pattern (i.e.,the received signal) and knowledge of the distorting
function (i.e.,the MSK signal).

nýrl Formulation
The following signal model is used in the development of the Hopfield network. Assume that the

observable environment consists of two narrowband signals; one a known communications signal, and the other
an unknown interference. These signals can be represented in vector notation on an in-phase and quadrature plane,
denoting the communications signal by a magnitude, z, and a phase angle, ez. For the specific MSK example,
the amplitude of z is a constant and the information is carried by the phase of the vector. The interference signal
similarly is described by a magnitude, x, and an angle, 8x. These two signal vectors combine to produce a
received signal, with magnitude, y, and an angle, Oy. It is assumed that the interference and the communications
signal are not phase locked so that the difference bctwccn the phases is uniformly distributed between 0 and 2 n.

Furthermore, the distribution of the interference signal is arbitrary. Using this signal description, the goal for the
neural network is to estimate the amplitude distribution, f(x) of x, given only an estimate of f(y), the amplitude
distribution of the received signal, y.

It is convenient to use a discrete-valued amplitude distribution in the form of a histogram. We define the
value of the ith histogram bin as

f(Y) -C f <(y)c y (1)

where Ay is the width of a histogram bin. For any given yi, we can use Bayes' law and the law of total

probability to obtain f(yi) = E f(yilyi) f(xi). To simplify notation, we define yi = f0yi), xj = f(xj), and hij
f(yjl xj ) so that in vector notation, V = .HX. Note that with this notation, xis a pdf value and the subscript, i,
is representative of the signal magnitude. For the problem at hand, 1i is known and Y can be estimated from an
observed histogram of the received signal. When the communications signal is an MSK signal, 11 can be
expressed as N-1 (x.h. N- + (2)

N3 •- f(y 'y ); x= x)- 2 Nj=0

where

ft(y. y'jX) J I(Y a') dy
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In this form, 11 is invertible. Thus, it would appear that the the technique for estimating X is trivial: simply
multiply the received vector by H-1. However, Y is only an estimate of the received signal amplitude
distribution. Therefore, the estimation errors which exist make this proposed solution fail. When simulated, it
has been found that the estimated X has negative values or values greater than 1, and is usually not at all like the
actual vector.

Zhou, et al. [1] have developed a model for image reconstruction using a Hopfield network which can be
adapted to solve the noise estimation problem. Using a similar formulation, we define the estimation as an energy
minimization problem, where the energy function is defined as

E = -.511 Y -ilX 112 -. 5 BI1 ll - IXj 112 (4)
and where 1 is the column vector of all ones. Here, the first term represents the error between the estimated and
received signal distribution and the second term represents the error in which the estimated received signal has
fulfilled a constraint that the sum of its terms equal one. By iteratively changing our estimate, X until both terms
are minimized, assuming that the estimation error in Y is not too great, we arrive at a good estimate of the
interference amplitude distribution.

In order to use a Hopfield network for this problem, the energy function of (4) must be related to that
defined in Hopfield's original formulation [2]

E =-O. XT_ vv -- Y2 ,v (5) --
i j 

(5

Writing out (4) term by term gives
E 0.5y_ y'P - >X y,, x, .>>>h,,h. 1 x

P p a p i j j '

0O 5 .3(1 -2= 'hx -i = _S ,hiX (6)

In (6), the first line represents the first term in (4) which is a function of the difference in the received and
estimated received signal. The second line represents the second term which constrains the sum of histogram
vahles to 1. Comparing the terms in (6) and (5), and letting the output of the ith neuron, vi, represent the value

of the ith histogram bin, xi, the weights of the Hopfield network are
Tik;ji -l hPi h Pi - 2 XX 'hPi hoe (7)

P P q

and the biases are given by
Iik= I hpj Y p + 2MJ3 hPg. (8)

p P
At this point we stop and make a few observations. First, it is noted that.in the original Hopfield network

as described in [2], inter-neuron weights are symmetric and self feedback weights to neurons are equal to zero.
Second. the update rule used in [2] is a binary threshold rule which outputs a I if the weighted sum at a neuron is
greater than 0, and 0 if the weighted sum is less than 0. By using such weights and update rules, the network is
guaranteed to decrease in energy until it converges to a locally minimal energy state. For the noise estimation
application, it is seen that the weights satisfy the Hopfield requirement of symmetry; however, they do require
non-zero self-feedback. Additionally, the outputs for this application must be able to take on all values between
zero and one, so a simple binary threshold will not suffice. Therefore, it is desired to formulate an update rule
where the outputs are constrained to lie between 0 and 1, and which will allow the network energy to decrease to a
minimum as the network iterates.

Ho.oficld Netmork Implementation
In order to use a continuous valued network which decreases in energy upon iteration, we use the following

formulation. As in Hopfield's original network, the output rule is a function of weighted sum of inputs. Denoted
at the ith neuron as neti, this sum is given by

n•et , 7= .I i v j + . (9)

To define an update rule which will allow the network to decrease in energy, we perform gradient descent upon (5);
that is,

cE .'1.. v + 1 = net (10)
'ii . £I I

Fromn (11)), it is Ž:ea that in order to use an cnergy function in the 1trin of (5), the curr•nt value of ýi must be

incrcmentcd hy an anioint proportional to ntii. At first look, one rnight guess that a non-linear output function
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is not needed to form a network which satisfies the aforementioned requirement. However, it has already been
demonstrated 13) that networks consisting of linear elements can carry out only a very limited set of functions.
Furthermore, it is desired that in the continuous formulation that the output range of a neuron lie between (0 and 1.
This would enforce the constraint that any histogram bin must take values between 0 and 1. Keeping these ideas
in mind, we define the following output update rule

S2 1 u' >
1, = f ( u'') I

0 ; , u• :! 0 (11

where ui t is given by

a+ a st! (12)

Hcre f( ) is a half sigmoid function whose argument is proportional to the previous value of the neuron, uit- =

f-I (vit-1), and of the current letL
t . Using the update rule of (11), the continuous valued network is guaranteed to

decrease in energy as defined in (5) and the output of each neuron is constrained to values between 0 and 1. Just
like in the original Hopfield formulation, the neuron outputs are bounded, and in turn, the energy function is
bounded. Therefore, for symmctric weights where 7'Ti = 0, the network is guaranteed to converge to an energy

minimum. For the case where Tii t 0, it can be shown that energy will not increase as long as netiAv >

0.57Tii(Av) 2 . Thus, as long as cx is made small enough to make v change slowly, the network will generally

converge.
The neural network described for this application is implemented as follows. Assuming a signal amplitude

distribution is to be divided into L bins and each bin is represented by the output of one neuron, L neurons are
required. Inter-neuron weights and biases are determined using (7) and (8). Initially, the output of each neuron in
the network is randomly chosen to be between 0 and 1. Once set, the network is allowed to iterate. Each neuron
is visited sequentially and the weighted input to that neuron, neti is cmnputedl. The neuron is then updated

according to (11) and (12). This process is allowed to continue until a steady state condition is reached. In the
original Hopfield formulation, the visiting process was randomly selected. However, in simulations, litfie
difference was seen between cases where the ordering of neuron update was deterministic or was random.

Continuous Results
We now apply this network to the MSK problem. Values for the estimated received distribution, Y were

obtained via a Monte Carlo simulation in the following manner. An interference with an assumed amplitude
distribution, X, was added with an MS K vector of fixed amplitude and random phase. For each Monte Carlo trial,
the amplitude of the received signal was recorded. After a number of trials, a histogram of the received values was
calculated to form Y. Once the values in Y were estimated, they were used with the values from 11 to compute
the weights and biases of the neural network. In the computation of the weights and biases, the value of B. which
weights the importance- of the second term in the energy function, was set to zero. Therefore, the energy
minimization affected only the first temi of (4).

In this example, the histo,_,ram is divided into 32 bins. Figure I shows the value of the actual interference
distributions. It. is rioted that the received distribution, Y, includes estimation error, i.e., this distribution does
not exactly equal the interference distribution times 11. Once the biases and weights were set, the network was
initializedl with random outputs and allowed to iterx'e according to (11) and (12). In (12), cx was set to 0.5.
Result of the simulation after 50 iterations is scen in Figure 2, where ouc iteration is defined as the update of
every neuron once. These i)o1ls show that the network produced an acetirate estimate of the interference
distribution.

Subsequent trials using.- the same II but different values of B between 0 and 1 to calculate the network
weights and biases were car ied out. io (dcterntine whltlher the second term in the energy function affected the final
result j:readly. These utri.ds proi-:'c I solutions wvhich did not differ significantly from those presented. This could
be cxtp'ctcd since it is utllitely that the first term of Ihe energy equation of (4) could bh satis.•fied ii the second term
w'a.i niot. 'Pt'rolure, tOe ."clnd trmi repi-esented redul|nant information.

In all of thse' ti.,,. it v:, sctt that lie network produced a .,,ood, hut not perfcct, estimate of the
ilici teicxluc di',f huit mn, i l 1,1rs i Vi the estimate a crc lreselt bccaus of oterr ill tIll cstiltate ofl tie rccei\'cd signal
anmplitude distribution. Additioto;.1jI', errors could be caused in a I lopfi.,hd network if the network settled to a local
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instead of a global minimum. In an effort to investigate whether the network was converging to local minima,
the simulations were run for a number of times starting with different initial random output values. In all cases,
the final equilibrium point was the same. Though this certainly does not prove that the equilibrium point reached
is a global energy minimum, it does seem to indicate that the encrgy surface approximates a convex cup surface.
That is, the surface most likely is cup shaped and has only one local minimum which is the global minimum.

S ummaryr
A Hopfield network has been designed to estimate a noise amplitude distribution which is interfering with

an MSK communications signal. The network obtains the estimate essentially by beginning with a random
distribution and then by iterating the histogram bin values such that an error function is minimized. The paper
describes a continuous output network, much like Hopfield's original network formulation in [2], to carry out this
task. It was shown that for the specific MSK application, the energy surface for this network most likely is not
vulnerable to errors due to local energy minima.
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Psychophysical Experiments and Computer Simulations of the Binocular Rivalry

Tetsuo Kobayashi

Dept. of Applied Electrenics, Hokkaido Institute of Technology
419-2 Teinemaeda, nishi-ku, Sapporo 006, JAPAN

1. INTRODUCTION
Although the binocular rivalry has been studied(Levelt, 1966, Fox, 1975, & Grossberg

1989), the mechanism of the binocular rivalry is not clear. The present work describes the testable
features of the alternation process in binocular rivalry examined by psychophysical experiments.
The stimulus strength to the central part of the visual field in one eye was varied while the
stimulus strength in the other eye remained constant. To explain the experimental results, a model
which consists of a group of neural elements is proposed and simulated on the computer. Each
neural element generate time-dependent post synaptic potentials by the impulses input at random
around a certain repetition rate.

2. BINOCULAR RIVALRY
Binocular rivalry is a process that visual stimuli from right and left eyes are recognized

alternately. Total observation duration of the binocular rivalry is

T=37 dLi+• dR (1)
i-l i='

where nL and nR are numbers of the dominance durations for left and right eyes, dtu and
dRi are each duration of the binocular rivalry for left and right, respectively.

The means of the dominance durations for left and fight eye-, arenL nR

jiý= dLi/nL , d 7 dRi / nR (2)
i-l i~-l

And variances are1b% np,

uL=37 (dLi.-t_)Z/(nL;-l), UR=•" (dRi.-G)2/(nRl) (3)1

i 1 i=1 _--
Predominance for Left =dj/( dL,+ R4), and for Right = dR/( dL + dR) (4)

3. EXPERIMENTS
One horizontal line and one vertical line (Both lines are 0.45°wide, white, 10cd/m 2) on

the black screen(possible stimulus size is a 29.860 x 19.54' rectangle) are given to the left and
right eyes separately. The observer perceives the horizontal line and the vertical line alternately at
the intersection of two lines. To examine the relation by the change of the stimulus strength of the
central vision of the right eye, the vertical line is separated by the visual angle d' from the center of
the line. During the experiment, the observer continues to press the switch at the duration the left
stimulus is felt dominant. The observers were eight 22-year old males. Formal data collection
consisted of ten 70 sec observation periods, each separated by 30 sec rests. The last 60 sec of
each observation period were used in the data analysis; the first 10 sec were considered a warm-
up phase. The frequency histograms for dominance duration in the case d=0.9° and the
theoretically generated gamma distribution for left and right are shown in Figs.1 and 2,
respecti /ely. The mean and variance of the dominance duration obtained by Eqs. (2) and (3) are
shown at the upper right of the each figures. The chi-square value of the fitness to the gamma
distribution is also shown at each figure (Significant if it is smaller than 36.42 (P<0.05) and
42.98 (P<0.01)). Figure 3 shows the dependence of the mean for the duration in respect to the
angle d. The same results are obtained when we replaced the stimulus figures to right and left
eyes. After the same experiments which 1, id done for the other observers, following two testable
results on the binocular rivalry could be deduced.
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1) The decrease in stimulus strength to the central vision in one eye while the stimulus
strength in the other eye remained constant decreases the mean dominance duration, variatice and
predominance in the same eye and increases them in the other eye.

2) The frequency histogram of the don'minance duration almost fits to the gamma distribution.

4. A MODEL OF THE BINOCULAR RIVAl RY
To explain the experimental results, we propose a model shown in Fig. 4. The model

consists of a group of neural clements(NEs) located at the same receptive field of the perception
level. Each NE receives impulse trains at the input synaptic connections. Impulse genetates the
excitatory post synaptic potential(EPSP) and the inhibitoiy post synaptic potential(!PSP) at the
excitatory connection and the inhibitory connection, respectively. EPSP generated by the
integration of the nj impulses at d excitatory connections and IPSP generated by the integratioa of
the mj impulses at g inhibitory connections become

d "' g n '
Ve(t)=- Pej5" exp[-0(j(t-tjk)] (5) Vi(t)--y Pijy" eXP[-0Cij(t-tj0)] (6)

j-1 k-I j-1 k-i
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where P~j Pij are initial values of the post synaptic potential(PSP) at the j-th connection of
the excitatory and inhibitory connections, respectively. P~j has a positive valuie and P1. has a
negative value. tjk in Eqs. (5) and (6) indicates the time when the k-th impulse input the kE. tik
is written using the average repetition freqiiency fi of the impulses as jk =k/fi. The PSP VWt iE
Ve(t) + Vi(t). The NE is considered fire if V(t) is greater than the threshold potential Vh(t). The
modt. assumes that each NE has the excitatory connection to only for a NE which selectively fires
for a certain orientation and has thi inhibitory connections for the other NEs. Figure 4 is
illustrated as each NE is orientation selective only for every 50 from 00 to 1750 to simplify the
model. Since it is known that there are neurons which selectively fire in respond only a certain
orientation in the primary visual cortex of the monkey(Kuffler et al, 1984), we think it is possible
to assume orientation selective NEs as the previous level neurons of the model. To simulate the
experiments described before, we assume the stimuli given to the left eye (a horizontal line;
direction is 00) and the right eye (a vertical line; direction is 90') input signals El and Er to the
model as shown in Fig. 4. Since NEW0 and NE90' can receive both the excitatory and the
inhibitory signals, NEW0 and NE90 0 can fire and the other NEs can't fire. In the case that NEW0

and NE90' fire (on) and do not fire (off) together, the NE perceived at the previous moment is
treated to continue to be perceived because the dominance of the two NEs can't be determined.

5.SIMULATION
Strength of the stimulus is replaced by the average repetition frequency of impulses. The

decrease of the frequency corresponds to the decrease of the stimulus. Pj and Pij in Eqs.(8) and
(9) are the same value but have the different sign as Pej = -Pij =Po (constant). (ej anid aUU in
Eqs. (8) and (9) are 0. 15. Since the stimulus to the left eye was constant in the experiment, the
frequency of the impulses is set at the constant frequency 2.0[Hz]. The frequency of the right eye
is reduced from 2.0[Hfz] to 0.5[Hz]. The impulse is generated by the random value from 0.0
through 1.0 which is generated in every 0. isec. The obtained frequency histograms for
dominance duration and the density function are shown in Fig. 5 - 8. Figs. 5 and 6 show the
dominance frequency histograms in the case f,=fr='2.0[-I~zI which respond that the stimuli from
both eyes are equal. Figs. 7 and 8 show the histograms in the case i='2.O[I LzI and f,=1.0[fzlz.
Figure 9 and 10 show the dependence of the mean for the duration and the predominance to the Tr,
respectively. These results indicate that decrease of the stimulus strength to the right eye while the
stimulus strength to the the left eye remains constant decreases the mean for dominance arid
predominance in the right eye and increases them in the left eye.

6. CONCLUSION
The results obtained by the psychophysical experiments indicate that the variations in

stimulus strength alter the mean dominance duration, variance and predominance. And the
frequency histogram of the dominance duration almost fits to the gamma distribution. Since
simulation results agree with the experimental results, the binocular rivalry can be explained as
follows. The binocular rivalry is the process that differenit two neurons located at the same
receptive field of the recognition level in the brain fire alternately by their own integrations of post
synaptic potentials. The post synaptic potentials are genier ted by thc impulse trains which
repetition rate is changing at random around a certain rate.
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A Vision Architecture for Scale, Translation and Rotation Invariance t

Mark W. Koch, Morien W. Roberts, and Steven W. Aiken
Clarkson University

Department of Electrical and Computer Engineering
Potsdam, N.Y. 13676

Abstract

In designing vision architectures, we want to avoid training an artificial neural network with every
possible object size, orientation and position. High order neural networks invariant to scale, rotation, and
translation escape this problem. However, the exponential growth in the number of correlations identifies a
serious problem with high order neural networks.

We have developed a receptive field neuron that can learn high order correlations. A receptive field
reduces the combinatorial explosion of high order correlations by restricting the interconnection range and
by using a subset of high order correlation terms. The back-propagation learning algorithm extracts the
high order features that discriminate the objects in the training set.

Introduction
One approach to an artificial neural network's supervised training for vision, is to let a network train

on every object that it might encounter. The network could be shown the objects in all possible sizes,
locations, and orientations and be taught to make the right classification. This approach has the problem
of large learning times, which result from the many possible object configurations plus the many pattern
presentations required for the generalized back-propagation learning algorithm.

Some researchers solve these problems by extracting conventional position and orientation invariant
features from the image. A neural network then trains with this reduced feature set. Yamada [13] first
extracts contour curvature features from an image. He uses this feature vector to recognize handwritten
numerals. Troxel [10] recognizes trucks and tanks by preprocessing multifunction laser radar data using
a Fourier/log-polar transform. The magnitude of the Fourier transform followed by a log-polar transform
first produces a position invariant image and then converts variations in rotation or scale to shifts. The
normalize peaks in the Fourier/log-polar space provide the input to a mu!tilayer backpropagation neural
network. Brousil [1] has designed a perceptron network to perform the Fourier/log-polar transform.

Unlike the above, our approach lets the vision system determine the best features for object recognition.
To solving the training problem we develop neural network architectures that produce output patterns
invariant to the viewing perspective. This is done by putting constraints on a network's interconnection
strengths.

Fukushima's [2] Necognitron uses a hierarchical type of network to produce outputs invariant to position,
size, and small distortions of numerical characters. As one moves up the hierarchy, there exists alternating
layers of simple/complex cell pairs. The simple cells recognize or combine features of the preceding layer.
The complex cells recognize the simple cell features independent of small changes in position. At each level,
the cells recognize more complex and larger features with more inherent translational invariance. At the
final output layer an active grandmother cell has a one to one correspondence with a unique object in the
scene regardless uf any trunslatioub anud small size chainges uit-dfriatioils.

Widrow [12] has developed a neural network architecture using Adaline neurons called the invariance
net which has a response invariant to position and rotation. Widrow defines a slab as a group of random
weights to one neuron that receives input from every image pixel. Let N represent the number of all possible
translation and 900 rotation combinations. Shifting and rotating the slab in all possible combinations
produces N slabs with N corresponding neurons. These N neurons produce a permuted response depending
on the object's rotation and translation. A majority element makes this response invariant. Widrow does
this for every pixel in the image and derives a position and orientation invariant scrambled pattern. The
invariance net needs many weights. Widrow also discusses how to extend the network for invariance to
scale and perspective. Hosokawa [5] plans to extend Widrow's method by learning the slab weights with
back-propagation.

Rurnelhart [9] has used a three layer back-propagation network to solve the TC problem, which has a
network recognize the letter T or C independent of the letter's orientation or position. The TC problem
represents a hard problem with the solution requiring third order correlations [7]. Instead of having every
input neuron connect to a hidden node, each hidden node "sees" a subset of the input scene called a receptive
field. Constraints on the receptive field weights produce an output on :he hidden layer consisting of a single
feature detector centered and duplicated at every input image pixel. Constraining the weights to the output
creates a translation invariant network architecture, but the network still needs to see the objects at every
rotation.

Reid [8] and Giles [3] [4] use high order neural networks to solve the TC problem and to produce network

t NSF grant No. EET-8806958 supports this work
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architectures invariant to scaling, translation, and rotation. A high order neuron has the following form:

Oi=F(yi), and yi=W,+EW.jXj+VWjkXjXk+...,
j k

where Oi represents the neuron's output, F the nonlinear activation function, y, the net input to the neuron,
Xi the raw inputs and Wi, Wi,, Wiltk, ... the 0 8h, first, second, etc. order interconnection strengths. The W4
and first order correlation typically make up units in a back-propagation network. Second order networks
multiply all possible raw input pairs and supply these as inputs to the neuron. These second order correlations
make solving problems like the XOR problem trivial and allow the use of simpler learning rules such as the
Widrow-Hoff delta rule [11] instead of the generalized delta rule 9]).

Reid uses second order correlations and the Widrow-Hoff delta rule to solve the TC problem for trans-
lation and scale invariance. Each second order correlation comes from two input image pixels and forms
a line in the input space. By constraining weights corresponding to correlation lines with the same slope
to have the same values, a network architecture invariant to translation and scaling results. Likewise third
order correlations form triangles in the input space. By constraining weights corresponding to correlation
triangles with the same three interior angles to have the same values, invariance to translation, rotation, and
scaling results.

Finite resolution makes larger shapes harder to discriminate than the scaled shape versions. For scale
invariance, Reid trained the network with the larger shapes, so that it could generalize to the smaller shapes.
Giles (3] suggests normalizing the shapes to have the same "energy" regardless of scale. The exponential
growth in the number of correlations with order pinpoints a serious problem with high order neural networks.

Receptive Field Neuron
By restricting the interconnection range and using a subset of high order correlation terms one can

reduce the combinatorial explosion and still have a network architecture invariant to scale, rotation, and
translation. The question remains of which subset to use. We propose the use of a more powerful neuron
called the receptive field neuron that allows a backpropagation network to learn which high order features
discriminate the objects in the training set.

Figure 1 shows the receptive field neuron, r, receiving its inputs from a group of pixels, Xi, forming a
circle in the image plane. The Wi's represents the weights to the receptive field neuron and 0 its bias. The
following equation gives the receptive field neuron's activation, Ar:

p-I p--I

A, = Ž..-logistic(si), and si = EXjW(j+i)(mod p) +0.
i=O p j=O

Each si is internal to the receptive field neuron and essentially looks for a single nonlinear feature at different
rotations. The activation of r produces a value proportional to the number of times this nonlinear feature
appears in its field.

x x0 " i

XP.I X2

Figure 1. Receptive Field Neuron for Translation and Rotation Invariance.

If we consider the weight vector, W = (W,0 .. W I], as a slab, then with Widrow's method the
receptive field has invari.knce to rotation. Widrow's metlod uses one neuron per slab, where our method
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puts the slab groups inside the neuron resulting in a more powerful neuron. Also Widrow uses global invariant
features, where here the receptive field represents a local feature. As in Ruinelhart's and Reid's solution to
the TC problem, by constraining the weights from equivalent receptive field neurons to have the same value
we will have translation invariance.

If we assume a binary image with 0 for on and 1 for off, then the receptive field neuron can compute
different high order correlations. Here multiplication of inputs turns into the logical and operation which a
single neuron can compute. For example with p = 8, W = [4 0 0 4 0 4 0 0], and 0 = -10 the receptive
field neuron will compute the and of z 0 , z3 and X5 . Using a training algorithm such as back-propagation, a
network can learn subsets of high order correlations.

Receptive Field Neuron's Learning Law
We can extend back-propagation's learning law to include the more powerful receptive field neuron. Let

6, represent the error at the output of the receptive field neuron and q the learning rate. The following
equation gives the change in weight, AWj, to reduce the squared error at the output:

P-1

A W q E - 1j).5jX(i-.j)(.od p),
j=O

where Xk, sj. and p have been defined earlier. Since we can model the bias like a weight with an input of
always 1, a similar update rule exists for the bias. Using these learning rules a gradient descent algorithm
can compute the change in weights to reproduce a target at the outputs. Here the weights will represent a
rotation and translation invariant feature that discriminates between the training set objects.

Scale Invariance using a Receptive Field Neuron
Figure 2 extends the translation and rotation invariance receptive field to include scale invariance. Here

concentric circles of pixels form the receptive field, with Xk,j representing the pixel at the i&h neuron on the
k"h concenuric layer. The following equation gives the activation function for c concentric layers with p pixels
per layer:

e-I p-I P-I

A,. =E -- 1o 9 istic(sj,.), and sk, = XkjWk,U+i)(modp ) + O,
k=O i=C j=-O

where W,. i represents the connection weights. As before, each sk.i on the kVh layer essentially looks for a.
single nonilinesr feature at different rotations. If we force Wk i V=W. for 0 < k, 1 < c - 1 and 0 < i < p - 1
then each concen'tric layer looks for the same feature. The only difference is that t'he concentric layers scale
the femiures with respect to each other and A,. produces a value proportional to the number of times this
nonlinear feature appears in the receptive field.

Li'he ilevl we need to consider the problem of finite resolution making larger shapes harder to discriminate
than the s;;aed nhape versions. Reid solved the problem by training with larger objects first where Giles
norinaliztd the "Energy" of the shapes.

a e iminary Iesultss

?ihtg i�ie softwr.re by McClelland and Rumelhart [6] modified for a transputer, we experimented with
the "T2ý problem using a siigle simulated translation and rotation invariant 3 x 3 receptive field neuron
cenierd at every i:rage pixel. The network trained on the T and C at a standard position and orientation.
After training, the network could recognize a T or C at any position or orientation. The network learned
the following recepuive field weights and bias:

4 -. 10 6

0=-10 and W=-3 10
-9 -2 -6

Future Work and Conclusions

We are now parallelizing the back-propagation algorithm for 16 transputers. With the parallelize code
we can test our receptive field neuron on more realistic examples with faster learning times.

We hr.ve proposed a new scale, translation and rotation invariant receptive field neuron. A group
of receptivw: field neurons can learn a subset of restricted range high order features and will not explode
combinatorially like high order neural networks, Using the receptive field neuron, a network needs only to
see the object in a standard position and orientation. Alter learning the objects in the training set the,
network can recognize objects at any position or oriertation. An extension allows the receptive field to
include scale invariance.
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Figure 2. Receptive Field Neuron for Translation, Rotation, and Scale Invariance (q -
p- 1).
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ADAPTIVE POLE PLACEMENT FOR NEUROCONTROL

Sanjay S. Kumar and Allon Guez
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Drexel University, Philadelphia, PA 19104

Abstract : In this paper we deal with the study of a self organizing neural network architecture
called the Adaptive Resonance Theory (ART-II) [Grossberg and Carpenter 1987(a)], in its
application to a simple problem of adaptive control, through real time dynamic system
identification. An adaptive pole placement controller for a linear second order system is
implemented based upon this architecture to assess the performance of the network and the overall
control scheme with the neural network in the control loop. The network employed demonstrates
the capabilities of fast classification and learning. These attributes of the architecture are exploited
to train a network to dynamically identify parametric variations of a plant in response to changes in
its environment. The control strategy is based upon identification of changes in the time response
characteristics of the system to standard test signals which are assessed by the neural network. A
pole placement algorithm is utilized to relocate the poles of the overall closed loop system by
altering the gains of the process controller to obtain desired system response. Experimental studies
on a simulated second order system, employing a Proportional Derivative controller show that the
neural network considered is indeed capable of system identification and simple indirect adaptive
control of low order plants that are subjected to parametric variations reflected by changes in their
operating environments.

Problemi Siaievtini - Our goal is to implement an adaptive pole placement algorithm using a
neural network architecture. Let the possibly slow time varying linear dynamical system (Plant)
Gp, be given as in equation (1).

R(ss- u•s) Ka ,•1+ 1s

C +

L~__J
Figure 1 Process block diagram

Plant transfer function : Gp (s) -s+s+ (1)

Let the reference input be a knowA periodic function
Reference input: r(t)= r(t+T),forallt>0 (2)
Find online, the Proportional and Derivative (PD) gains, (Kp, Kd) and the D.C. bias (C)
(see Figure 1), such that the control law give by equation (3),
Controllaw: u=Cr-Kpy-KdSy = Cr-Gay (3)
will result in the ideal closed loop transfer function

Go(S) K-• [sK .+ ---- , G0  (4)s +2C* ns+( n

where, K*, C, afn are respectively the desired D.C. gain, damping coefficient and the natural
frequency of the system.
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Neuromorphic opproach to the controller design : The general block diagram of the
overall control scherme is depicted in figure 3. The common a priori assumption in the design of
contollers for partially known processes is adopted with the design procedure being divided into
two steps: identification and control (indirect adaptive control strategy) [Astrom &
Eykhoff, 19711.

Dc~rtd il POLE ESl NEURAL ETJ.FEATURE
Prxtr PLACEMENT rETVORK EX'Tv .RACTOR

C Controlle lmaetcr

CONTROLLER 1

Figure 2 Block diagram of the neuromo.-phic adaptive control scheme

Objective : Given a second order plant with unknown constant or time varying parameters, the
objectivc of the conatol schei-ne is to tune the controller by modifying its arbitrarily assigned initial
gains such that the overall closed-loop system response matches the one given by the assumed
ideal model, based upon parameter identification provided by the neural network in the control
loop. It should be noted that although the plant and the controller are linear the process is overall
nonlinear.

Methodology : When the input is a unit step function, identification of the plant parameters is
achieved by extracting the features of the system's closed-loop transient time response via a feature
extractor. In the case of the square function and the square wave function, identification is
restricted to the step portion of the input signal. The neural network in the ccntrol loop which is
trained to map the features of a system's time response to its parameters, gives the current
parameter e.tir.ate. .of the clo•.• ol 1,-,-p., .. '.Me " e. p•me-,1 nt alg.rithm.g in the 'loop utiiizes
the estimates provided by the network to compute new controller gains to suit the desired response
specified by the ideal model. A D.C. adjustment mechanism is incorporated to compensate for any
D.C. bias that might be associated with the response. The system identifier comprises of the
feature extractor, the neural network and the pole placement algorithm. The purpose of the
identifier is to determine the plant parameters in response to changes within the plant environment.
The time response of the system is characterized by its features or performance indices which are
nonlinear functions of the system parameters.These include the rise time, the settling time,
overshoot and the delay time of the response. Afeature extractor incorporated in the control loop
determines the performance indices associated with the response to enable system identification via
the neural network. It must be noted that identification is dependent on the features of the time
response rather than the response per se. This is done in order to compress the information
contained in the response such that the input vector to the neural network remains compact [Kumar
& Guez,1989]. This procedure restricts the dimension of the neural network to a minimum thereby
increasing its computational speed and overall efficiency of the process. The overall transfer
function is obtained by using equations (1),(2) and (3) as follows:
Y (S) = up (S) U (S) = Gp (S) [ C R (S)- Gc (S) Y (S)] (5)

Y (s) C Gp(s) _ CKm (6)
Go(S) R(s) - l+G(s) G-(s) W S'+(a.+KmKd)S+ (++K.Kp)
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multiplying and dividing the numerator by ( 3 + Km Kp),

Go (s) = CKm, f (P + KmKP) 1(7)
+ -+KmKp) is + (a + KmKd) S + ( ýp

In order to obtain the ideal transfer function, we set Go (S) = GO (S) which implies:
CK_ [ (P + Kj(~p) K* Cn

"+KmK +(a+Kr a)s+ (s+KmKr) s+[ n . (8)

the new controller gains obtained from the above equations are then given by:
02 *, 2K (-0I n -3 K 2 C•€'*na -Cc K K(P3 + K=K p) K Win

K _ _ P__._X___K,, _ K ..+,,~ K m')
Km Km Km -Km

Training: The network employed is used in the supervised learning mode and is trained off line
before its inclusion into the control loop.The training data module comprises of a data generator
whose inputs form the approximate ranges of the system parameters which, in the present
application, are the natural frequency and the damping ratio of the generalized second order
system. A typical range of the natural frequency is estimated from the knowledge the plant time
constant used in the process.The ranges selected thereof cover approximately the entire gamut of
the systems time response to maximum deviation in the plant parameters. A system emulator that
consists of the process model generates the actual system time response to the various input signals
using different settings of the parameters within the parameter ranges specified. The parameters are
incriminated in discrete steps according to a prescribed resolution that is dependent upon the trade
off between accuracy of identification desired and the size of the network. The time responses of
the assumed system model are then passed on to the feature extractor that determines the various
features or performance indices of the response. The performance indices along with the respective
system parameters form the training data set for the neural network. Once the training data is
available, the network is configured such that the number of nodes in the feature representation
field corresponds to the dimension of the input feature vector,while the number of processing
nodes in the category representation field are generally set greater than total number of input
patterns in the prototype set. Each pattern in the prototype set is sequentially presented to the
network once. A second cyclic presentation of the prototype set may be made for a stable category
confirmation. During training, the attentional vigilance parameter is set at its highest value (0.999)tO ensure a2 ;-l . ... I,,•J a no .. . ... reul"n a........

tt",, ,,.", 1,, Of thc, I'u.li*g category Stitucitre. Thne category structure represents the
state space partitioning of the neural network depending on the number of stable categories
established during training.When the network is presented with a feature vector for the first time, it
is encoded in the LTM through modification of the LTM connection weights. The parameters
associated with the feature vector now get assigned to this allocated node in the category
representation field. On presentation of the subsequent feature vectors, the network's orienting
subsystem first determines closeness of match between the pattern currently imposed on the
network and any of the patterns that have previously been seen. Since the vigilance parameter is
set so high a new node is allocated for the pattern. However, if the current pattern happens to be
exactly similar to the one the network has seen before it is clustered into the same category. It is
therefore possible to partition the networks state space such that each partition serves as an attractor
for a particular type of response characterized by its feature vector. After completion of training the
top down and the bottom up connection weights of the network along with the network parameters
are saved. To make the network uniformly sensitive to all components of the feature vector, the
feature vector components were enhanced by passing the feature vector through a nonlinear
function given by:
fi( x ) ex where y = 0.05
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Testing: When the network is introduced in the control loop, identification proceeds almost
instantly. Search for the category associated with the right parameters is achieved by dynamically
altering the attentional vigilance parameter until an "optimal vigilance" is found, [Kumar & Guez,
1989].

strutc~n N'IETVORK Fet amr woeor

Pm~eters EMULATOR FEATURE
Step iM.1 0 srtem EXTRACTOR

rtsIOwst CONTROL
I• ,.-•LOOP

from wt hAl systemI

Figure 3 Block diagram of network training module

Experimental Results : The time response of the system is obtained using a Runge-Kutta
fourth order differential equation solver (RK-4).Each of the following figures depict two plots. (a)
The response of the actual system to the unit step input signal with arbitrary initial parameters ax, 03,
and Kin, and (b) the final system response with the D.C. bias or the steady-state error
compensated through the parameter C. The neural network employed is trained off-line on the
features of the response obtained using the generalized second order equation with the following
parameter variations:

0.1< :5 --- 1.50, AC =0.10--

0.5 !c90.!2.50, A(0n=0.50 (9)
These parameters are not made available to the system identifier but are estimated through the
neural hetwork in the control loop, based upon the features of the system time response to the
standard test signals. The only available information to the feature exL actor module which precedes
the neural network in the overall process block diagram is the time and the value of the system
response at that time instant. Specification of the parameters ao0 and P0 enable in the computation
nf th~rp cT-Pi glr"r .. A tkeA-;A - -1L-------------1..

l.LXJL, UV k L It uy)vI VtjUIC UdCt lu l 11I

desired location of the system closed loop poles within the left half of the S- plane. In the case of
the square function and the square wave, it should be noted that feature extraction was restricted to
the step portion of the response (12 seconds). Figure (a) and (b) represent the nominal responses
of the assumed ideal model to the unit step and the square function. Figures (c) and (d) depict the
time variation of the plant parameters during the identification process. Figures (e) and (f) show the
ability of the proposed neurocontroller to modify an overdarnped and an underdamped system
response respectively, with the input being a unit step function. It should be noted that the original
system response indicated refers to arbitrarily assigned initial plant parameters. The final controller
parameters are those obtained after the plant parameters are estimated by the neural network system
identifier and the relocation of the overall closed loop system poles by the pole placement module.
Figures (g) and (h) refer to the square input function. In Figures (i) and (j) are shown the output
responses of the plant when the square wave is imposed at the input. The time scale incorporated in
the simulation is adaptive for the unit step input and depends upon the duration of the system
transient response.The sampling frequency selected is common to both the response sampling rate
and the RK-4 differential equation solver. It is well above the Nyquist frequency of the system.
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Range Image Analysis Using Neural Network

Robert Y. Li and Huaxiao Si
Department of Electrical Engineering
University of Nebraska, Lincoln, NE

Abstract
Range images contain three-dimensional information. Human can use 3-D

information to identify or classify objects. This capability is simulated by
artificial neural networks using features extracted from range images. Two
models, back-propagation and counter-propagation, are used and their results
are evaluated.
Introduction

3-D target recognition is a very important topic in computer vision. Range
information from a C02 laser sensor can provide 3-D information and these
information can be used for target recognition. In many ways, it is similar to the
human's ability to use depth information to identify the target. A person can
discriminate between different objects based on approximate geometric
estimation. In this report, the geometric information is first extracted by
processing laser range images. Then the geometric features are analyzed by
models of artificial neural nets for classification purpose. Two models are used:
back-propagation and counter-propagation. The results of these two models
will be compared.
Range Image Processing

In this research effort, range imagery was obtained from a multi-modal
C02 laser radar Range data offer significant advantage because they preserve
the 3-D geometry of the scene viewed from the sensor. The laser data set
includes relative range images with 15 meter range ambiguity[I] By applying
the median filtering and conversion algorithm, the relative range data is
converted into absolute range data. Figure 1 shows a tank scene in a
converted absolute range image. The converted absolute range image shows
that the range values change gradually and smoothly from pixel to pixel, and
the range ambiguity is removed.

The 3-D Hough transform is then used to detect and measure planar
surfaces. A plane in the 3-D space can be described by the following equation:

cos 8. cos 9.x + cosS.sin0.y + sin 8.z = D

where 0, 6 and D are pan angle, tilt angle and normal distance.

To detect a plane, we check for any peak in the accumulator of these three
parameters (0, 8, D). When 0, 8, and D extend over a large range, the
calculation can be very time-consuming. However, since most surfaces are
either vertical or horizontal, the Hough transform for 3-D space can be further
simplified[2,31 Our first goal in applying the Hough transform to the data is to
estimate target orientation by detecting a dominating vertical surface in the
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target. This is done by locating the peak in the (0, D) accumulators using the xy
values of each pixel. We reasoned that most vehicles had either a flat top or a
large deck, and the portion below that flat horizontal surface was more box-like.
Therefore, vertical pixels below the major flat surface are more suitable for the
calculation of target orientation. Using this approach, correct orientation angles
were obtained for most targets under our consideration.

After target orientation is determined, geometric features such as height,
width, and length of the target and the percent of pixels above the target deck
can be calculated. Target orientation was first found by using only vertical
pixels below the major horizontal surface, and using only angles from -90 to 90
degrees in the Hough space. Then with the angles fixed, we found the target
dimensions by counting valid intervals of the normal distance along these
angles. See Figure 2 for Hough space representation in left-facing projections.
Finally, we also calculated the percentage of pixels above and below the major
horizontal surface (which is the deck in the case of the tank), Table 1 lists the
results of computing target orientation and dimensions for six different targets.
Those measurements on height, length, width, and the percent of pixels above
the deck are used as feature inputs to the artificial neural networks to be
described below.
Neural Networks
(1)Back-propagation: This model is to compute the derivative of the error
function with respect to any weight in the network and then change that weight
according to the learning rule below[4]:

AWij = c-8i-aj

In other words, the weight on each line should be changed by an amount
proportional to the product of an error signal 8, available to the receiving ith unit,
times the activation, aj, of the jth unit sending activation along that line. The

symbol c is a constant. In this case, we consider that the output of a unit is equal

to its activation. The determination of 8 is a recursive process that starts with the
output units of the network.

If a unit is an output unit, then its 8 is given by

Si = (ti - ai) fi( Neti)

where fi(neti) is the derivative of an activation function with respect to a change
in the input to the unit, and ti is the target value. Then, the error signal for
hidden units for which there is no specified target is determined recursively; by
summing up the 8 terms of the units to which it directly connects and the weights
of these connections. In other words,

Si = fi( Neti) -I 8kWki
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In terms of overall operation, the back propagation model can be divided
into forward and backward phases. After two phases are completed, we

obtained the weight change AWij needed for each weight using the equation
shown earlier.
(2)Counter Propagation: This neu~ral network model constructs a mapping from
a set of input vectors X to a set of output vectors Y. See Figure 3 for the
configuration. It essentially acts as a hetero-associative nearest-neighbor
classitier[5]. After input features are normalized, they were sent to the Kohonen
layer which acted as a nearest neighbor classifier. The neurons in this layer
compete with each other. The one with the highest output wins. The Kohonen
learning rule is the following:

W1= W ++A (X - WV) where W1 is the weight , X is the input and A is the
learning rate.

The output layer (Grossberg Outstar) is basically a processing element which
learns to produce a certain output when a particular input is applied. Sine the
Kohonen layer produces a single output, this output layer is essentially a
decoder for specified output category.
(3)Experimental Results: Six feature patterns from the Table 1 were used as
training inputs to the neural network. Then during the recall or the test stage;
many simulated patterns, with small statistical variation from the standard
measurement, were analyzed by the network. The classified result has been
100% correct for the test patterns using either model. The pattern is determined
to be either a tank or a truck. Figure 4 shows the plots of the cumulative errors
as a function of the number of training patterns. In learning stage, both models
converge quickly to the desired error tolerance. It can be seen that the
counter-propagation model has a faster convergence rate. It takes a fraction of
the time needed for the back-propagation model.
Summary

Range images provide 3-D information. Human can use 3-D information to
classify object category. The same capability is simulated by using artificial
neural network. Both models, back-propagation and counter-propagation, work
well. More research should be done in using neural network to extract
information from range images.
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I . Converted absolute range image (1 .. ure 2. Hough space in the left-facing direct
Each intensity level renresents an in ....- al

I a get Type M-60 tank. M-60 taink M-60 tank M-60 tank< fuel trock- fuel Lc,;,

Analysis Result

Angle, deg- 60 10 10 -70 20 -70

Distance, njctcr 314 307 880 300 300 371

Width, meter 4.0 5.0 3.75 3.5 3.75 3.0

Length, meter 6.5 5.25 5.0 6.0 12.0 12.0

Height, meter 3.0 3.5 3.5 3.0 3.25 3.25

% pixce above deck 29.8 46.1 30.5 33.3 6.4 3.8

Total no. of target pixels 19,10 1365 466 1255 1551 1448

Table 1 Extracted target. features from range images

I Back pcopagati(,a
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,., I7 • l' + '
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Input Buffer

Inputs (Normalized) " ..... -7

Figure-3, A counter-propagation network . . ....
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# of training patterns (N)
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A Self- Organizing Recursive Network for Object
Recognition1

Ilerwig MannaertU Andr6 Oosterlinck
ESAT-M12, Department of Electrical Engineering

K.U.LEUVEN, IKardinaal Mercierlaan 94
B-3030 Ileverlee, BELGIUM

Abstract

A parallel, self-organizing remursive network is proposed for object recognition in iun-
ages. Bas-.cd on the self-similar structure of the network, conceptual learning mechanisms
arz presented enabling the network to recognize learned reference patterns under a well
defined class of transformations. in order to use the system in image understanding, some
algorithmic aspects are discussed. Finally, sonie applications of the system, operating on
real images, are shown.

1 Introduction

A system learns a pattern by an impriTit which the pattern makes in the system. The Ilebb-
rule in classical ANN is an example of such an imprint The learning by imprint principle

however is far more general than the Hebbian rule and should not necessary be restricted to

this specific implementation. We propose here the use of parallel, recursive point.ernetworks,

to implement the learning and the creation of pattern attractors, These parallel and self-
organizing networks are highly suited for our modern computers and can be treated in a

purely static way.
We describe in a first section the self-similar structure and learning mechanisms of the

pointernetworks. A second section deals with some algorithmic aspects if the system is used

for image understanding. Some examples of applications will be given.

2 Learning in Self-similar Networks

The architecture of connections is embedded in the tree-like pointer-structure of the cells in

our network. Every cell in the self-similar structure has a connection to the next cell on the

saine hierarchical level, and a list of connections to its comporents on the lower level- A code

specifies how its value should be deterinirted from the cell-values of the lower hierarchical

level. The leaf-cells contain additional inforinmation. We now show how the system call learn

or assinilate inlo•ariitionn liv creation or intodilicat ion of a cell oii sone recursive level-:

"llrrwig Mainiucrt is a ltcs-,irch Assikt.ant of Ohei on "'hmil " for Scicnlitific lcsearclh ( Iltlgiuiii).

II- 405



1. A patterni Is a iI1-(imnensional binary or analog vector funiction (feaf ires) of' ii variables
(Space dil inelsioni): rt ( x). Tlhe assimilation of a pattern cre~ates a 1),1 rin-c/il, pointing
t-o at list. of, leaf-cells, each containing the idlentificat~ion of a sensor, activated by tlhe
reference lpat~tern. In the nion-binary case, an extra attribute (weight.) sp~ec~ifies the value
of the ref'erence variable-unit.. A multiplication code ini the leaf cell and a summiiiation
code in the pattern cell result~s in a classical correlation, though other possibilities exist.
(mean or miedian. f'or the p~afttern, cell, similarity measure for the leaf' cells).

2. Objects, appearing at. different. scales, orienitations arid positions in images are in fact.
equivalence classes of pat~terns. We define a p~att~ern rf2 (x) to b~e equivalent. with1 a
reference pattern rfi(x7) if tilcre exists a direct similitude +T for which: rf,(+(x.:))

rfi(.x). Th'le simiilit~udes and therefore the equivalence class canl be characterized by

I +it C2= 72 4 11 ± 2
2(1

parameters in ii.(ldimensional Euiclidean space, guiding the rotation ((-:2), s calin~g ( t) ad

tranislat~ion (n ) which transform the reference jpat-t~ern into the equiivalenlt patt~ern. The
entire v'qiuiivalence class is assimilated by the network if we create an objcct-ccii, pointing

to pat-tern-cells for all possible transformnat ions. For transformation (1, for instance, oneP

creat~es a list With conneCt6ios (rf~( x ) is an active sensor in the reference pl~at.ern):

Vrf,(x) : -*I(k) 2

Each tranisformnation cell +J will compute a probab~ility mleasure for the p~resence of

pafttemrnif, (4(x)) --: fi(.r). For classical correlatiojn (multiplication andl summuat~ioni),
it conlJiplt-es:

'Fte object cell talies usuiallY 0wi inaxiniuin of all transformation cells.

:3. Di fferent, objects result. in a rfiossifico Uo o ccli. pointing to at list. of' object. cells. Thl e
classification call also be made at. the patternm level for every possible tramiforniation.

4. The introduction of Olt-cells at. a certain level defihies different lpatlterns or objects to

ble eqfuivalent. At. the level just above the leaf'-cells f'or instance, this accounts for small

distortions. 'We generalise the 011 -ing for analog values;

IV

U ai max ai (4)

5. One canl tell the system that Certain sensors or seissor coiiibinat.ýons are essential t~o thme
nature of' t. he object. Th'lis is i mmplemented by the generation of' AI"D1- cells, gtericrali sed
to account. fo(r analog valuies in a similar wvay.

6. It is p)ossible to assocciate, syumbols wi th certain primitives of' the network, Iikhe nai oe
With cells at. thle object level, conuipa risonms of Size bet weenl (liiherett. object-s based onl the
"scale, relat~ive pos ItCion ofI various ob~jects, nimines oif essentfi al fcat orcs of an objvd t, ... As
a next. st-eJ) oile Could try to create semmntic relations between~ these symbols,
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3 A Network for Image Understanding

As a first step in obtaining a practical algorithm, we decouple the pararieter set of the
transformations. Unlike the subspace approach of [1], we make a conceptual distinction
between the n translation parameters on one side, and rotation-scale parameters on the

other. Translation parameters are considered as a sequential wandering through time or
space during evaluation or operation, while the others are used in a real invariance network
constructed during the imprint or assimilation. The use of and-, inean-, median-cells resulting

in a selective activation of the network, is a possible way to attract the attention. The system

could stop the wandering process and start a zoom action.
The sensor model we use is an edge-detector for object bcandaries, consisting of four

sensors: two directions (horizontal and vertical) which can be positive or negative. The
sensors compute a horizontal and vertical derivative of the illunminance function in every
point1 . Every region between two zero-crossings z1 and z2 of the derivative function in a given
direction a, is considered as an edge. This edge is located at the point where the derivative is
maximal (in absolute value) and has a value corresponding to the total illuminance change:

Aý,•I(Zo,) = JZ dl(za)dzo- (5)

Z.7 dz(5

The equations represent a competition and a cooperation between the sensor cells. We also
introduce a preliminary competition between horizontal and vertical sensor at every point.

The discretisation of rotation and scale parameters demands the use of regions as receptive
fields, in order to detect all possible equivalent patterns. The sensor field is therefore converted
into a logarithmic-polar mapping. This mapping, known to be used in biological systems, is
geometrically quite natural as the sensor areas keel) their morfological form (both arc and
radius length of the areas evolve proportional to the radius), and a scale-rotation transfor-
mation results in a simple addition of the coordinates. Tough it would be more elegant to
use the 0 - r-directions of the log-polar as sensor directions, we use the cartesian directions
to avoid the recomputation of the image for every possible translation. The cartesian sensor
pattern is converted into a log. polar sensor field. To avoid the normalisation problem (our

curvilinear boundaries give an input proportional to r' while noise is proportional to surface
area aWWd terelore r'), we take simply the strongest value in every region.

At the moment, reference sensor images are created by the user. The system needs
an integer image for the horizontal and one for the vertical edge sensors, and uses some
rules for the interpretation of the reference patterns. It will for instance create OR-cells for
identical changes on one line in a given direction and AND-cells for complementary changes.
In the future however, reference patterns will be pointed out with a mouse on real images.
The system will also ask itself for names and symbols corresponding to celrain objects and
features.

The system runs on a VAX-8530 and requires less then an hour C(PU-time for 128 x 128
images with a single pixel as translation step. It has been tested succesfully for the detection

'The sensor model requires n orthogonal directions in n-dimensional space. If a is the orthogotnal direction

with respect to t-hC hyperplane appi oximating the object boundary, there is always at least one direction a for

which:

(1 40)
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Figure 1: Detection of eyes in a human face (left.), and stenose in an angiogram. The system
puts crosses at the appropriate place, size and orientation.

of all kinds of simple objects (registration plates of driving cars, co.,toutrs of hu-man faces)
or curvilinear structures (blood vessel, roads on sattelite images). Figure 1 gives two other
examples: the detection of the eyes in a human face, and a stenose in a blood vessel angiogram.
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Shape Recognition by Ring Hidden Markov Models
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Abstract

A two dimensional shape recognition approach utilizing Hidden Markov Model (HMM) as knowledge
source is discussed. The shape is represented by a sequence of curvature values. A Ring Hidden Markov
Model (RHMM) neural network which incorporates a ring structure and local connectivity is proposed. A
new learning algorithm is specifically designed for the network. Simulation results indicate that the proposed
F HiMM system can achieve almost 100% recognition accuracy at a very fast learning spet -i.

1 Introduction

Automatic target recugnition requires fast, yet accurate classification technique based on efficient description of
the objects. The two dimensional shape contains much information of an object. Many conventional approaches
to 2D shtpe recognition have been proposed, e.g. moments and Fourier descriptors methods. Despite of some
success, they are inefficient for classifying shapes with local feature ambiguity. In addition, their capability is
limited by the lackl of compact knowledge source and efficient learning mechanism. In this paper, we propose
a sLochastic Ring Hidden Markot, Model (RHMM) approach for shape recognition which specifically uses the
curvature features of the shape.

1.1 Rtepresentation of Shape

Human eyes are known to be sensitive to the inflection points of shape contour, which correspond to larve curvature
values [1]. Therefore in the feature representation stage, we employ an approach based on the curvature signal
of the shape. Given a planar curve, the curvature signal x(i) is defined as the instantaneous ra&, of change of
the tangent angle 0(t) with respect to curve length t. i.e. K(t) = '9(t), whe: curve length t i ,nalized for
scale invariance. However, the derivative can not be reliably computed if there is . '-e on the bou. Aa.j of shape.
Thus, a Gauss;.a mask i'i used for filtering the noise [1]. The new curvature signai K(t) is:

K(t) d (G(a,t) * 0(t)) G'(',,t) * 0(t)

where G(or, t) is a Gaussian function with 7.ero roean and standard deviation a, G'(a, t) is its derivative w.r.t.t.
It can be shown the.t inflection points always appear at local maximum and minimum of the filtered curvature

signal K(t). These curvature values correspond to sharp corners of the contour. The curvature signal between
these points can be uniformly san ipled to represent smooth arc in the contour.The final curvature sequence is
represented by {K(tl), K(t 2),...., K(tT)I, whese tl < t2 < .. < tT. The localfeatures of the shape are curvature

segments along tL.- contou- of shape correspording to a sharp corner or a smooth arc or some combination of
them. There are a,!;o some global cons.traints of the shape, including: (1) the local features along the contour have
a specific order; (2) the contour should be closed. Thus the shape recognition task is matching the local features
under the global constraints.

1.2 Recognition of Shape

11MM has been widely explored in speech re.-cgnition [5] [4], and recently it is used in character recognition
[6] and texture segmentation [2]. It is a doubtly stochastic knowledge source which can model various kinds of
nonstationary signsl. Basically, we construct a IlMM for each class of shape. Curvature sequence of the shape
is sequentially generated by each model according to the probability distributions in each state and the state
transition probabilities. The HMM uses the Baunm.Welch learning algorithm [5]. By the training procedure,
all the stochastic parameters in HMM can be estimated. In the recognition stage, the model with the highest
probability of producing the curvature sequeznce is sele ted,

There are two major problems when direc.ly applyi.g 'orn entivinal HMM to shape recognition:

1. HMM is a fully connected network which c-Lnnot impose the global constraints such as the specific order of
local features along the contour and the closed boundary :onwtlaint.

2. The original Baum-Wclch learning algoritlhro, convc,'ges slowly, fcr training the cyclic shifted observation
sequences generated by rotated shapes. Tni- will makes it diti,:uit for rotation invariant shape recognition.
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Figure 1: The locally connected ring HNMM (RHMM) network

To solve these problems, we propose a modified Ring B'idden Markov Model (RHMM) networks for shape
recognition. The model is a unidirectional ring network with local connections. The proposed RHMM system has
some unique features, compared with the conventional 1-MM:

1. It employs a unidirectional ring structure to incorporate the glob.d constraints that the sequence of curvature
value along the contour should be specifically ordered and the contour should be closed.

2. It only has local state transitions. Thus the neighboring local features along the shape coatour can be
merged or split based on transition probabilities. This will provide certain degree of robustness for learning
local feature.

3. A modified Baunm-Welch learning algorithm is proposed for the RHMM, which provides training procedure
for all stochastic parameters of the network under the global constraint. It can also learn shapes with
rotation invariance.

Simulation on aircraft recognition will show that the proposed RHMM networks can achieve better classifica-
tion accuracy and faster learning compared with the conventional HMM approach.

2 RHMM System for Shape Recognition

In this section, we will describe the ring HMM (RHMM) systern for shape recognition. Basically, . construct
a RHMM for each class of the shapes. Each model is an unidirectional locally connected ring networt .hown in
Figure 1. At the beginning, the model parameters are chosen randomly or based on some initial guess. There are
two phases in the approach:

"* Scoring Phase: For a shape curvature sequence (observation sequence), the probabilities of the sequence

given each model are computed. The model associated with the maximum probability is selected.

"* Learning Phase: For a training sequence and the corresponding model, the model parameters such as
probability distributions in each state and state transition probabilities are reestimated.

The system parameters are defined as:
N = number of states (nodes) in the network.
M = number of possible observation symools.
T = length of the input observation sequence.
Q = { qi,q ,...,qj I set of states.
0 = { - ,-, } = ( K(ts), K(t2) .... K(tT) } observation sequence.

= { r, }, 7, = Prob{q, at t = 1), initial state distribution.
A= {asj),aa, = Prob{q, at t + I I q, at t}, state tranrsition probability.
B= {b 2(k)}, b,(k) = Prob{o, = k at t I q, at t), probability distribution in state j.
A= complete parameter set of the model.

2.1 Scoring Algorithm

To find out which model is most likely to have produced the observation sequence, we need to calculate the
probability P(OIA). The locally ccnnected ring HMM has the constraint:

a,, =0 if i 9 A,(i) or a,, =0 if i s A._,(j).

where A,(i) = {(i + 1) ,nodN 11 0, 1,2,... ,r), A-r(j) -{(j - + N) mnodN It = 0,1,2,...,r), r is a positive
integer (e.g.2).

The forward probabilities are defined as at(i) = Prob(OO1 . .. O,,qj at t I A), which can be recursively
calculated by the procedure:
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1. a, (8) = ,r, b(oz), 1 < i < N;

2. fort=1,2....T-IIj<N

V,, E=A-0() ,]b(,+)

3. Prob(O I A) = T(i)

Similar procedure can be used to calculate the backward probabilities:

fl,(i) - Prob(O,+1 O,+2 ... Or I qj at t,A).

1. fiT(i) = 1, 1 _< i < N;
2. fortmT-l,T-2,..., 1,1 <i<N

,= M i aibj(O,+I),),+(i)
jEA .,()

Note that in the scoring phase, the procedure is essentially the same as HMM except all the E is taken only
on r local neighborhood values, which implies a computation saving by a factor N/r.

2.2 Learning Algorithm

We propose a modified Baum-Welch learning algorithm for the RHMM network:
Define ota(i) = {ae(i) : ao(i) = b,(O) for i = s,O otherwiae}. Define flP(i) =- {f,(i) : fiT(i) = for i

4, 0 otherwile).
Define:

C'(i,j) = Prob(q, at t, q, at t+ I10, A,q, at 1 and T)

Prob(O I X,q. at I and T)

The algorithm has two key steps:

* Step 1 identifying starting state. Chose s" = argmaxl<,<_N fa(s), which is the most likely initial as well
as final state of the sequence. This new addition to HMM will estimate the starting state before learning.
In this way, the cyclic shifted sequence generated by rotated chapes can be learned.

* Step 2 training model parameters. Define yf(i) = • {(i,j). Then the learning procedure is:

1. 9j 7(i), for 1 < i < N;

2. ai = -rT (j), for {Ii, jj = (i)};

3. 61j(k) T-- '..k-Y)* •ToJ_ 'r" (j), for 1 <j N,1 < k <M
4. 6,(k) f=,-(,)G(•-.)/Zr . , -)G(-),' f 1<_< , 1 < k < M.

Here step 4 is a new addition to HMM. It introduces a normal distributiov G(z) to provide robustness on the
state probability distributions bj (k). This is necessary in order to tolerate distortion of the contours.

3 Simulation

In this section, we use eight aircraft images (512 x 512) for shape classification experiment. Figure 2 shows the
eight types of aircraft used for simulation. The conventional HMM and proposed RHMM approach are compared
in terms of recognition accuracy and learning speed. In both apprcach, we set up 30-state model for each kind of
aircraft. Five training patterns are generated for each aircraft by motating and scaling the image, together with
small local variations. A number of experiments have been made on classifying 40 (5 from each class) aircraft
shapes into the eight class. The Table 1 illustrates the recognition accuracy versus learning sweeps.
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Figure 2: Eight types of aircraft used in simulation

Models Learning Sweeps
1 1 5 10 1 15 1 20

[m HMM 90.0% 90.0% 192.5% 92.5% -97.55%
RHMM 97.5% 99.9% 99.9% 99.9 .

Models Learning Sweeps
1 5 10 15 20

EHMM 87.5% 87.5% 87.5% 87.5 # o
RHMM 97.5% 97.57 -99.9% 99.9% •99.9%

Tablel: Performance of HMM and RHMM (percentage of correct recognition)

The simulation results have shown that the RHMM approach offers a faster learning speed and higher recogni-
tion accuracy compared with the conventional HMM. Indeed the RHMM system can achieve almost 100% of the
correct recognition rate by a small number of learning sweeps. We believe that the improved performance of the
RHMM is due to the following reasons: (1) its ring structure can better incorporate the contour constraints; (2)
the new learning algorithm uses reliable estimation of starting state to handle rotation invariance; (3) robustness
are provided in probability distribution within each state to handle shapes with distortion.

4 Conclusion

In this paper a stochastic neural network foi shape recognition which is invariant with scaling, rotation and
distortion is pioposed. The system uses a modified Ring Hidden Markov Model (RHMM) knowledge source. The
proposed scoring and learning algorithm can capture the statistics of the local features and yet preserve the global
constraints. Sinimiation results on aiicraft recognition have shown superior performance in terms of speed and
accuracy. Finally, the locally connected ring HMM network can be efficiently implemented in 4 systolic array
which permit real time processing [3].
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Human Face Recognition Using A Multilayer Perceptron
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Abstract
In this research we investigate using a multilayer perceptron (MLP) neural network for human face recog-
nition. The results of our implementation demonstrates the ability to recognize faces independent of trans-
lation, rotation, and perspective transformations. In addition, the system is able to classify facial images
that are corrupted with noise and with sections of the image removed. The recognition accuracy on our
database of faces is 100%. We also compare our results with a conventional "onparametric classifier.

I. Introduction

Face recognition is a task which involves a variety of important aspects of perception and
representation of complex visual patterns. People are capable of recognizing faces that are distorted,
rotated, viewed from different angles and distances, and missing certain parts. The process of recog-
nizing faces involves both the extraction of local features, such as the nose, eyes, lips, and eyebrows,
as well as a global interpretation of these features, which integrates and views them as a whole.

A review of some of the pioneering research in face recognition is described in [1], [2], and [3].
The majority of face recognition research uses feature-based techniques. These techniques consist of
three steps: 1) extracting facial features, 2) reducing the dimension of the feature vector set (if
required), and 3) matching the reduced feature vector to a database of feature vectors using some type
of distance metric that rates the quality of match. The research by Harmon [31 represents the embodi-
ment of this approach for facial recognition. His research consists of extracting a set of 38 simple,
local geometric features of a profiled face. From this set of features, Harmon uses principal com-
ponent analysis to reduce the number of features to 17. The features are then matched to a database of
similar features extracted from other individuals.

There are problems associated with feature-based methods. First, feature-based methods assume
that segmentation of geometric features is always reliable and accurate. In reality, segmentation is gen-
erally very difficult, and segmentation inaccuracy will result in poor classifications. Further, even if it
is possible to segment local features, it is difficult to organize this local information into a sensible glo-
bal percept. Second, feature-based approaches are not robust to transformations. This results from a
lack of reliable ways to encode a facial transformation, such as a smile or frown. The inaccuracy of
encoding these transformations produces inaccuracies and inconsistencies in the associated feature
values, which in turn cause classification mismatches.

In this report, we extend the rusearch by using neural networks for face recognition. We address
the problem of recognizing faces irrespective of translation, rotation, or perspective, as well as being
tolerant to severe noise distortion and missing data. The specific neural network model that we have
implemented in this report is a multilayer perceptron (MLP). There are three main reasons why we
have implemented a MLP for face recognition. First, it can perform classifications in parallel. The
ability to process in parallel allows the system to perform in a real-time environment. Second, a MLP
does not make assumptions about the underlying distribution of the problem space. This is specifically
applicable to the face recognitiuo problem since it is difficult to characterize probability density func-
tions (PDFs) accurately. Further, even well defined PDF modeling is seldom adhered to in a real
world scenario. Third, a MLP has the ability to generalize. Generalization is the ability to classify on
input patterns that the network has not seen before. In addition to being able to recognize human
faces, we examine what effect variation in network architecture has on recognition accuracy. The
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parameters that we vary include the number of hidden units, the learning rate, and the number of learn-
ing sweeps (epochs). The resutts derived here for face recognition also have relevance to many other
vision applications.

This report is organized as follows. Section I1 presents the results of our implementation on
actual faces. In Section III, we discuss the implementation of the face recognitio task using a conven-
tional nonparametric classification technique. In Section IV, we present an analysis of our implementa-
tion and compare it with the nonparametric classifier. Finally, Section V provides a summary of our
research and suggests avenues of further research.
11. Implementation
Description of Data Set: Our input nodes consist of raw grey level intensity information. We do not
use facial features, as commonly done in most conventional approaches, but, rather, we allow the net-
work itself to form its own set of "features" in the hidden layer. Our database set consists of six
482x499 grey level images. These images contain the faces of three people with their heads straight
and tilted slightly to the left. From the six original digitized images we compose a data set of
seventy-two images by applying various transformations to each image to simulate translation, rotation,
and perspective changes. We also generate noisy images and images with missing data. After apply-
ing these twelve noise functions to the six images, we reduce the 482x499 images to 32x32 images.
We reduce the images by implementing a consolidation operation which involves averaging the pixel
values in a 16x16 window placed in overlapping positions across the entire image. The 1024 pixel
values in each image are then normalized to the range 10.0,1,0].
Neural Network Arch'tectur.e: We are us•ng a three layer neural network. We va-y tfhe numer- of hid-
den units over the set of values {4, 8, 12, 16, 20, 241 and the learning rate over the set of values {0.1,
0.5, 0.9, 1.3, 1.7, 2.1}. We consider each person to be a separate class and use three output units to
identify each class.
Training: To train our neural network, we use a momentum value of 0.9 and initialize the network's
weights to random values ranging from -0.3 to 0.3. We randomly select a set of twelve face image pat-
terns from the total set of seventy-two faces to serve as a test set, while the remaining sixty images are
use(' to train the network.
Recognition: After training the network on sixty images, we present the network with the remaining
twelve test images for classification. We use two figures of merit for recognition accuracy, as defined
below:

0.8/0.2 Threshold Criteria: For a given input class, if the activation level of the output pro-
cessing unit which corresponds to the unit defined above to be 0.9 is 0.8 or more, and the
activation levels of the other output processing units are 0.2 or less, the network is credited
with a correct classification.
Greatest Activation Level Criteria: For a given input class, if the network's output process-
ing unit which has the greatest activation level corresponds to the unit which has the greatest
desired activation level defined above, the network is credited with a correct classification.

ILL. Comparison to Non-Parametric Classifiers

The performance of the network was compared with a k-nearest neighbor (k-NN) classifier (k=l)
which served as a performance benchmark. A nearest neighbor rule classifies an unknown signal as a
nearest neighbor according to a pre-specified measure of similarity or distance. The k-NN classifier is
useful for comparison against the performance of the MLP classifier since as the number of sample
face images increases, k-NN approaches the optimal Bayes classifier, That is, with an unlimited
number of samples, the k-NN error rate is never worse than twice the Bayes rate [41.
IV. Discussion of Results

Figure 1 graphically displays the results of using the MLP for face recognition. Figure la shows
the network's recognition accuracy, using the Greatest Activation Level Criteria, at each of the hidden
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unit and learning rate values we tested. As shown, a 100% recognition accuracy is obtained using
many combinations of hidden units/learning rate values. The minimum number of hidden units
required to give perfect recognition is 8 using a learning rate of 1.3. The lower bound on recognition
accuracy is 83%, which occurs when using the {(4,1.3), (4,1.7), (4,2.1), (12,0.1)1 hidden units/learning
rate combinations, respectively. Figure lb displays the network's recognition accuracy, using the
0.8/0.2 Threshold Criteria, at the same hidden unit/learning rate combinations. Again, a 100% recogni-
tion accuracy is obtained using the {(16,1.7), (24,2.1)1 hidden units/learning rate combination. A
decrease in the number of output processing unit activation levels able to yield 100% accuracy is
noted, especially those produced in a network consisting of few hidden units. Figures lc and Id
display the recognition accuracy percentage of the two classification criteria with the results of the
learning rates averaged for each hidden unit. The Greatest Activation Level Criteria has a recognition
accuracy average lower bound of 88.9%, while the 0.8/0.2 Threshold Criteria yields a 62.5% lower
bound. It appears that recognition accuracy does increase with the number of hidden units up to a
point. In some cases, however, going above this value even produces a slight decrease in recognition
accuracy.

It is instructive to compare the nearest neighbor (k-NN) classifier to our implementation using a
MLP. One comparison is how well the network performed compared to the k-NN in terms of recogni-
tion accuracy. The recognition accuracy for the k-NN on our test set is 100%, which is the same as
the neural network implementation. The 100% recognition accuracy of the k-NN is based on choosing
the distance metric that has the largest value, similar to the Greatest Activation Criteria. It is interest-
ing to note that under different classification criteria, the k-NN technique is error prone. For example,
if we analyze the out-of-class to within-class distribution we compute that 66% of the highest out-of-
class value are greater than the lowcst within class values. Further, if we use a criteria that all within-
class values be above 0.8 and that all out-of-class values be below 0.2 (like the 0.8/0.2 Threshold Cri-
teria), the k-NN recognition accuracy gives no correct classifications. The difference between these
two approaches lies in the discriminating ability of the MLP. Even though both techniques give 100%
recognition accuracy on our database using the Greatest Activation Criteria, the MYP is better able to
discern between different classes. We expect that the MLP is better able to piecewise linear fit a more
accurate decision surface between classes.

Another compari-cn between the MLP and the k-NN relates to the computational complexity of
the two al2orithms. For the MLP, we need to evaluate the space/time complexity for both training and
recognition. The time complexity to train the network is 0(aNN,(N-i-+No)) where cc is a constant relat-
ing to the number of training sweeps, N, is the number of vectors in the database, NA is the number of
hidden nodes, Ni is the number of input nodes, and N0 is the number of output nodes. For recogni-
tion, the space/time complexity is O(NA,(Ni+N,)). If we consider a trained network for our data set, this
translates into 32,864 bytes of memory (using single precision) and on the order of 8216 multiply-
adds. For the k-NN classifier, the space/time complexity is O(NNi). For our specific problem this
translates into 245,760 bytes of memory and approximately 61,440 multiply-adds. In comparison, a
k-NN requires 7.5 times more storage and computational resources than the MLP neural network
approach. This difference gives the neural network a clear advantage in terms of a real time imple-
mentation.
V. Conclusions

In this study a MLP using a backpropagation learning algorithm is used to recognize faces
irrespective of translation, rotation, and perspective transformations. In addition, the MLP is able to
classify faces that are corrupted with noise and with sections of the face removed. Further, the MLP
also demonstrates the capability to generalize.
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The recognition accuracy on our database of faces is 100%, using a variety of hidden
units/learning rate combinations. Recognition accuracy appears to increase with the number of hidden
units up to a certain point. We achieve the same recognition accuracy using the k-NN classifier. How-
ever, the MLP appears to be better able to discriminate between classes, and it has an advantage in
computational speed. Our future plans are to increase the size of the image database. This will allow
us to obtain a more accurate estimate of the performance of the neural network approach and the rela-
tive comparison to the k-NN technique.

A major impediment to the analysis of the MLP's performance is the excessive amount of train-
ing time required. Though this is not a consideration for using a neural network in a deployable sys-
tem, it does prohibit a timely ainalysis of intermediate results. With this in mind, we plan to port our
simulation of the MLP from the Sun 3 workstation to a SIMD massively parallel processing environ-
ment. In particular, we are goaing to run our simulation on a Connection Machine-2 (CM-2) [5]. A
properly designed implementation of our network on the CM-2 should result in a performance of
16 x 106 interconnections/secorid, as compared to approximately 34 x 103 interconnections/second on
the Sun 3. This translates into a 470 times speed-up in performance. The advantage of this approach
is that once we train a network, we can simply download the trained network onto a uniprocessor for
the recognition phase. This will also allow us to experiment with different network designs in a more
timely manner.

A variety of applications can prosper from the results of this research. An important application
is in the area of security systems. Many portal entry security systems today utilize a series of redun-
dant checks in verifying hurnao entry, the two major checks being voice, and signature. However,
thes-e systems are neither Co, positely nor individually fool proof and demand another lcvcl of
verification. A face recognition system meets this requirement by being fast, robust, and easily adapt-
able to modification. A requirement for such a portal entry security system is a reliable method to
actually locate human faces. to a recently developed system [6], researchers demonstrated the ability
to locate human faces in photographs. They used a model-based technique and a semantic network
representation to reason about locations of faces in photographs. Their results were rather impressive.
The combination of this methodology for face location and the approach we have presented in this
report certainly lays down the framework for building a practical, real-time security system.
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An Application of Neural Networks to the Guidance of
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ABSTRACT
Most neural network models use learning with a teacher to train a great many simple processing ele-

ments. However the Adaptive Search Element/Adaptive Critical Element (ASE/ACE) model developed
by Barto, Sutton, and Anderson, and elaborated on in this paper, is comprised of just two relatively
complex units using learning with a critic. The ASE controls the physical system, and the ACE criticizes
the performance of the ASE in an effort to accelerate learning. In this paper, the basic model is extended
to the realm of complex numbers, and tho output is time averaged, yielding a system which has a continu-
ously valued control output. The system learns quite quickly.
, In the simplest organisms possessing nervous nets, mechanisms exist to control reflex behaviours. In
more complex organisms, these reflexes become hidden by the sophistication afforded by a more complex
nervous system, but, they still exist. (Blackburn & Nguyen, 1988) In light of these facts, we will examine
a most basic reflex behaviour: a reflex that keeps a submersible robot a certain distance above the ocean
floor.

INTRODUCTION
A.H. Klopf suggested in 1982 that neurons could learn using operant conditioning. they would learn to

attain certain states while avoiding others. In the field of neuronal modelling therefore, the principles of
behavioural psychology provide a way to train unsupervised systems.

The basis for the ASE and the ACE is the "boxes" system of D. Michie and R.A. Chambers (1968).
State space is partitioned into "boxes," each with its own resident "demon" which nondeterministically
chooses a control action appropriate to that state. All the demons together form a metaphor for the input
synapses of a single neuron.

d The state space diagram in Figure 1 shows displacement versus vertical velocity par-

E [][ D] titioned into boxes. The shaded box shows velocity and displacement both large and
[]E[][-][-L positive. The demon within this box must choose an action that will be most likely to

3 ]BSn ' _ prevent a failure from happening.
0000I Learning - adaptation - is based on an estimate of how long the system would
ED7LID continue to operate after particular actions. When the system fails, the individual

Fig. 1 estimates in each box must be updated to make another similar failure less likely.

Figure 2 shows th•. .,imilation's AgE/ACE controlling a submersible robot equipped with a thruster for
forward motion, and up and down facing thrusters for maneuvering:

Reinforcement V rVw ACE Fig. 2

Space V .Controlled

Decoder Internal Sse

SReinforcement

w; ASE Control / -
----- 3 f (y)

State Vector

The only information available to the robot is the return from its sonar, which gives the distance to the
ocean floor (actually the displacement from the desired distance above the bottom), and a failure signal
(reinforcement) which is supplied whenever the robot exceeds the allowable vertical error. The robot
doesn't know what criteria generates the failure signal, and must work through trial and error to avoid the
punishing failure signal.
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DESCRIPTION OF THEORY AND APPLICATION - THE ADAPTIVE SEARCH ELEMENT
The state space decoder divides the state vector up - and generates therefore a unique and finite set of

combinations. The element whose quantization parameters best match the state vector gives an output of
one, and every other element outputs zero.

As in Figure 1, Figure 3 shows a state with a large positive velocity and displacement.

v Upon failure, every element of the decoder will be set to zero. This is an impor-

EID+E900I -o IL'I tant condition fof proper operation of the equations.
ED"1" 1 0 1E0E d The output of the decoder, x, is passed to the ASE, each element being con-

0 0 0 0 0 nected to a particular synapse, having a weight of w. v
no UonI 0 o E_ F21 This diagcam shows how the synaptic weights, w, might appear 1:10 00 d

Co 0 01L5l before much learning has taken place. Dark squares represent C
MFig. 3 n,:gative weights - or a high likelihood that system will decide to ci] _ ow

to thrust up, and light squares represent positive weights - the probability of thrusting down. Fig. 4

The original model of Barto, Sutton, and Anderson used real synaptic weights to generate a binary
output. In this version, complex weights consisting of a real and an imaginary part were used to allow a
four valued output, A b;nary output allows up and down thrust - the complex four valued output allows
the thrusters to be shut off as well.

The following equation describes the output of the ASE, y(t), at time t:

y(t) = f wi(t)xi(t) + noise(t) (1)

The addition of a noise signal having a zero-centered Gaussian distribution causes the ASE's output to
bc governed by chance.

The noise is important during early training to ensura that the system fully explores the state space.
The noise should be gradually shut off to fine tune the weights, and completely shut off after training is
complete to ensure consistent and repeatable behaviour.

Si fx+1, if xr>Oandxi>OA~x) + +1, if x Z 0 (2a) A~x) = - -1, if x, <0 andxi <0 (2b)
1, if xO -ý 0 0 otherwise

The output of the ASE is passed through a thresholding function f. This quantizer provides the system's
nonlinearity - utterly necessary for any computation. Equation (2a) describes the quantizer for real
nimbers, and (2b) shows the quantizer extended to use complex numbers.

The controller's most recent choices were most likely responsible for the current success or failure of
the system, and therefore the most eligible to have their weights changed. A complex eligibility trace e
decays at a rate governed by B. (0 <= B <= 1). The inclusion of thc output of the A term y(t), means
that eligibility will be positive decaying to zero if the ASE's outpl- was positive, and negative decaying to
zero otherwise.

The eligibility remembers how long ago a choice was made at
ei(t + 1) = 6ei(t) + (1 - 6 )y(t)xj(t) (3) a particular synape, and what that choice was.

wi(t + 1) = wi(t) + ar(t)ei(t) (4) This equation shows how weights change through time.

As shown in (4), the system learns through operant conditioning - setting the reinforcement signal r to
-1 is an aversive stimulus - punishment. A positive value tor reinforcement would be reward, or positive
reinforcement. (The reinforcement signal as supplied to the ASE in our complex-valued model is real,
but internally it is treated as r+ri.)

As long as the system is functioning properly, the reinforcement signal is held at zero, and the weights
do not change. On the other hand, if a failure occurs, the negative value of the reinforcement will
penalize the most recent decisions (highest eligibility synapses) which undoubtedly led to the failure,
making those decisions less likely to occur in the future.

DESCRIPTION OF THEORY AND APPLICATION -rTHE ADAPTIVE CRITICAL ELEMENT
When failure finally occurs, ont, particular sequence of decisions would F;robably have been better than

the sequence that occurred- Based on that, the system learns. Unfortunately, this learning only occurs
upon failure - which is to say, infrequently. The ACE is added to provide a continuous feedback signal
which is fed in to the ASE as i. Reinforcement now arrives all the time - for good choices as well as for
bad - so learning progresses at a much quicker rate.
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The ACE receives the same decoder signal as the ASE, and also has a memory trace for every box, like
the ASE. Rather than storing a best decision probability in each box, the ACE s.ores a prediction, v(t), of
the reinforcement the environment will provide for a particular state. Each synapse therefore contains a
rating of that state's dangerousness - synapses corresponding to dangerous states will contain a strong
prediction of failure.

0 0::Figure 5 shows what the ACE eventually learns about the submersible control problem
"1-C - - if displacement and velocity are both large and of the same sign, failure will soon• v ocu.The white sursshow where noreinforcement arrives from the evrnet

ME]- -l0 and the darker squares show that a failure signal is likely to occur very soon.
so 7:C]0-C This equation shows how the ACE makes its prediction:

Fig. 5 p(t) = Z vi(t)xi(t) (5)
i -I

Where: v holcds the ACE's internal weights, and x is the singleton output of the decoder. At failure the
ACE's prediction is zero, as every decoder element w11 be zero.

The ACE sends the ASE th. internal reinforcement signal:

i(t) = r(t) + yp(t) -p(t - 1) (6)

Upon failure, 'he output of the decoder, and consequently the ACE, p(t), will be zero, but the external
reinforcement, i, will be -1. (Usually r is zero.) The internal reinforcement i will be the difference
between the previous reinforcement signal, p(t-1), and r. A fully p, edicted failure causes no reinforce-
ment. Incorrect actions leading up to the failure will be punished in accordance with how much the
ACE's eligibility traces have decayed. The predictions of failure will be reinforced, because they were
accurate predictions.

In the absence of external signals, the discount term, -y, causes the internal signals to gradually die
away. The internal reinforcement, i is the difference between the discounted predicted reinforcement
,yp(t), and the previously predicted reinforcement, p(t-1). Understanding (6)'s difference calculation is
the key to understanding the whole operation:

If the system moves from a iow danger state to a high danger state, the internal reinforcement will be

negative, punishing the system. If, on the other hand, the system moves from a high danger state to a
lower danger state, internal reinforcement will be positive: reward. From this infcrmation, the system

learns to avoid dangerous states.
The equations governing learning in the ACE and the ASE are very similar:

vi(t + 1) m vi(t) +fl[r(t) + yp(t) -p(t - 1)]'Yi(t) (7)

Notice that the term inside the square brackets is the same as the internal reinforcement signal ý in (6).
In form and substance, (7) is almost the same as the ASE's weight change (4), except for the reinforce-
ment term, and the form of the eligibiiity, in this case, -i(t). The ACE's eiigibility trace equation is almost
the same as the ASE's (3).

Yji(t + 1) =. Ayj(t) + (1 - A)xi(t) (8)

THE SUBMERSIBLE MODEL AND SIMULATION RESULTS:
Simple equations describe the simulated physical system's kinetics. Friction was ignored, and the sub-

mersible was given a unit mass and neutral buoyancy. The horizontal component of the robot's velocity is
held constant. State space is quamized into 64 boxes, as finer partitioning offers no particular advantage.
Partitioning is exponential, giving finest control near the equilibrium point. If the system state moves into
one of the extreme displacement partitions, a crash or surfacing (failure) has occurred, and the trial is
terminated. _

The ASE/ACE par. meters were set as in Barto et al 1982, as these were quite reasonable. Real parame-
ters were changed to complex with the imaginary and rea! components equal to each other. It is the
interdependencies of the two components of an imaginary number as it undergoeýs manipulation that
makes the solution robust and useful.

The vertical thrusters (governed by the ASE's output) yield thrusts of -1, 0,
or +J. The solution achieved by the system is quite interesting: The robot drifts
back and forth within the safe corridor, thrusting only when necessary to stay
within it.

Fig. 6
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The solution was refined by adding continuous control of the output through time averaging over four or
five steps. The weights generated are more difficult to understand than those shown in Figure 6, as the
solution is characterized by short, graduated thrusts which quickly return the system to an almost zero
vertical velocity. Unlike the previous solution which had clear cut boundaries surrounding the decision
regions, the time average solution has a scattering of different choices associated with each synapse. When
averaged with neighbouring synapses, a graduated thrust results.

For use in practical situations, a successful solution should be frozen beforehand and the ACE removed
so that the behaviour of the system is completely predictable in the field.

The ASE/ACE system learns quickly and generalizes readily to varying terrain. It was able to take
advantage of the time averaging of the output. Figure 7 shows a number of trial runs. Truncated lines
show where failures occurred.

Fig. 7a Fig. 7b
The earliest stages of training. The system makes The next time interval, with new terrain supplied.
many mistakes at first, but soon learns to negoti- The system fails once, then successfully riegoti-
ate the terrain. ates the terrain.

---

Fig. 7c Fig. 7d
The terrain is changed again, and it is apparent Much later in the training. The system has no
that the system has generalized its solution, and problems with arbitrary terrain. Performan e is
can function well over any terrain, qualitatively similar over all terrains, the solution

is robust.
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A Multilayered Neural Network to Determine the Orientation of an Object'
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Abstract
This paper describes a multilayered artificial neural network which is used to determine the orientation of

an object. This network is a sub-network of a larger network capable of recognizing objects at any position
and orientation, i.e. it is translation and rotation invariant. The sub-networks can be trained independently of
each other resulting in faster learning times and the possibility of simulating larger networks.

Introduction
The process of computer vision is the inverse of computer graphics [PAV82]. In computer graphics the

computer takes a description and produces the equivalent two-dimensional picture of the scene. Descriptions
include the position and orientation of the objects, the type of three-dimensional objects, the material makeup
of the objects, the observer's position, and the position and type of light sources. In computer vision, a
machine receives a two-dhiensional picture and produces a description of the scene. Many applications could
make extensive use of a machine vision system with examples ranging from commercial robotics to
government defense applications. Unfortunately, the intractable inverse process of transforming the
two-dimensional picture into a description poses many difficulties for a machine vision designer. Relatively
simple biological systems like the insect perform the vision task effortlessly. Our approach uses neural
networks, inspired by biological computing structures, to help solve the difficult problems of computer vision.
Our work involves the training of a neural network to recognize and locate objects that may appear in
different positions and orientations. We assume only rigid planar objects can appear in the scene. The planar
assumption can be side stepped by considering each i•n-"ite stable state of the O-'uect as a ullicfeni plwuiu
object. In this case, most three-dimensional objects can be described as a set of multiple plamar objects. Many
applications such as factory automation deal only with stamped or casted objects which do not violate the
rigid object assumption. It is also assumed that multiple objects do not appear in the scene. In future work,
we plan to investigate selective attention models to relax this constraint.

The Problems wvth a Brute Force Approach
By examining a brute force solution to the problem of recognizing and locating objects using a neural

network, the main problems to overcome become apparent. A brute force solution would have a digitized
image providing the inputs to the network, several internal layers processing the image, arid an output layer
encoding the object's position, orientation, and type. Current supervised learning techniques such as
back-propagation [RUM86] require presentation of the entire object set many times before the network can
discriminate between the objects. In addition, the objects need to be presented in all possible locations and
orientations for the system to have rotatiorn and .tr.slati U- inv-allaC. This would make an a.. .ady s.uw
learning algorithm impractical.

Digitized images typically have a high data to information ratio. The Intelledex Itrteilevuerlm 200, a
commercial vision system for robotics applications, has 238x256 pixels with 64 gray levels. This picture
carries over a quarier of a million bits of information and produces a neural network with rany neurons and
even more connections. A network of this size will increase the training time tremendously, since simulated
network training times increase proportionally with neuron and connection numbers. A DARPA Neural
Network study [DAR88] has shown that current neurld network simulators would have a h,-frd tilne handling
networks of this size.

Solutions to a Brute Force Approach
Most researchers solve these problems by identifying certain object teatures as iinporltait to the objct

discrimination task. A neural network then trains on this reduced feature set. Yamada [YAM89] uses contour
curvature ,s a feature vector to recognize lhmdwritten numerals. Troxcl ITRO89] rccognizesi trucks and tanks
by preprocessing iuuhi-lunction laser radar data using a Fouricr/log-polar iruashorni. "lle inagnilude of the
Fourier transtoun produces a position invarimit iniage. by followhig this with a log-polar transr'orn, variations
in rotation or scale become shifts. The norlnalized p)eaks in the Fourier/log-polar space provide tire input to a

tNSF gruiit No. EFT-880(,958 sUl)pOits this work
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neural network. Brousil [BR0671 has designed a perceptron network to perform the Fourier/log-polar
transfoim. Unlike the above, our approach lets the vision system determine the best features for object
recognition, and position and orientation determination.

Another way of solving the training problem is to develop neural network architectures invariant to the
viewing perspective. This can be done by specialized neural network architectures and by putting constraints
on the interconnection strengths. TIis approach allows a neural network to determine the best features for
recognition.

Fukushima's [FJK87] "Neocognitron" uses a hierarchical type network and unsupervised learning to
recognize translated and noisy characters. As one moves up the hierarchy, each simple/complex cell layer pair
recognizes larger features with more and more inherent translational invariance. At the final output layer the
grandmother cell represents a unique object regardless of any translations and small deformations. Fukushinia
uses selective attention to take care of multiple objects that may appear in the scene. Widrow [WID88J has
developed a neural network architecture called the "invariance net" which has a response invariant to position
and rotation. To achieve the position/orientation invariance the network has massive copies of weights for
every up.down and left-right translation and every 90 degree rotation. The invariance net needs many weights.
Widrow also discusses how to extend the network for invariance to scale and perspective.

Our Approach
Our approach consists of designing modular neural networks. Analogous to the process of coding a high

level computer program, we subdivide the neural network into a group of networks (procedures) that can be
trained (coded) independontly of each other. After training and testing each module or sub-network, we can
combine the modules to form the entire network (program). Several researchers have designed neural network
modules that in combination can solve problems that individual modules could not [CAR87,M-UR89,HIR89].
There are three major sub-networks in our architecture. These. sub-networks are known as the translation,
rotation and recognition networks. There ame several advantages in using a collection of sub-networks in
solving a problem, E.ac~h sub-network can be trained independently of the -,her, -rsulting in fastcr learning
times, and the possibility of simulating larger sub-networks. Given sufficient computing resources the training
of each sub-network can occur simultaneously resulting in a substantial improvement in development time.

Some problem dimensions: The image scene is a square array of M*M pixels. The training set consists
of Q objects. The standard orientation of each object is such that the object fits entirely within an N*N
region; known as the object field. The smallest region that will enclose all possible rotations of an object is a
P*P square array; known as the object region. It follows that P = sqrt(2)*N.

The first sub-network is responsible for the task of producing an image which is invariant to translation.
The M*M scene containing the object to be recognized is presented to the first sub-network. The output of
this sub-network is a P*P object region. An object present at any position in the M*M scene will always be
reproduced at a standard position in the P*P object region. The sub-network that performs this transformation
is currently being developed.

The second sub-network is responsible for tie task of producing a rotation invariant image. The P*P
object region produced by the first sub-network is presented to the second sub-network. The output of this
second sub-network is a N*N object field. An object present at any rotation in the P*P object region will
always be produced at a standard orientation, of 0 degrees rotation, in the N*N object field,

The third sub-network is responsible for the task of recognizing an object. The N*N object field
produced by the second sub-network is passed on to the third sub-network. The output of this third
sub-network is a Q*l array of neurons. Presenting an object from the set of Q known objects at tie object
field causes one, and only one, of the Q output neurons to be set.

The rotation network
The rotation sub-network itself consists of two sub-networks. The first of these detects the rotation of the

object present in the object region. The output of this network together with the object region is used to
produce a restored version of the object. The restored version is tie object at the standard orientation of 0
degrees.

The scope of the problem was initially limited to the taisk of recognizing objects which have only four
possible rotations. The strategy adopted in solving this problem can be easily extended when enlarging the
scope to cover inore rotations. A result of this limitation is that P = N, i.e. the object region is the same size
as the object field.

The architecture of the rotation detection network consists of three layers of neurons. There are P*P
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neurons in the first layer, 4 neurons in the hidden wa, HIdden t4des
(middle) layer and 3 neurons in the output layer.
The three output neurons produce a thermometer Wa,
encoding which corresponds to the four possible , I" Wb 1 k----
rotations of the object. Each of the neurons in the ,1 -2.P 1P ---

fist layer are connected to each of the four neurons 2Y
in the second layer. The weights of the connections
between the two layers are constrained so that the
hidden nodes are 90 degree rotations of each other.
For example, as illustrated in Fig. 1, the weight
from Pixel,, to hidden node I is constrained to the
weights from Pixel,, to hidden node 2, Pixelk,_1 to P, P__ 7_
hidden node 3 and Pixel,,., to hidden node 4. D

A problem arose with objects symmetrical I We,= Wbi= W, = Wd1
about one or more axis. It was found that if the POP object reglaon - )
training set contained no symmetrical objects then Fig. 1 Rotation detection network
the trained network would generalize well for every
unsymmetrical object in the test set but would
perforn poorly with any symmetrical objects. A training set containing both unsymmetrical and symmetrical
objects did not help as the network would then perform poorly on the test sets, i.e. the ability to generalize
had been lost. A possible solution to this problem is to break down the rotation detection network into two
separate networks. One of these determines the rotation of symmetrical objects while the other detects the
rotation of unsynmnetrical objects. A third network determines which of these two networks's outputs feed the
rotation restoration network. This third network is a symmetry detection network.

The rotation restoration network is conceptuaily the same as an N*N bank of multiplexor switches. In
our imnied scope of 4 possibie rotations each of the multiplexors would have four inputs corresponding to the
four related positions in the P*P object region. For example the multiplexor feeding Pixel,, would have inputs
from Pixe!,.,, Pixel2 ,, Pixel,,.,, and Pixel,.. Common to all the multiplexors are the thre inputs which
originate from the rotation detection networks. Depending on the values on these three inputs the multiplexors
route the relevant pixel input to the output.

Standard orientation
Before the network could be trained it was necessary to determine the standard orientation for each

object. This was achieved by selecting from the four possible rotations the one whicb maximized the number
of pixels that were on in the top left hand comer of the P*P object region. It was discovered that while we
could train a network to determine the rotation of our training set it did not fair too well when presented with
a test set. In general, the network gave a unique thermometer output for all the rotations. However the
standard orientation chosen often differed from the orientation that would have been selected using our
criterion of maximizing top left hand comer pixels.

Instead of trying to analyze the scheme adopted inpull trgm recapilvu 1uvion

by the network to select the standard orientation it
was decided to uce a more flexible approach. The
approach is based on the observation that a network
is better able to determine an object's rotation if no
restrictions are placed on standard orientation. Such
a network is capable of learning much faster and is
capable of better generalization for objects not
present in the test set. The redesigned network
architecture automatically selects the object's
standard orientation.

Our initial approach was to use a "maximum ' DI

network". This network is basically a noisy I-out-
of-4 code detector and its structure is shown in Fig. Coapaoor lo yer OR
2. The outputs of the rotation detection network's
hidden layer supply the inputs to the maximum
network. These four inputs are essentially the Fig. 2 Maximum network
outputs of the sante feature extractor which is
applied to die object region at four 90 degree rotations. This niaxintuni network replaces the three temperature
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encoding output neurons from the rotation detection network. Its output is I provided that the feature extractor
input with the largest value is at least a certain amount, P (typically 0.2), larger than every other of the
inputs. For all other combinations of inputs the output of the network is 0. Fig. 2 shows the structure of this
network. The 12 neurons in the second layer act as comparators between two first layer outputs. These
comparators output a 1 provided that their two inputs differ by at least P3. The neurons in the third layer are
essentially 3-input AND gates and output of I provided that all three of their inputs are I. The single neuron
in the fourth layer acts like a 4-input OR gate. Each component of this maximum network is trained
independently. Once trained the weights in the maximum network remain fixed even when the network it
forms a part of, the rotation detection network, is being trained.

Results and discussion
The networks were trained on a training set of nine random shapes. After training the network were

tested on a test set of about 90 random shapes. The network was deemed to have recognized the rotation of a
shape if a unique l-out-of-4 code was obtained by the feature extractors for each rotation of that shape. The
experiments were repeated several times to remove the effects of the random initial weights. For the
thermometer network about 10-30 thousand epochs (an epoch is one presentations of the set of test patterns)
were required before a solution was obtahied. The solution was fairly general, capable of determining the
rotation of 75% of the random shapes.

Our initial experience with the maximnum network was faidy mixed. On the plus side was the speed by
which the network trained. The maximuun' part of the network took about 100-500 epochs to train while the
full rotation detection network took about 200-500 epochs. This is much faster than the thermometer network.
On the negative side is the capacity of this network to generalize, which averaged about 15% worse than the
thermometer network. Two factors seem to play a role in this result:

i) Though the network selects its own standard orientation we have imposed our own structure on to the
representation learnt by the receptive fields, namely a noisy l-out-of-4 code. Of the numerous solutions
obtained from the thermometer network only in one solution did the hidden layer learn the l-out-oe-4
representation. in all other solutions the representation learnt was a 2-out-of-4 code.

ii) Manual selection of the standard orientation allows the thermometer network to generalize better because
the test shapes contain some intrinsic knowledge. As die standard orientation has been predetermined the
network can concentrate solely on extracting features present in the standard orientation. On the other
hand the maximum network has to both deduce the standard orientation and then extract features present
in that orientation. A more realistic comparison is to compare the performance of the networks where no
intrinsic knowledge is present. During experiments where the standard orientations were randomly
preselected it was found that the generalization of the thermometer network was poor. The network was
only able to determine tie rotation of about 42% of the test set.

Perhaps the greatest promise of the maximum network is its training speed. This opens up the possibility
of training the network on large training sets and hence improve the generalization of the network. We are
currently investigating the effect that the 2-out-of-4 representation and the larger training set have oni the
generalization property.
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Reductionist methods in AT have attempted for almost 50 years to achieve successful and truly adaptive learning
and problem solving abilities. Success has been demonstrated in specific problem areas. Game playing algorithms
have ieached an astonishing level of competency, and expert systems have eased the task of hand coding expert
level bodies of rules, heuristics, and logically obscure lines of reasoning. Ti ue adaptive behavior, however, is still
far from achieved, and in fact, may be theoretically impossible, using "traditional" Al techniques. These methods
generally suffer from brittleness and computational complexity, even with the best weak methods of search
reduction. But some simple neural like structures in software and hardware exhibit adaptive behavior, and are
robust as well.

Path planning for robotics is a particularly thorny problem, in that it is difficult to define. Albus, et a], represent
path planning as 3 levels: world model/task decomposition, (TASK), elemental move level, (E-MOVE), and
primitive level, (PRIM). If one constructs a hierarchical model composed of these three modules, one will have all
of the motor functions of the brain emulated above approximately the brain stem/spinal cord reflex level of a
complex organism. The most primitive reflex or SERVO level, would then complete the system.

It's doubtful at the current level of artificial neural network development that the TASK or "intentional" level can
be implemented using other than traditional Al techniques. Houk and Albus have each proposed cerebellar models
of relevance to the lower and middle hierarchical levels. Houk talks about the cerebellum as an array of adjustable
central pattern generators, (CPGs). This model gives insight into the nature of E-MOVE and PPIM lcvcl path
planning activities. Albus has proposed and implemented a simple CMAC neural network model that has been
developed and refined here at UNH. The CMAC model has proven itself to be extremely computationally efficient.
exhibits adaptive properties, and seems an excellent adaptive element for implementing SERVO level control
functions.

This paper will discuss path planning at a "modified" PRIM level. This is exclusive of "intentional" and SERVO
level processing as described in NIST Tech. Note 1256, but would include some of the processing proposed therein
at the E-MOVE level. Notably, the reverse kinematics and redundancy resolution would be handled in the
proposed adaptive model.

A model is discussed herein that consists of hierarchically arranged CMAC elements, (as originally suggested by
Albus), to implement a cerebellar model capable of computing relaxed spatial trajectories and using cerebellar
habituation, (a biologically inspired paradigm), to adaptively learn to recognize world imposed constraints.
Learning is via experience wit h a representation of such constraints embedded in a hyperspatial representation of
a world model mapped directly into the robot's kinematic coordinate system. This hyperspatial representation of
"analog" features will largely replace the symbolic state of the world model used in "traditional" Al systems which
consist of discrete tokens embedded in a digital database.

The problem of specifying trajectories through a robot manipulator's world space involves computing a
transformation from the manipulator's joint angle space into world space, so that predictions of hand movements
can be made given joint angle changes. The problem is complicated though, by the fact that the problem presented
to a robot path planner is rarely framed in terms of joint angle space, but rather in terms of world space, and if the
manipulator is of the most useful type, it is "redundant". If redundant, its members can occupy many different
regions of space for the same position of the hand, making operation in an "obstacle rich" environment possible.
But such an arm has no unique transform in the reverse direction, (from world to joint space). Currently, path
planners use "pseudoinvcrse" techniques, that find approximate matrix inverses to transform a world space
incremental movement vector into a joint space incremental vector. Two problems arise in this process. First, the
pscudoinverse is computationally expensive, being at best O(dl*3) complex, where d is the square of the degrees
of freedom. Secondly, it is not conservative, i.e., the transform of a "move" in world space to joint space and back
to world space may diverge significantly.

Modern cerebellar function theory sees the cerebellum as a black box containing fixed action pattern
"subroutines". Houk (1988) characterizes the cerebellum as an array of adjustable CPGs. At the level of a path
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planner, it would be a huge computational advantage to have a cerebellar-like black box that we could rely on to
produce path segments, on command, that can go from point to point, in hand coordinates, and that would have
an implicit model of the state of the world built into it. The ability to store and reconstruct these segments is a
model of habituation.

Previous efforts to do adaptive neural based robot control include the work of Mel at Northwestern and Jordan
at MIT. They have shown good success for classes of problems useful in robot path planning for redundant
manipulators. In both cases, they use "flailing about" in order to learn I.e. if you don't know how to do something
definite, try something random and perhaps a behavior will emerge that approaches what you wanted in the first
place. Though this is advantageous for generating "relaxed", (non-optimal energy), paths, it is in fact theoretically
not even algorithmic, in that it isn't guaranteed to produce a putative move that is acceptable in finite time! (In
practical terms, it only means it is inefficient during curb learning.) The hope here is that by using a locally
optimizing neural network model, the chances for real time operation improve.

In our work, an effective fast means of computing the reverse kinematic transform, (RKT), for a redundant robot
arm will be achieved. Proven, though computationally expensive, pseudo inverse techniques mentioned before,
could be used as the teacher, in lieu of, or in addition to, "flailing about" The teacher's role would decrease rapidly,
and so the system would learn over time to compute the transform for previously visited parts of the arm's state
space in a manner that would improve in time, and would improve from worst case of 0(d* *3) to O(g), where g,
(generalization size), is a small parameter of locality. Practically, O(g) is of constant time complexity!

The objective of this research is not a single applicable means of computing arm trajectories, but rather a
continuum of trajectory planners that can produce a variety of trajectory types from tightly constrained optimal
trajectories, in which PRIM assumes no obstacles, and obstacle avoidance is resolved via a higher level Al type
path planner, to a planner that computes very relaxed trajectories, in which part of the E-MOVE obstacle avoidance
and path planning is achieved by the neural net based PRIM module. In the relaxed trajectory mode, the planner
can inicorpoVate some of.••.t, iv1V"'b world model into the RKT itself rather than computing the transform based
on ideal minimum travel or minimum energy point to point trajectories. It is proposed here that "early learning"
would rely more heavily on a pseudo inverse teacher for the constrained optimal energy model, and more on
"flailing" for the unconstrained model.

A rule based or other supervisory source acting from above, (at the "intentional" level), for postulating gross plans
in the forms of sequences of trajectories, is assumed and our system concentrates on fast adaptive performance of
only PRIM level processing to resolve the individual trajectories in world based terms into implementable joint
space trajectories.

A preliminary model exists via simulation, that uses one CMAC to learn relaxed trajectories through space without
the aid of a non-adaptive underlying controller. The currently implemented pilot model suggests that CMACs can
in fact learn these loosely constrained quantities fast enough to be practical adaptive devices for such an application.
Extension of the model can now be pursued using a "real" robot to show the applicability of neural eaiicnts like
CMACs for replacing Al methods at the PRIM level of robot path planning.

The currently completed program simulates a 2D planar, minimally redundant arm. The three joint angles arc
a, f , and y. The forward kinematic transform (FKT) is straightforward,

x = T * cos(a) - H * cos(a+#-) + F * cos(a+#+y)
y = T * sin(a) - H * sin(a+pd) + F * sin(a+p+y ).

Where F = forearm, H = humerus, and T = torso. No attempt to model the kinetic response of this robot arm
was made. The kinematic response is suitably non linear, to demonstrate that CMAC is a sufficiently powerful
computational model to solve a relatively hard supervised learning problem.

The CMAC was viewed as a mapping: A: (a,6,y,6 x,6y) - (45a,,3f,(y ), where all are the obvious quantities,
except, 63x, 5y, which will be treated as unit vectors along a dhsored trajectory. The lookup steps will be provided
with the , red trajectory along with the current joint position in order to excite a response, and the learning will
train in the observed response at the actual observed trajectory step. Forcing the steps to be unit vectors results in
an attempt at a constant velocity solution, and simplifies the input address space. For true obstacle constraints, the
input address will probably need a new degree of freedom to be able to distinguish the difference between 2 target
points along a straight line separated by an obstacle.
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The primary "weak gradient" heuristic rule is: If the CMAC returns an RKT = (0,0,0), try a random step, 11 and
observe the result, 5= S a+ FKT(R). There are 2 possibilities: the step generated an &,y = (xy) component such
that the dot product S,,y , S ,,y < 0 or > = 0. In either case, train on the step, (i.e. train the CMAC at Snot at
S), but for the former case, don't take the step, because it moves the hand in the wrong direction.

By judicious adjustment of the following parameters: physical memory size, virtual memory size, unstructured
map random index shuffling algorithm, resolution of joint angle measurement, resolution units of 6 x, 6y, i,
(learning rate), and generalization size, a compromise model that could operate well in most of its address space
was realized. Some tendency towards slow learning or spastic activity was observed, and some heuristic remedies
investigated.

The training algorithm is 6 = q/C(S - S*)

The following extensions are proposed to complete the project:
1. Add noise when local minima are reached or learning slows to unacceptable rates, ala Boltzmann.
2. Exploit synergies in the robot: In a fashion similar to Hinton's "stick figure balancing heuristics", apply rules

concerning how thejoints in a manipulator cooperate or compete in selecting modes of behavior. This should
speed learning and reduce the possibility of the spontaneous emergence of undesired alternate solutions.

3. Add models of physical constraints to force the CMAC to mimic a body of Al rules by exhibiting habituation.
4. Add a 6th degree of freedom.

The resolution levels were set using a rule given in the seminal Miller/Glanz/Kraft paper (1986), that states a
relationship between resolution and generalization size. The summed absolute differences of the components of
input state vectors must be less than C if those two vectors are to generalize. This differential quantity was
determined empirically, by having the control program monitor the differential sum during several experimental
runs.

An interesting observation made was that the experimental system was very sensitive to over- as well as
under-generalization. Good results were impossible from both C = 32 and C = 128. The former learned too slowly,
and the latter was unstable in its learned data. 256 was tried and showed even more instability. This can perhaps
be explained as the result of retroactive inhibition due to the structured map rather than the unstructured map.

In practical CMAC implementations, consider the possibility of a variable learning rate, j,. This could take the
form of an adaptive damping function to smooth out instabilily caused by regions of noisy input, and still allow for
fast convergence rates, while q/ = 1.0, everywhere else. One promising approach to this is the construction of an
"aging" CMAC, which has coarse resolution and is present strictly to monitor the relative age of the data in the
control CMAC. As the data ages, (is trained repetitively), the aging CMAC will adjust down the learning rate in a
fashion similar to, but more locally specific than, some well known __mpmlementations of Kohonen map training
algorithms.

Variable I could be coupled with a focusing of the generalization window. Rather than having a generalization
window that specifies that the delta value learned be uniformly applied at each component point of excitation
comprising the current receptive field, it would be desirable to bias the delta to have more effect (i.e. a larger value
of q), for points near the center of the receptive field, than for points on the periphery of the field. This sounds
easier than it really is, because in the current CMAC, there is no easily calculable and reliable metric for measuring
how far any constituent receptive point is from the "center" of its receptive field. All we have is the membership
roll for any receptive field. By the time we get to the computation of delta, the addresses are likely in terms of the
A' memory. Ranking the indices of the array giving the membership roll of the constituent points ranked according
to a euclidean distance formula in the A memory would inject a high computational penalty!

Observations bore out that generalization didn't seem to be uniform. Since no effort to come up with a tailor
made structured map was undertaken, this wasn't surprising at all. The paradigmatic CMAC structured address
map elects a receptive field for an input from sequence of points in the input space such that each address
coordinate is incremented C times, which tends to smear the receptive field along diagonals in the hyperspatial
memory. A recent idea we have started exploring at UNH to avoid this problem is to use a locally tuning neural
network, like a Kohonen map to implement the front end (structured) address map, rathcr than the usual
algorithmic front end. There would be a slight computational penally in doing this, but the benefits of better fault
tolerance and the inherent presence of a distance metric within the receptive field would likely be a great benefit.

Another problem that concerned us was that of the redundancy of the inverse solution. In numerous sources,
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notably Atkeson and Jordan, reference has been made to a commonplace problem in redundant manipulator
control that the average of two good solutions is not necessarily a solution. Concern over that prompted the
implementation of an added heuristic level in the learning step of the program. In the event a point is reached when
all other indications favored training the CMAC at a particular point, before training, the CMAC is excited and
read, to see what response is already stored there. If the dot product of the response to be trained in at this point
with what's already there is 0, don't train! This dot product is in joint coordinate space by virtue of being a product
of incremental joint commands. A dot product constraint has already been imposed on the system in hand
coordinates by requiring the weak gradient descent described before.

There is a "catch 22" problem with the dot product heuristic in that if it is enabled, and a hashing collision injects
a contrary response vector into a state space location, that invalid response won't go away, because this dot product
rule won't allow training to override it!

Observations showed that areas of learning defects seemed to cluster around the obstacles, indicating that the
removal of an active address coordinate from the state space response may herald the coming of some spastic
responses, and in such cases, the dot product heuristic should be disabled. This is desirable in fact because if a new
obstacle enters the workspace, the robot very definitely may encounter instances of needing to reverse stored
response vectors, and the enabled dot product heuristic would effectively block such recovery. It was observed, by
manually enabling or disabling the two dot product heuristics, the catch 22 could be circumvented, while still leaving
the dot product heuristics on most of the time to prevent undesirable spontaneous path modality changes. It may
be that rules can be imposed, allowing the system to automatically enable or disable these heuristics at various
times. An obvious one is "if the percent of steps that are random increases above some threshoid, disable the dot
product heuristic". The manual operation results were promising, but since the only obstacles observed so far have
been boundary conditions and these don't appear and disappear, the results are still somewhat inconclusive.

Although this project is framed as one in robotics, it should not be missed that this is a widely applicable
methodology. There exist a huge, if not infinite, number of applications in industry, science, business, and elsewhere
where processes go on that have matrix space definitions, and in which an optimal setting for a set of input
parameters must be known in advance to assure the success of the process. Typically the forward process transform
is easy, but the solution of the matrix equations for the reverse transform (which would allow you to set those input
parameters, a priori, to guarantee some desired output response), can't be found because of the existence of non
invertible matrices in the system equations. This adaptive method of learning a representation of a reverse
transform may be of wide and profound interest to other industries.
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Data Expressions Suitable for Size- and Rotation-
Invariant Pattern Classification

Kazutaka Sakita Makoto Kosugi Isamu Yoroizawa
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Abstract- The systems that can recognize and understand some figures or
scenes must have abilities of size- and rotation- invariant pattern classifica-
tion. Invariant pattern classification models proposed before, however, have
some difficulties in real applications in spite of their usefulness in principle.
To overcome these difficulties, a PDP model in combination with data expres-
sions for invariant pattern classification is introduced. This model is used to
classify some simple figures.

1. Introduction

Although computer technology has made remarkable progress, a computer's ca-
pabilities in pdttern processing have made rather slow progress and have fallen be-
hind human abilities. In order to implement more intelligent machines, it is nec-
essary to refer to the manner in which human beings process patterns('). One of
the manners is parallel processing, and another is adaptable processing. Although
PDP models(2) are advantageous in processing data in those manners, the percel-
tron type PDP model's capability for shift-, size- and rotation- invarient pattern
classification is poor"'. Therefore, it is important to select the proper input data
expression when PI)P models are applied to the pattern classification problem.

A model based on log-polar coordinate transform(4) and translation-invarient
transformi 5 ) is used to choose a proper data selection.

2. Approaches to the size- and rotation- invariance problem

The retinal mapping to the striate cortex of some imiammls can be expressed by
a space-variant cortical magnification factor CM. Under the assumption that CM
is locally isotropic and inversly proportional to the retinal eccentricity, the retinal
projection to area 17 can be approximated by a log-polar coordinate tra.nformi•m.
A log-polar coordinate transform converts scaling and rotation into translations, if
the objective image is centered in the coordiniates. The R-transformi(') is applied
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to subsequent procedures to pick up translation-invariant data expressions. The R-
transform is a class of translation-invariant transform, and its algorithm is similar
to a flow graph of the FFT, and is represented by a layered network. A unit in the
network computes only the sum and the absolute difference of the two values. As a
result of the log-polar coordinate transform and the R-transform mentioned above,
a size- and rotation-invariant pattern expressions is obtained.

In a similar model that has been reported7 , patterns are classified by the nor-
malized distances between two vectors correspond to the patterns. However, it is
sometiimes difficult to classify patterns, because of deviations due to low resolution
and to special features of the R-transforin. For instance, normalized distances shown
in Fig.2 correspond to size scale variations of the samples shown in Fig. 1. It is found
that classification is difficult if the scale factor is more than 1.3 (image resolution is
64 x 64 and pixel value is binary in Fig.l). To overcome these difficulties, a PDP

model in combination with data expressions for invariant pattern classification is
introduced.

3.Rb•ust t n,- . od for pattern classification by apiplying PDP model

To make the model more robust for pattern classification, it is necessary to correct
vectors corresponding to R-transformed patterns separate in the vector space. A
perceptron type PDP model subsequent to the R-transform is applied. This kind
of model is suitable for this purpose because it has the capability to adaptively
simulate arbitral mapping from sets of input/output data. Moreover, we composed
the PDP model including a mapping function, which is suitable for the correction
of vectors, because this new model can make its structure in a short time compared
with the existent method in which the initial value of each unit is set at random and
is learned repeatedly 8 ). A three layered PDP model that has the above mentioncd
structure at hidden layer units is composed using the following procedvre.

1. Vectors which represent given patterns well are picked up and are regarded as
anchor points from the distribution of data in the vector space.

2. All points in the vector space are projected to the surface of a hyper sphere by
one dimension in order to set all vectors and anchor points on the surface of
the same hyper sphere. Thus, the anchor points are regarded as hiddein layer
units, and coordinate values of the anchor points are also regarded as weights
of linkages from input layer to hidden layer.

3. The hidden layer has a threshold function or sigmioid function. Paramueters
of these functions are defined so that linear combination of the hidden layer's
output is the output of the proposed model.
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4. The input <late. for learning tile model •re arbitrarily selected from some vec- i

tors in the vector space •here P•-transformed patterns exist. Thus, hidden
layer outputs are obtained. Moreover, corresponding desirable dat• are inver-
sly travsformed by tile output layer by wdopting a method of least squares for
a, set of output data of the hidden layer and inversely transformed d•ta by the
output layer.

According to them procedures, the model outputs are shown in Fig.3 where the
desirable values of the three sample figures shown in Fig.1 are set to 0.1, 0.5 and 0.9
respectively. As shown in Fig.a, the model outputs corresponding to size scale vari
a•.ions of a sample figure are distributed separately from those of another, therefore
the proposed method c.•n use tt:•. model outputs as better classificati<m criterion
th•n the existil:g method which classify patterns only by vector distances obtained
from the R-transformed pattern.

4, Conclusion

A size- a.nd rotation- invariant pattern clasgification model is p•oposed by com-
bining log-pola.r coordinate tranform and translation-inv•riant transform. 'rim model
is tested using some simple figures, and is showy, to ha,,•e better classification crite-
rion than the existing method which classify patterns only by vector distances. /|
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A Spatial Iiforination Processing System on Perceptual Grouping

Dr. Chen-Han Sung
An-Hoang Nguyen
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6330 Alvarado Court, Suite 203, San Diego, California 92120, U.S.A.

The proposed spatial information processing system (SIPS) is a self-organizing multi layer neural
network paradigm modeled by the neural dynamics on boundary feature perception, brightness
perception, and color perception, of three-dimensional real world images. As an image processing
system, SIPS at low level extracts features from spatial information stored in the image for the high
level part of SIPS to recognize objects in the image and/or to perform scene analysis. We believe
that human usually isolates sighted object boundaries before recognizing them. In this paper, we
only concern the performance of SIPS on segmentation and boundary contour detection. Without
involving any domain specific knowledge, the perceptual grouping principles used in SIPS are
domain independent. They are based on the characteristics such as continuity, curvilinearity,
collinearity, proximity, color, and other phenomena of boundary feature in images, as well as on
the brightness constancy, brightness contrast, brightness assimilation, and other brightness
phenomena in images. Detail discussion on theory, performance and limitation of SIPS is in [8].

In [7], we present the performance of SIPS-I which is based on the first order characteristics of
boundary, feature in images, the perception of continuously shaded surface, and othcr surfacc
perception such as illuminants and shape-from-shading. In [7] and [8], simulation results of
SIPS-I has been compared with the Boundar Contour Systems ([4], [5], [6]) developed by
Grossberg and his colleague. In this paper, we present some simultation results of SIPS-Il which
is based on the second order characteristics and proximity of boundary feature in images as well as
other perceptual grouping such as textures, boundaries, and emergent segmentations. In [8], we
first analyze the neural network dynamical equations at each level of these two SJFSs to present
their structures, data flows and parameter functions, then discuss how these models are consistent
with neurophysiological data and compatible with some components of human vision system.

In our computer simulations, we first demonstrate how SIPSs work on 16xl6 idealized images
such as Figure 1 - 3 below with the left one being the input and the right one being the output of
SIPS-II. These show the capability of SIPS-II to handle perceptual organization rules on the
extraction and grouping of curved boundaries and contours, brightness constancy, brightness
contrast, and boundary completion. We then show so.ne results of SIPS-II applied to real world
images with much more complicated structures and in much larger size. In Figure 4, the boundary
completion and extraction of fingers, hairline, eyes of Iceman are well done. In Figure 5, it is clear
that SIPS-I can differentiate noise from important tiny data areas even they have about the same
grey level, as noise around the face are suppressed but eyeball outline is kept and nose profile is
completed. In Figure 6, the level contours on Cheryl's face and hair are weli grouped or merged.

In Table 1, we list the CPU seconds for each image taken by the SIPS-IL which is coded in "C" on
a UNIX-based 5-MIPS workstation from our elaborated tests. SIPS-lI can be easily implemented
on a parallel-pipeline computer or in microprocessor chips on array processor boards due to its
architecture design 181. Under those circumstances, the execution time for SIPS-Il on those
images in Figuire 4 - 6 can be further reduced to less than one second, which is near the so called
"real-time" range. The processing speed and the quality of the output which can be seen in the
Table I and Figure 1 - 6, are better than known segonenters ý'nd boundary contour detectors babed
on other neural network architectures (such aS [ I], [2], [3] ) for perceptual groupinmg.
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Figure 1: The Kofika-Benussi Ring.

I1- 434



9999999999999999 1111111111111111
9999999999999999 1111l000000000111
9999999999999999 11.10000000000011
9999999999999999 1100000000000001
9999999999999999 1100000000000001
9999999999999999 1100000000000001
3333333399999999 1111!111100000001
3333333399999999 1000000010000001
3333333399999999 1000000010000001
333333-3399999999 1000000010000011
3333333333333333 1000000011111111
3333333333333333 1000000000000011
3333333333333333 1000000000000001
3333333333333333 1100000000000001
3333333333333333 1110000000000011
3333333333333333 1111111111111111

Figure 2:, The Yin Yang Square.

1 11 122 2 2 2 210101010 1010 001111111111111 1
1 1 1122 2 2 2 2 10 1010 10 1010 000000000011111 1
1 1 1122 2 2 2 2 10 1010 1010 10 100000000011011 1
1 1 1122 2 2 2 2 10 1010 10 1010 000000000010001 1
1 14444 2 2 2 2 10 1010 10 1010 001111000010001 1
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1 1 1122 10101010 8 8 8 8 8 8 0000001000000001
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8 888 2 210 10 1010 8 8 8 8 1010 1111001000000011
88 2 22 210 10 4 4 4 4 4 4 1010 1111001011110111
88 22 2 210 10 4 4 4 41010 1010 1111001111111111

Figure 3: An Uneven Illuminated Image

Image linage Size SIPS - I SIPS - I 2 SIPS - 1I

Idealized 16x16 545s 2Is
Patterns

Cheryl 3200320 34101 2318s 966s

Starvicw 3200320 3413s 2340s 974s

Iccmlall 350x400 3408s 2342s 1353 S

Table of Exccution'T'inie in CIFU Seconds
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Figure 4: The Iceman Image

Figure 5: The Starview Image

Figure 6: The Chcery1 hn~tge
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ABSTRACT

This paper presents an isolated-word speech recognition system which utilizes global lexical
features to access words rapidly. Depending on whether the confusability of the lexicon is
sufficiently low, the system can function as a complete recognizer, or as a hypothesization
component of a larger speech recognition system. The system begins by extracting simple acoustic
parameters, such as bandlimited energies, zerocrossing densities, and autocorrelations. These are
combined in unique ways to produce sevca phonetic features: voicing, frication, tongue height,
tongue advancement, rounding, orality, and syllabicity. These phonetic features are summarized
over the entire word using normalized polynomial moments, which results in a set of forty-eight
global lexical features. The global lexical features participate as inputs to a neural network, which
selects the correct word corresponding to the input. The entire system, including the neural
network simulator, is coded in the "C" language and runs on a UNIX system.

INTRODUCTION

The goal of our isolated-word speech recognition system is to take any spoken English word from
a given lexicon as an input, elicit a sufficiently small set of plausible candidate words and/or
phrases to correctly hypothesize the given word (word hypothesization).

In one study [Marslen-Wilson, 1973], some hearers were able to recognize and repeat fluent
speech with a delay of only, 0.5 second. On average, this is enough time for only the first
syllable-onset to reach the hearer. The number of words having a given onset (such as "tra") is
about 30, on average. This kind evidence from close shadowing gives some indication of the
degree of performance which should be demanded of a word hypothesizer.

Tne proposed isolated-word speech recognition system is a multi-level system with four stages of
processing which are: Acoustic, Phonetic, Lexical, and Evidence Combination via a neural
network architecture [Sung and Jones, '89]. The system can function either as a word hypothesizer
or as a recognizer, depending on the size and confusability of the lexicon. The strategy is to first
calculate global lexical features which characterize words as a whole, thcre submit it to a neural
network: archit.w;cture for evidence combination. It is anticipated that by combining infcrrMation from
a large number of lexical features, a small set of word candidates can be activated by elimination.

In the first stage of processing, acoustic features are extracted. These fall inlto three or four
categories: autocorrclations, bandliniited encrgies and their ratios, and formant frequencies,
Formant estimation uses our own algorithm, one which avoics the usual pitfalls.

In the second stage of processing, sevcrill phonetic features are calculated using acoustic data.
These fall into several categories: voicing, frication, energy-based features, and fornant-based
features (vocoid articulations). A pitch detector is aiso built to bu a strc:ss detector.

In the third stage of" processing, various methods for suniniariziniig phonetic features Over all cntirec
word are used. 'Ihcse methods inc lide mnonment computatio1n, extrcn nt evaluation, and arclenigth
computation. Besides polynomial moments, sonic tests have bcc made using Foutrier cxpanSiOS.
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In the last stage of processing, the resulting vector of lexical features is used as input to a neuraj
network architecture, or as features of a classical pattern recognizer. We have found that the neural
network performs about as well as the classical pattern recognizer in this context. Our perforuiance
results are typically in the 90th percentile.

A Neural Network Approach to Evidence Combination

Because a plurality of lexical features arise in this system, as in Miwa and Kido's [1986], there
comes a point when one must consider how various pieces of evidence are to be combined to form
a composite decision. As noted, Miwa and Mido take the classical path of the Bayesian classifier.
Yet, this is inadequate to compensate for discrete variation, or non-unimodal variation (since a
Gaussian assumption underlies their work), or even dependencies among features (because they
employ a diagonal covariance matrix). However, there is some indication that a neural network
may be capable of compensating for all these kinds of variation [Sung and Priebe, 1988].

In this paper, a special neural network architecture called multi-layer perceptron is employed. Such
a neural net typically consists of a set of input nodes, each of which is connected to a set of hidden
nodes by weighted connections; each hidden unit is in turn connected to all the output nodes by
more weighted connection. The weights can be systematically learned using training data, via a
learning rule known as the "Generalized Delta Rule" [Rumelhart and McClelland, 1986j.

It is speculated that neural networks may have at least the same capacity for performance. as
classical pattern recognition systems, since both combine evidence rnultiplicatively using some type
of confidence coefficients (connection weights in the former, variances in the latter). If a
perceptron has at least two levels of connections, it has the potential of performing as well as the
classical technique of principle components analysis, in which an optimal set of "rotated" (in the
feature space) axes are calculated from the covariance matrix, so that the new feature axes are as
independent as possib!e. In the multi-layer perceptron, computation of the hidden unit output
signals is equivalent to matrix multiplication, which allows rotation and dilation of the feature
space. The second layer of neurons combines the evidence present in the new, rotated vectors.
Likewise, multi-layer perceptrons are probably less sensitive to peculiarities of the distributions of
the lexical features (given a particular word), to the extent that even discrete variation can be
compensated for. One can simply imagine a given output unit to be strongly connected to more
than one hidden unit, which could reflect a multiplicity of corresponding acoustic-phonetic
realizations. Thus neural networks might compensate for the inadequacies of classical pattern
recognition techniques.

Recognition is done by performing a single forward pass, followed by selection of the output unit
having the highest score. Hypothesi~ation is done by selecting the set of output units having
scores within a certain fraction of the maximum.

LEXICON

The following words were used for training and testing. This set of words is a mixture. The first
set consisted of vocabulary that might be used to train a robot, and of words from Basic English.
The second set consisted of disyllables containing voiced non-fricative intervoca!ic consonants
(ostensibly for testing a segmenter). Finally, the ten digits were added, The list was scanned to
ensure that each English phoneme occurs at least once.

meaning universal come kennel inning go
a nook Mirai give mumu animal take
Jimmy woman right singing singer left
either smoothing close wither T. V. open
movie evil true giving easy false
oozing razzle top isn't fizzle bottom
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seizure usual I Musial vision you
Edie ado forward Aden edition backward
Iggy giggle yes piOgy boogie no
maybe booboo up able tibia down
a book beady on booty addle off
idiot pudding grip tuner humor release
laser butter now bigger labor then
button botany here there start stop
above below in out function relation
move return get replace translation rotation
continue interrupt pencil paper all only
almost enough do make ready wait
where when much little together separate
variable constant put keep lift carry
see look hold adjust point home
think say load send wrong again
book at collision hello zero one
two three four five six seven
eight nine

System Performance

In an earlier test, five sets of the ten digits (by the same speaker) were digitized under uniform
recording conditions (a quiet office). The first four set of data were presented four at a time, until
all ten had been used; thi'- entire process was repeated about four hundred times. Using the fifth
word for each digit to be tne test data, the system was able to recognize all ten words uniquely.

In the next test, forty fairly non-confusatle words from the above lexicon were used to train, this
time with each word being presented three times in succession (three identical instantiations). The
entire list was presented about five hundred times. Even the training set was then used for testing,
it is still interesting that the recognition score was one hundred percent. The system even managed
to distinguish between potentially confusable pairs such as left / lift, and say / see. In both of these
two tests, a smaller number of hidden neurons was used, namely thirty.

Finally, a training set was digitized which consisted of the 146 words in the above lexicon, and
each word was digitized three times by the same speaker under the same recording conditions
(quiet room). After digitization the data were processed to extract the moments. The number of
hidden units was set at fifty. In training, each word was presented twice (using two of the three
digitizations), and the list was presented in sequence (as opposed to random training). Each pass
through the list constitutes one major iteration. Periodically, training was stopped and testing was
performed, Testing was done by sequential presentation of the data in the third data set. For each
word presented, several quantities were noted. First, the maximum score attained at any output
neuron was noted. The number of words which scored at a level greater (i. e., whose
corresponding ouput neurons attained higher activation) than a fixed fraction of this maximum (the
inclusion threshold) were printed out, and they were counted. Finally, it was noted whether the
right wold was in this hypoiitvbized list, and which word (output neuron) was the highest scorer.

Once these data had been prepared, two facts were sought. The first was the relative number of
occasions when the correct word wa~s found in the hypothesized list. Naturally, this varies as a
function of the number of training iterations. Thc largest value obtained occurred when the number
of training iterations was at its maximum (600), and the inclusion threshold was at its minimum
(1%). It was equal to 132 words correctly hypothesized out of 146, or 90.6% , and the average
number of words in the hypothesization set was only 5.47. On the other hand, further training
does not seem to be useful, given the lexical features used and the state of the lexicon at present.
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It is perhaps more useful to lower the inclusion threshold. In the beginning it was stated that the
goal was to hypothesize a sufficiently small set of lexemes given a particular input waveform.
From test results, it is clear that this goal has been fulfilled, with room for improvement. It will be
interesting to see how low the inclusion threshold must be before hypothesization performance
reaches 100%, and what the average number of hypothesized words is at this level.

The existing results are good, but fall short of our hopes. Even so, there are many examples
where the system performed very well, considering the crudeness of our acoustic processing
(8-bit) and the "leveling" of distinctions which lexical feature extraction can induce. The system
distinguishes between "mumu" and "booboo," with each being uniquely hypothesized at the 10%
inclusion level. After 600 iterations at the 50% inclusion level, a totai of 85 words, or 58.2%,
were distinguished correctly and uniquely, despite the potential confusability of the lexicon.

There is one other positive development which was not anticipated. In those cases in which the
correct word does not appear among the hypothesized words, the maximum score attained by any
word is almost invariably rather low, certainly much less than 0.5. This could provide a way of
systematically lowering the inclusion threshold so that the correct word has a greater likelihood of
being present among the hypothesized words.

Finally, to assess the value of the neural network approach in relation to tradition"l pattern
recognition techniques, a simple classical pattern recognition system was constructed. The system
calculates class-specific means and variances for the same data used to train the neural network.
These data are then used to classify samples by placing them in the class whose mean is closest,
relative to the normalized Mahalanobis distance for the particular class. Since inclusion thresholds
can be set to induce any desired degree of hypothesizer performance, but the number of hypotheses
submitted soon becomes so large as to render the hypothesizer useless, any salient measure of
hypothesizer performance must address both these issues. Thus, our results shows how the
number of hypotheses increases as a function of the number of words correctly hypothesized.
From these results, and those inferred earlier, it can be seen the the neural network's performance
is comparable to that of the classical pattern recognizer.

In summary, we have presented a system which can be used as a word recognizer for a small,
non-confusable lexicon, or as a hypothesizer for larger lexicons. The system begins by extracting
parameters on each time frame, proceeding from the concrete level (acoustic) to the abstract
(phonetic). These parameters are combined systematically to produce global lexical features,
whicla characterize an entire word. These are used as inputs to a neufal network, which attempts to
find the best match(es) for the given input. Overall, there have been many encouraging results.
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AN ANALOG-DIVIDER-DESIGN BASED ON A PERCEPTRON-NEURAL-NETWORK
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ABSTRACT

An analog divider circuit design is presented. It is a perceptron
neural-network consisting of neurons designed to approximate the
desired output in a certain region of input values. Neuron and
network design are described and results of circuit simulations
are presented.

INTRODUCTION

As one ot the fundamental mathematical operations division is
important in signal processing applications. The idea to build a
divider circuit based on neural network techniques originated in
the comparison between the abilities of single-layer perceptron
networks and the requirements for a divider:
A single-layer feed-forward perceptron network is ible to decide,
on which side of a hyperplane in the hyperspace of the input
vectors a set of input values are located, or in other words, if
the weighted sum of input values exceeds a certain threshold.
For the special case of two input variables a and b and a
threshold of zero the weighted sum equation is

Wa * a + Wb * b = 0 or a / b =-Wb / Wa

and thus a certain ratio is defined by the weights Wa and Wb.
Figure 1 shows a graphical illustration of the plane of input
values and the lines of constant ratio defined by the weights in
the divider design proposed here.
The divider works in the following way: Input and output values
are represented by currents, here simply called a, b and (a/b).
Neurons calculate whether the ratio a/b is larger or smaller
than the neuron's built-in ratio. Each single i>euron corresponds
to a line of constant ratio (Wb/Wa) in the input plane. For input
ratios far larger than this ratio the neuron provides a certain
constant output current, for input ratios far smaller it has zero
output current. In the intermediate region around this ratio it
provides an output current that is approximately linearly
changing. By placing several lines in the plane of input values,
bounded by amin<a<amax and 0<bmin<b<bmax ,thus using several
neurons with different ratios, and adding up their output
currents, the ratio can be approximated for all possible input
values. Figure 4 illustrates the principle of operation, showing
a sweep through the input plane and the corresponding outputs of
the single neurons and the whiole circuit.
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THE DESIGN OF A SINGLE NEURON

The basic building-block for a perceptron network is the neuron.
The neuron designed here (fig. 2) has the following
characteristics:
- the output is a current since the outputs of the neurons have

to be added to obtain the final output value.
- the input is a current, too, to avoid the need for external

voltage-to-current conversions.
- the gain of the neuron is changing with the input current,

high gain for low currents, where the lines of constant ratio
are closely spaced, lower gain for higher input currents. This
leads to good interpolation characteristics.

- the weights Wa and Wb, are realized by the geometrical
parameters (W/L)n and (W/L)p. The signs of the weights are
fixed by the dcsign.

The neuron consists of a current comparator with voltage output,
which has a gain that is inversely proportional to the current.
The output voltage of the comparator is used to control the
output current by a transistor switch in the following way:
For high output voltages the switching transistor is in the
ohmic region and the current is limited by the reference source.
For low output voltage the switching transistor is turned off
and thus the output current is zero. In the intermediate region
the reference source is in the ohmic region, the switching
transistor is in saturation and the output current changes with
the output voltage of the comparator. The reference is chosen
such that the reference source reaches saturation for the
comparator reaching Vdd-Vt. The 'switch off' occurs at Vss+Vt,
where Vdd and Vss are the power supply voltages and Vt is the
threshold voltage of the MOSFETs. The input currents are chosen
such that the comparator has a linear region between Vdd-Vt
and Vss+Vt. This results in a relatively simple nonlinearity. A
drawback is, that the gain of the complete circuit is difficult
to design analytically. Here a circuit simulator was used to
adjust parameters.

DESIGN OF THE WHOLE NETWORK

Since a high regularity reduces the efforts in the design,
especially when the design has to be done in a "try-and-error"
manner, the input plane was divided into similar segments so that
the neurons differ only in geometric parameters representing
different ratios. These can be determined easily from the
corresponding ratio -Wb/Wa by

--Wb/Wa = (W/L)p / (W/L)n

where the subscripts p and n stand for PMOS and NMOS transistors
respectively. The gain, which corresponds to the width of the
region of interpolation in the input plane, is the same for all
neurons. Only in the regions where interpolation is n, re
difficult, near the maximum and near the minimum ratio, the lines
were spaced twice as close, corresponding to a higher gain of the
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neurons in this region.
The resulting (W/L)p / (W/L)n ratios for the comparator and the
W/L ratio for the output devices are shown in figure 3. To obtain
a similar channel-length modulation for all components of the
comparators the device length L has to be the same for all
devices.
The W/L ratio of the output devices for each neuron is
proprotional to the difference between the input current ratios
at the 'switch off' of the next neuron and the 'switch off' of
the considered neuron. The fourth neuron for example covers the
range from 0.58 to 1.02 and has a current output proprotional to
1.02 - 0.58 = 0.44.

SIMULATION-RESULTS

The circuit was simulated using the circuit simulator PSPICE.
Figure 1 shows the location of the DC-sweep in the input plane.
The principle of operation of the circuit is illustrated by
figure 4. It shows, how the different neurons do the
interpolation in their range and give constant output outside
this region. Figure 5 shows the absolute error (normalized
to the maximum output) and the relative error of the output
current. The maximum relative error is approximately 7%
disregarding the region near a/b=0.
The maximum absolute error is 3.5% of the maximum output, the
error near a/b=0 is about 1% of the maximum output.
Other simulations of the single neuron were performed to analyze
the influence of different error sources on the output current.
The most critical parameters are the geometrical values and
relative variations in the threshold voltage. The influence of
finite output resistance of the reference sources is significant,
too, but it could be reduced by using cascoded current sources
instead. Variations of the channel-length modulation did not have
significant influence on the accuracy of the output.

CONCLUSIONS

The perceptron network seems to be a promising design for an
analog divider. The abilities of a single layer perceptron
network without feedback and the requirements for a. divider are
very similar. A simple neuron circuit with good interpolation
characteristics can be used. The result is a simple structure
consisting of only 30 transistors leading to a relative error
of about 7%. The error could be further reduced by increasing the
number of neurons. The maximum accuracy will depend on the
accuracy of geometrical parameters in the process.
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Abstract

This paper compares the performance of a Spatio-Temporal Pattern Recognition neural net-
work word recognizer with a traditional Dynamic Time Warping (DTW) word recognizer. Each
recognizer is evaluated over a set of 4 words spoken by 6 different speakers/talkers (24 tokens
total.) On each run, one speaker's utterances are used as training input for the neural network, or
as templates for the DTW word matcher. The utterances from the remaining 5 speaker, are
reserved tor testing. Using a different speaker's data as the training/template set each time, a
total of six runs are performed. Averaging the results over 6 runs yields a 97.5% accuracy rate
for the neural network, as compared with an 87.5% rate for DTW with a slope constraint of 0, or
85% for DTW with a slope constraint of 1.

Introduction

The Spatio-Temporal Pattern Recognition Approach to word recognition has been hitro-
duced in IJCNN-89 [6]. We have built a limited vocabulary, speaker independent, isolated word
recognition system based on the above approach. The system has been trained with 4 words spo-
ken by one single speaker (talker.) The trained system has recognized the 4 words in the voca-
bulary spokcn by each of 5 other speakers.

Here we extend our experiments with the system by varying the training set. To test for
speaker independence, we use only one speaker's utterances as training input. The trained sys-
tem is tested on other speakers' utterances. We vary the training input, using one speaker's data
each time. The results are presented. Training and testing times are recorded.

To compare the Spatio-Temporal Pattern Recognition Approach to a traditional technique,
we implement an isolated word recognizer based on the Dynamic Time Warping (DTW)
approach [I]. We evaluate the DTW word recognizer by using a single speaker's utterances as
templates, and matching the utterances voiced by other speakers. The results based on different
speaker's template utterances are presented. Computation time is recorded.

The Spatio-Temporal Pattern Recognition Approach

The Spatio-Temporal Pattern Recognition Approach is a static pattern recognition approach
applied to recognize a spatio-ternporal pattern of time varying speech features. A system has
been built with this approach and recognizes digitized isolated words without performing seg-
nientation, phomernc identification, or time alignment. The preprocessing only includes end-
points identification, preceding and trailing silence removal, and word length dctermnination. A
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fourth-order Linear Predictive Coding (LPC) analysis [2] is performrej on each of 32 equally
spaced frames. The 4 LPC coefficients plus 4 other features from eachi frkme are input to a mul-
tilayer feeriforward neural network.

Preprocessing is performed befoi - LPC analysis. The endpoints of the word are determined
[3]. P~receding and trailing silence are stripped off. Dividing the length of the word by 32 gives
the spacing between the starting points of the 256-point Lr-C analysis frames. The LPC an-flysis
frames imy overlapped if tne length of the preprocessed utterance is less than 32x256 points
(8i9.2 ms at 10 kHz samplirg. rate.)

For each frame, we ob~ain 8 representative features that, are input to the neural network
recog--iizer. We subtract the mnean value of the digitized signal, and apply Hamiming window
weighting. We then appiy a 4-th order LPC analysis, and obtain 4 LPC cccfficients plus the nor-
malized prediction error. In addition, we. record the peak amplitude, the number of zero cross-
ings, and the root-mean-squared energy of the signal in the frame. We apply a nonlinear normal-
ization exp(-x) to keep the last three feature values within the 10, 1.] inter. al. We thus obtain 8
features per analysis frame.

Th,- nzural network pattern recognizer is a multi)-yer feedforward network trained with the
backpropagation lear-ning algorithmo [41. The neural network has 4 output layer units, where
each represenits a word iri the lexicon. We use, 50 hidden layer units. The network takes 256
inputs, which are the 32 frarnes with 8 fr..iwures each. We use a learning rate of 0.1, and a
mornmuritu co'nstant of 0.9. We do not clear the momrentum, term during training. Initial weights
w~e small randomi values uniformly distributed between~ -0.3 and 0.3. We represent the lesired
outpu. with i .0 at the unit representing the corresponding word, and 0G0 at Uther units. The
desired vaius are not achieved with iinear gradf-d units which use the sijgmoidal nonlinearity.
Trhus we choose the wore, corresponding to output layer unit having the highest output -value as
the recognized word.

Evaluating the S patio-Tempcral Pattern Recognition Approach
In this section we present the results with our extended experiments wikh the neural net-

work recognizcr. We have presented the result of training the 5ietwork with only oi~e speaker's
data, andt perfect recognition of 5 othei- speaker's utterances [6]. Here we vary the training set,
always using on~y one speaker's data set as training input. We test the trained network on the

rem~~~.ining~ dat Ies Weloeotccmuainnn U ai cenework. with one data set,
and the time to recojrnize the ren. ..... ,data sets.

The data Nets consist of utterances of 4 dif ferent. words (colt, star, drink, and taste) spoken
by 6 female riativ~ -speaker of English. The speakers arc identified by their initials: C.L.C., 1 ,1.,
L.L.S., S.E.K., J.LL.0., and L.H-.J. The utterances are recorded in a quiet loom and are digitizeci
at 10 kHi _. The A/E- ccmnersion has 12-bit resolution. These utteiances vary in length, and have
a variabie duration of preceding and trailing silevce.

We first train the nmtwork with 100 epochs on the 4-word set spoken by '2.L.C.. and then
test the r'etwc~rk on the same 4 words spoken by 5 other speakers. The perfect recognition in the
above exper--meriet has been presented in UiCNIN-89. We repeat the above experiment 5 times,
training with the utterances of J.J.H., L.L.S., S.EK., J.L .0., and L.H.J. respectively. Each tri-in-
ing run staris with initi'il weights. and testing is done onl theý remaining 5 data set,,.

Sh!- rtsults are sumimarized ia the Table 1. !lit nc'.ral network only fails oil 3 olit of the
total 120 testio-g words. Ibis gives an average of 97.5% accuracy. The new-alk network fails to
iciLogrizc the Y'ords "colt" and 'tastc ", both spoken by L.H.J., when trained with the words spo-
ken by .J-.The thli-d failure oxcurs onl the input word "taste" spoken by L.I.J. vvhen trinifed
with the 4 words spokrn by SJ:.'2
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We perform our experiments on the Gould NP-I computer with vector processor/arithmetic
acceleractor. Training 100 passes of the 4-word training set take 11.1 cpu seconds (rounded to
the nearest tenth of a second) on the sequential vcrsion, and only 1.0 second on the vectorLzcd
version. Testing all 24 words in the training set and testing sets take 0.3 cpu second on the
sequential version, and 0.1 second on the vectorized version.

The Dynamic Time Warping Approach

The traditional dynamic programming approach serves as a comparison for the Spatio-
Temporal Pattern Recognition Approach. We build a DTW word recognizer based on the
minimum prediction residual principle (Itakura, 1975.) The training and testing utterances are
the ones mentioned in the previous section. The evaluation procedure is also similar. The DTW
word recognizer is run with two different slope constraints on the warp path [5]. Recognition
accuracy and computation time are recorded.

Using the same utterances as we use for the neural network, we can use the same endpoints
determined ior each utterance. Preceding and trailing silence are stripped off. Here we apply
14 -th order LPC analysis on successive 128-point frames. The 14 LPC coefficients give a better
characterization of the frame than the 4 coefficients from an LPC-4 analysis described in the pre-
vious section, Each utterance is processed into a variable number of frames (due to varying
word length) with 14 LPC coefficients per frame.

Testing of the DTW word recognizer is similar to that of the neural network. Speaker
independence is stressed. Only one speaker's utterances are used as templates for the DTW
word recognizer. The utterances voiced by the remaining 5 speakers fare reserved for matching.
Six runs are performed, with each run using a different speaker's data as the template set.
Besides using Itaknra's slope constraint of 0 [1], the slope constraint of I introduced by Sakoe &
Chiba [5] is applied in a second run. Sakoe & Chiba reports higher accuracy rate with the slope
constraint of 1.

The results are sunmmarized in the last two columns of Table 1. The DTW word recognizer
with slope constraint 0 fails on 15 out of the total 120 input i.tterances. This gives an average of
87.5% accuracy. The DTW word recognizer with slope constraint I fails on IS out of the total
120 input utterances, which translates to 85% accuracy.

As the DTW word recognizer needs no training, we only report the testing time. Taking
the 4 template words for reference and performing matching on a single input word take 2.9
seconds and 15.9 seconds with a slope constraint of zero and oae respectively. Testing all 24
words in the training set and testing sets would take 69.6/381.6 seconds with a slope constraint
of zero/one.

Conclusio,-i
Evaluating over the 6-speaker. 4-word vocabulary, the Spatio-Temporal Pattern Recogni-

tion neural network isolated word recognizer has a significantly higher accuracy rat,; than that of
the Dyna'nic Time Warping word recognizer. The vectorized version of the neural network
recognizer is about 2 orders of magnitude faster than the DTW word recognizer. The output
layer unit activations of the neural network also shows more discriminatory power than the pred-
iction residuals computed by the DTW approach, as can be contrasted in Figures 1, 2, and 3.
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Point Pattern Matching using a Hopfield-type Neural Network

Damn R. Uecker* and Hiroshi Sakou
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan

Abstiact: In this paper we present a method for point pattern matching[l] using a Hopfield-type neural
network. We give a formulation with energy functions which converge to the optimal solution in a least squares
sense. The input points are assumed transfrnned from the template points by affine transfo.-mation with additive
positional noise. We show that the number of iterations required for the network to converge is linear with the
number of points in the template. Results are given with example matchings and future work and extensions are
discussed.

Introduction

A network for solving difficult optimization problems using neural like elements was developed by
Hopfield and Tank [2,3]. They were able to solve the Traveling Salesman Problem (TSP) in certain cases and
showed that their network had the potential to solve many types of optimization problems. Currently much
research is being done in using the Hopfield network to solve other optimization problems by proper choice of the
energy function. Typical examples of this are graph matching [6] and the Nonthreatening Queens Problem [7].

We have used a Hopfield-type neural network to solve the point pattern matching problem, which is
especially important in model-based computer vision. In our system points may undergo affine transformation,
i.e., translation, rotation, scaling and/or stretching, and some random additive positional noise. The Hopfield
network's parallel computation offers the speed that has been a major drawback of many previous point pattern
matching methods and in general our method compares favorably with other techniques[8,9] which use heuristics
in error estimation.

Hopfield Neural Network Model

Hopfield introduced his model in 1982 [4] as a highly interconnected network based on
neurophysiological evidence of the interaction between neurons. Neurons are modeled as amplifiers and each
output is connected to all other neurons and receives input from all other neurons. The input/output
characteristics of the neurons are modeled as a sigmoid function, The dynamic equations for this network are
given as,

S - vij (1)
where, V ij (2)

1 + e" uj

These equations are based on classical neurodynamics where uij represents the effective input potentials, Vij
represents the output or firing frequencies of the neurons, and t is the time constant associated with the input
capacitance of the cell membranes "rnd the transmembrane resistance.

In equations 1 and 2, E is known as the computational energy of the network. With iniual uij's selected
the network will evolve in time, through the state space given by the Vij's, and evenatally converge to some
minimum energy location. By properly formulating the computational energy, Hopfield and Tank were able to
decode the solution to the TSP from the final states of the neurons.

Point Pattern Matching Formulation

For a typical point pattern matching problem a set of input points need to be optimally matched to a
set of model template points by minimizing a cost function. The template coordinates, which are characteristic
points to be detected in the input object image, will be represented as two vectors x = [x I .. x]T and y = [y 1.
• yn]T ard the input vectors as X = [XlI ... Xn]T and Y = [Yl • -. Yn]T. The input imagc is assumed to be

transformed by an affine transform with additive positional noise, i.e.,

X=ax +by+c + e, Y=Ax+ By+C+E (3)

where c and E arc additive positional noise vectors and a, b, c and t , 3, C are all scalar values.
To formulate the point pattern matching problem in termns of a Hopficld network we use a

representation which will allow us to decode tile output of the final states of the neurons into the appropriatc:
matched pairs. Thcrcfore, each template coordinate has n neurons where one of the neurons will be onl indicating
the number of the input pair that it should be matched with.

Visiting R searchcr until 12/12/89 from University of Califrmia at Santa Barbara, Santa Barbara, CA 93 1O0.
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Then, for n points there will be an n-square matrix we will V
denote as V. Where an on-neuron Vij denotes a matching of (x, y)(i'?i)
(xi, yi) with (Xj, Yj) and an off-neuron denotes a no-match *

between the points. Figure 1 shows a physical
representation of this. The formulation is a very natural one *

because the final matrix can only have one neuron on in
each row and column and therefore is a permutation matrix Figure 1. Template-input relationship.
which maps X to x and Y to y.

We use two different energies in this formulation. The first energy, El, is a constraint which is used to
insure that there is only one neuron with a one value per row and column. It is given as

El=ý Vji " ý 1 (4)
Ek= l k+ * i VijVkj ] +1'5 -l.S(

This equation insures that the V matrix converges to a permutation matrix while staying away from the origin.
The second energy, or cost function, insures that the matched solution has a minimum error, or cost, in

a least squares sense. To get the optimal solution for a known template-input coordinate pair the well known
least squares method can be used. In our case we reformulate it as

<X,<xy> <X.z>- 0 0 0

<Y,x <y,y> <y'z> 0 0 0 r<v×.",-

0 0 0 <vx. (5)
<X.X> <X.Y> (XZ> AF I<VY,x>

0 0 6 <y,x> <yy> <y.z> !B '|VY'y>

o0 0 <Xz> <y'-> n 'C. -<VYY,

where <.,.> represents the inner product in Rn and z is a column vector of size n filled with ones. When V
converges to the correct pIrmutation matrix we can calculate the optimal coefficients. Using this formul, ion,
we define E2 as

E2 = Vj2[Xj - (axi+b. i+c)I2 + Y - (Ax1,11Y 1+C)]j1 6
2

Thus, at every iteration of the dynamics, the coefficients are recalculated using equation 5. When the system
converges we have the permutation matrix that matches the appropriate pairs and naturally the optimal
coefficients of the affine transform.

Hopfield has shown[5] that if the synaptic inrterconnections are symmetric and there is no cross talk
within neurons then the energy function will always be decreasing as a function of time, In our formulation,
however, these conditions are not met. We therefore modify equation 1 by eliminating the uijYt term which
makes it is easy to see that the time derivative of the energy will be less than. zero regadless of the energy

function chosen. Uesaka[ 10] has shown that eliminating this term does not greatly affect the energy curve
associated with this network. Incidentally, our system can get good results with the original equations but with
more iterations. Thus, die modified equation is used because it is not clear that with the original equation the
energy is always decreasing.

The energy differentials required by the dynamics which are derived from equations 5 and 6 are thus,

avij (k *j k *i ) hi, ý (7)

-n(a"(m*bym+-C)j j-'m + Y"+ 'V

Xv, + v111
E K3Vj[ (axi+hy+c)]

2 +[Yj-(Axi4 13yi+C)j2) + K3 IT]V n ., )+ V.-i, + -a-C-iii (i)
a)Vij M ýXvl,4C_ýAý + + l C

The second part of equation 8 is much smaller in magnitude than the first part and can therefore be neglected
during simulations. To solve these equations we used the Euler-Cauchy method.

In the point pattern matching case the parameters represent a trade-off between a possible solution, K 1
and K2 in El, and one that is weighted heavily in favor of minimum squared error, or K3 in E2. Clearly every
permutation matrix of V is a local minimum in the energy space involved. A good set of parameters which
prevent our system from entcring the local minimum are

K1 =5.0 K2= I On K3= 1.0 for At = 0.1.
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Although a different set of parameters might work for different cases these parameters worked for all cases tested.
One very important initial parameter is the initial neural input potentials, or uij's. There is no a prior

knowledge of the matched pairs used thus, all the uij must be set to zero which means we are not favoring any
matching. With this initial set-up the only initial change in Vii will come from a change in E2. This is due to
the fact that the initial neural input potentials are equal and EI is only dependent on Vij. To break the symmetry
the following a, b, c and A, B, C are used for the first iteration,

a = cos 0, b = sin 0, c = -ax - by + X, A = -sin 0, B = cos 0, C = -AT- - B>Y + ,

where theta is the rotation angle which is obtained by the estimation of the distribution of points between the
input and the template points, and i is the average value of the xi's. This is equivalent to biasing the initial
neural input potentials because these initial coefficients transfer this information directly to the uij's and thus the
V matrix.

Our results show that if a good estimate of the rotation angle, 0, between the template and input is
made then the system will always converge adjusting for any error in the estimate as well as shift, stretching,
shrinking and additive noise. Therefore, we can by checking at different angles, find the optimal matching. This
will be discussed in more detail in the next section.

There is also preprocessing which is done to normalize the coordinate values and center the images on
an axis. The normalization is simply

xi Yi (9)
max((xmax - Xmin), (Ymax- Ymin)l '- max((xnax X-mini, (Ymax Ymin)(

The same is also done for the input image. This normalizes the individual images so that the K3 parameter can
remain constant independent of image size or field size.

Experiments

Figure 2 shows an optimal matching with characteristic points of a star and a transformation of that
star matchied using this system. Figure 3 shows a typical energy curve which, is generated during matching. As
expected the energy curve clearly decreases with the iteration number, slowly at the beginning as the system
tries to figure out the best match and then rapidly towards convergence at the end.

130.

50

4 6 8 10 72 14 16

Number of porniS

Figire 2. Star matching. Figure 4. Linearity of iteration number.
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0 20 40 O0 
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100 .6100 'M o o 10 0 3 W to to 0 0

Iteration Number l iter

Figuie 3. Typical cnergy curve. Figure 5. Theta estimate error,

Figure 4 shows a plot of the relationship between the number of pointý and the ileration number for
thrce different samples of randomly generated inputs. The saniples are a string of random coordinates where we
used 5-15 points in a 250 by 250 region for testing. I he figure shows a definite linearity between the number ot
points and dte iterations required to solve the pr'Ablem. The increase in iteration with the nuniber of points is
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due to the increase in density of points in the image plane. In other words, because the difference in energy from
E2 is smaller between points, it takes longer for E1 to be able to take over and make the system converge.

As mentioned in the previous section, if the angle of rotation can be estimatfd correctly, our system
can insure the optimal solution. With this is mind we tested a number of randomly generated petterns to see the
amount of error that could be tolerated in the estimate and still get the correct solution. Figure 5 shows some of
these results in which we can see that the system is able to overcome the difference, within +/- 25 dcgsees, and
still find the optimal soiution. It is important to note that at all other angles there is a larger error because this
suggests that we can attempt matchings at different angle intervals, in other woids, at several initial uij, and
choose the smallest error as the correct match. This will add computation to the overall matching but it will not
affect the linearity of the iteration versus number of points. Figure 6 shows another matching result.

Zý -'z

Figure 6. Another matching result. Figure 7. Additional points matching.

Conclusion and Discussion

In this paper we proposed a method for point pattern matching using a Hopfield type neiraJ ne]twork.
"Tile method uses a formulation in which the optimal matching is obtained in a least squares sense and the
matching is decoded directly from the outputs of the neurons after the system converges. Our system also
demonstrates an ability to converge to the optimal solution linearly with the number of points in the pattern
regardless of deformations, where the defonnations are brought on by affine transform and additive posidonal
noise. Finally, because this network is general in the sense of least squares it is possible that it could be applied
to many other correspondence problems.

These results have been all on patterns with equal number of template-input points. The current system
has the ability to solvo a problem with additional input points ft certain situations, as shown in figure 7, but
not in all cases.The applications of this system would be much greater if we could insure the optimal solution
in this case. Our current work is aimed at solving this problem.
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Abstract

A multi-layer neural network is used to classify impulse radar waveforms from asphalt-
covered bridge decks. The back-propagation algorithm is used to train a 3 layer network to
identify whether a waterproofing membrane is present, and to identify the specific structure from
which the waveform originated. On average, the neural network perfonned better than the nearest
neighbour classifier. Very encouraging results were obtained with correct classification percentages
ranging L,;tween 78.96% and 95.52%.

Introduction

Impulse radar is a special type of radar which is particularly useful in the remote sensing
of objects which are buried, encased in concrete or other material, or hidden behind walls or other
structures. It has been used in a wide variety of applications such as locating geological structures,
detecting underground pipes and cables, and detecting cadavers. Testing has also dermonstrated the
ability of impulse radar to detect deterioration in concrete bridge deck slabs that are covered with
bituminous surfacing [1]. It is possible to use the radar signal to estimate the thickness of the
asphalt and the concrete cover over the reinforcement. These quantities are important in
determining the amount of asphalt and concrete to be removed when repairing a bridge deck. Both
the asphalt thickness and the concrete cover over reinforcement may vary over a bridge deck, and
no simple non-destructive evaluation method has previously existed to measure these variations.

A large percentage of bridge decks have bituminous surfacing. Deterioration occurs mainly
at or beneath the asphalt-concrete boundary and is of three types. The first problem is debonding
which results when the asphalt layer separates from the concrete surface, usually producing ani
extra boundary. The second type of damage is scaling, which is induced by the freeze-thaw
process causing the disintegration of the concrete into a gravelly matrix. The third fault is
delamination which occurs as a result of corrosion of the embedded reinforcement. In all three
cases, the impulse radar signal reflects from the damaged area producing changes in the reflected
waveform which differ from undamaged areas.

The Ministry of Transportation of Ontario (MT"O) and the Commnunication" Research
Laboratory (CRL) at McMaster University have become actively involved in the use of impulse
radar as a tool to detect various forms of deterioration of asphalt-covered bridge decks through a
program called Deck Assessment by Radar and Thermography (DART) 12]. Computer algorithms
for assessing bridge deck conditions have been devekoped for D.,\RT and tested using data sets
obtained from different bridge decks. One of the main problems in processing th1 radar
reflections, however, is in distinguishing between the different asphalt stncu,-cs which are found to
exist in different bridge decks. These include normal two-lift _,phalt over concrete over rebars
(2ACR), normal two -lift asphalt over waterproofing 7c:embrane over concrete over rebars (2AMCR),
and three-lift asphalt over comcrert over rcbaxs (3ACR). Pre,,ious studies bave shown that radar
waveforms mwy bc imte.drced incorrectly if there is insufficient information about the bridge deck
'tr',t,-t i. fThe error is usually due to improperly identified reflections from the concrete
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surface and rebars. Consequently, both the measurements for asphalt thickness and concrete cover
over reinforcement will be incorrect.

The current operation for DART includes a policy of taking at least one core sample on
every bridge deck being surveyed. The core sample thickness and structure is incorporated into the
signal processing algorithm in order to maximize the information content. However, this procedure
deviates from the concept of adopting non-destructive evaluation of the bridge decks. For the
project to be more effective, it is believed that existing procedures for data processing can be
enhanced by using neural networks to provide information about the bridge deck structure.

Radar Waveforms

The electromagnetic waves transmitted by the impulse radar penetrate and propagate
through the bridge deck surface until they intercept a boundary. A boundary in this case, is any
discontinuity (such as a crack or separation) or regions of differing dielectric (such as air to
asphalt, or asphalt to concrete). At the boundary, a portion of the incident energy will be reflected
and a portion will be transmitted through the boundary.

In Fig. la, a waveform from a normal 2AMCR structure is shown. The peaks labelled
A,M,C and D indicate the boundaries of the asphalt surface, membrane surface, concrete surface
and the rebars respectively. Note that there is a distinct characteristic W between the region from
peaks C and D. In Fig. lb, a waveform from a damaged region of the same bridge is shown. The
W shaped reflection is not well defined between peaks C and D. This waveform indicates
delamination.

A waveform from a normal 2ACR structure is shown in Fig. 2a. Peak A is the reflection
from the air-asphalt boundary; peak C is the reflection from the asphalt-concretc boundary'; pa-k D
is the reflection from the rebars. The characteristic W between peaks C and D indicates that the
concrete surface is undamaged. When damage is present, the W shape becomes distorted as shown
in Fig. 2b.

Fig. 3a illustrates the waveform from a 3ACR structure. Peaks 1 and 2 are the reflections
from the top-middle and middle-bottom layers of asphalt, whereas peak 3 (ie. C) is the reflection
from the concrete surface, and peak 4 (ie. D) is from the rebars. Again we see a well defined W
between peaks 3 and 4. In Fig. 3b a waveform from a damaged region of this bridge is shown.

In all of the illustrated waveforms, the peak from the air-asphalt boundary (peak A) is well
defined. Thiis portion of the waveform does not give us any useful information as to the structure
which lies beneath the asphalt surface. Only the portion of the waveform after the first negative
peak after peak A provides infornation about the deck's structure.. Hence, we truncated the 'front'
portion ofl the wavelfOrmi up to the If--1s nuvogaLV ýa d[U pe.&ATh U1 w tor

poton f • ..... " " "'^ ... ngatve-^•--- peak - A. ThI•e re~naiahig ........

contained 140 samples and this was used as the input to the neural networks- The waveforms are
collected in liBnes along a bridge deck and 225 waveforms from 4 lines of each of the three decks
were obtained for use in this project. Hence a database of 2700 waveforms was available.

Detection of the Waterproofing Membrane

The first network was created with the purpose of identifying the presence, or absence of a
waterproofing membrane between the asphalt and concrete boundaries. A frilly connected 3 layer
neural network was created. It was trained by using the back-propagation algonrttm [4]. Training
was performed on the WARP systolic array computer using software provided by Carnegie Mellon
University. 'he input layer contained 140 neurons (1 for each sample of the waveforms). The
hidden layer contained 25 neurons and 1 output neuron was used. The desired response of the
output neuron was a 1 if the wavefonn's bridge deck had a membrane, and 0 if no membrane
existed.

Two diffr:ent training sets were created. The first set (SET A) contained 30 waveforms
from 2 of the 4 lines per bridge deck. Hence SET A contained a total of 180 waveforms. The
second set (SET B) also contained 180 waveforns but there were 15 waves from each of the 4
lines per bridge deck. Training the network with SET A was complete after 3000 epochs and
97.78% of the training patterns were learned correctly. Using SET B to train the network only
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required 2000 epochs of training, and 100% of the training patterns were learned correctly. Once
training was completed, all 2700 waveforms were presented to the network for classification. The
percentage of correct classifications, for the net trained with SET A and the net trained with SET B
are listed in Table 1. The results of the nearest neighbour classifier are also indicated in Table 1.

TABLE 1: Identification of Waterproofing Membrane

SET A used for Training SET B used for Training
NEURAL NET. NEAREST NGBR. NEURAL NET. NEAREST NGBR.

2AMCR 86.11% 82.78% 94.33% 95.36%
3ACR 86.33% 86.22% 94.89% 91.56%
2ACR 92.22% 95.78% 97.33% 96.89%
avg. 88.22% 88.25% 95.52% 94.00%

Identifying Bridge Deck Structure

This network was created to identify the structure of the bridge deck from which tie
waveform presented originated. Once again, back-propagation trained on the WARP computer was
employed. The network contained 140 input neurons, 25 hidden neurons in 1 layer, and 2 output
neurons. The desired outputs were: 00 if the wavcform carie from a ,-MR structure; 01 if the
waveform came from a 3ACR structure; 1 if the waveform came from a 2ACR structure. The
same two training sets as above (SET A and SET B) were used to train two different networks.
Training with SET A was completed after 4000 epochs and 97.78% of the training patterns were
learned correctly. Training with SET B was also performed for 4000 epochs and this time 99.44%
of the patterns were learned correctly. Table 2 shows the percentage correct classification of all
2700 waveforms by the networks trained with SET A and SET B. Nearest neighbour classification
results are also given.

TABLE 2: Identification of Bridge Deck Structure

SET A used for Training SET B used for Training
NEURAL NET. NEAREST NGBR. NEURAL NET. NEAREST NGBR.

2AMCR 88.77% 82.78% 94.56% 93.56%
3ACR 63.77% 52.56% 90.67% 79.78%
2ACR 84.33% 92.44% 84.56% 92.89%
avg. 78.96% 75.92% 89.92% 88.74%

'onclusions

A neural network using the back-propagation algorithm was successfully trained to detect
the presence of a waterproofing membrane in an asphalt covered bridge deck. A second neural
network was able to distinguish between three different types of bridge decks with a high success
rate. Although the nearest neighbour classifier also worked well, the neural network i3 much more
efficient and flexible. "'lie performance of the networks improves if the training data contains
sample wavefornms from the entire bridge deck surface. Clearly neural networks can be used to
extract information about a bridge deck's structure when waveforms from the deck are presented to
it.
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ABSTRACT
A pattern recognition model using feature detectors is described, which can be

approximated by a multilayered main network and an additional network. Some feature
detectors are used in these networks to extract features from a given image as
preprocessing. Feature extraction ability of the feature detector, the effect of the
additional network and the discrimination ability of the system are discussed.
Experiment were carried out on handwritten digit character recognition. The
recognition rate of 939/ is obtained by using only main network and 95yo by
supplemented with the additional network for handwritten digit characters.

1. Introduction
Many pattern recognition researches have studied neural network[l]l2].

Perceptron learning rules is one of the earliest simple models of learning, but was
proved to have serious disadvantages[3]. One limitation of perceptron is that they
can only associate patterns those are completely uncorrelated. Some of the othei
models such as Neocognitron and error propagation models, do not have this problem,
but are computationally expensive[1][4].

Thinking of the simplicity of the perceptron and the discrimination ability of
the backpropagation learning rule, we propose a pattern recognition model that uses
feature detector trained by a learning rule like as perceptron to extract a priori
features, and a two-layer network trained by backpropagation learning rule to
discriminate according to the features. Using special feature detectors and
independent learning method make the architecture and the training of the system
simple. In order to compensate errors in practical application, an additional network
is employed. After the learning process of main network, -the recognition can also be
helped by the additional network, if there are some error that should be corrected.
The advantages in this model are that the feature detector can be trained for any
shape which is thought to be a feature in an image and that the additional network can
be used to improve the recognition rate without training the whole system again.

2. Feature Detector
The feature extraction process is made by feature detectors called f-cell, of

which one type responds to only a special shape, such as an end of line, cross poijnt,
etc.. The f-cell takes a weighted linear sum of the input signals with which it
connects, and compares with a threshold to determine the output level (0 or 1). The
output of f-coll U can be expressed as

U=F(LIWjXj-O), (1)
I x>0 >

F(x): (
0 x 0,

where, Xi is j-th input signal. Wj is the connecting weight between the j-th input
signal and the f-cell, and 0 is threshold.
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The f-cell is trained with a set of sample
patterns. For the sample patterns which theT
f-cell is expected to respond to, there is a T = 1
teacher s igna l be ing equa l to 1, fo r the o thers ...................................................................................................
the teacher signal is equal to 0. An example T = 0F71111F
of sample pattern set with their teacher signal 1:LJELh [I
T is shown in Fig. 1. The f-cell learns by
changing in the connecting weights. Initially
the weights are randomized. While presentation
of the sample pattern, the weights are changed
as following. L4 [1

When U>o and T=O or U0O and T=1,
Wj(t)=Wj (t-l)- s U(t)Xj,
0 (t) = (t-l) + FU(t). (2)

otherwise,
no change in weights and threshold, Fig. 1 Example of sample patterns

where e is a constant which determines the rate use to training f-cell
of learning. Six types of f-cell are trained to detecting a cross point.
respond to the end of line, the cross point,
oblique line "/ " and "\" , horizontal line and vertical line I ",
respectively. Four types are used in the main network and the others in the
additional network, as described in followings.

3. Architecture
The system consists of a main network and an additional network. The main

network can be divided into two parts, preprocessing and recognition. The task of the
preprocessing part is the transformation of data from the input pattern space into a
new space. Patterns transformed to this
space are then classified by the recognition part.

3. 1 Main Network
There are two layers in preprocessing part, layer CI and C2. Four types of f-

cell are employed in layer Cl as units, and each type of cell forms a plane which
respond to the end of line, the cross point and the oblique lines, respectively. The
group of input signals with which the unit connects, is referred as the receptive
field. Fig. 2 shows the unit plane in layer Cl, the receptive fields of each layer,
and the interconnection among the input pattern, layer C1 and C2. The outputs of f-
cells determined by Eq. 1 express the local features of the input pattern. Here, the
receptive field of one f-cell consists of 5*5 pixels in the input pattern, and that of
adjacent f-cell is the same size pixel aiea but shifted by one pixel. The input
pattern is completely covered with these receptive fields of one plane. There are
four such planes corresponding to the type of f-cell.

Each plane in layer Ci is divided into 3*3 regions with same size and each region
is a receptive field of one unit in layer C2. The units in layer C2 connect with
layer Cl locally and collect the local features contained in its receptive field to
produce a representative feature as its output. The local features are finally
compressed into a feature vector (36 dimensions), which is the input of the following
network. The output of the units in layer C2 can also be expressed by Eq. 1, where all
connecting weights are equal to 1.

The recognition part is a simple multilayered neural network consisting of a
hidden layer C3 and an output layer C4, and receives input signals from layer C2.
Each unit in output layer expresses one class of recognized patterns. The system
classifies the input pattern according to the unit with maximum activity. The
connecting weights of this part are determined by using backpropagation learning rule.
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Using main network is enough to accomplish the pattern recognition. In practice,
however, sometimes the pattern which we want to recognize is slightly different with
the training pattern so that it may be misclassified and the recognition rate becomes
lower. Although. training the system again would make better, but it cost a lot of
time and is impossible for a hardware system of wh!ch the value of connecting weights
are fixed. Here, an additional network is proposed such that helps the discrimination
3.2 Additional Network

The additional network have two -Receptive field

layers, called layer Cl' and 02' of-*60
which the structure is the same as that 0
of the preprocessing part of the main C' Layer ,, -

network. There are two types of f-cell ./o
that respond to additional features: ,ln 2 . la, 3

horizontal and vertical line, respectively. Plane 1,"
The units of output layer C4 take a
weighted -linear sum of the outputs of
layer C3 and C2' , before putting it C' Layer Plane 4

through a sigmoidal activation function

F4. The outputs of them 0 i can be
given by 1nput

4 i=F4 (EWjiO3 j+EWsi' 0S' -0), (5) Pattern

where, 0 j and 0 s are the outputs of
j-th units in layer C3 and s-th unit in Fig.2 Interconnection among
layer C2' . Wij and Wij ' are weights input pattern, layer CI and C2
that connect i-th unit in output layer
C4 with j-th unit in later C3 and s-th unit in layer C2' , respectively, and 0
is the threshold. The additional network affects the discrimination through the
connecting weights Wij' , which are set to zero initially.

For training the additional network, a set of standard patterns (P1. P2, ... Pk)
is prepared , and the additional features expressed as outputs of layer C2' are
used. Pattern Pk is a model pattern of k-th class of the patterns to be recognized.
Assume an input pattern Pa of s-th class ij misclassified as be m-th class. Let
Oj(i) is the output of i-th unit in layer C2' while input pattern is Pi, then vector
O(Ol(a), 02(), ... On(a)) is the additional feature vector foi pattern Pa and
0(01(s). 02(s) ..... On(s)) for the corresponded standard pattern Ps. Only the
weights connected with m-th and s-th units in output layer -are changed as

Wmi' (t)=Wmi' (t-1)-cOi(s)(1-Oi (a)) (6)
Wsi' (t)=Wsi" (t-l)4-COi(s)(l-Oi (a)).

c=(Om+7)/(2EOi(s)(1-Oi(a))).
where, -, is a constant and t is the training time. The Eq.6 says that, the weights
connecting the additional features, which exist in model pattcrn but not in
misclassified one, with the ideal output unit are increased, and decreased for which
connect with the mistaken unrUt. After training, through the weights the additional
features become excitatory signal for the s-th uni, and inhibitcry signal for m--th
unit in layer C4, and do not affects other units. That is why the additional network
can supplement the main network for correciing misclas:ification. The results of the
experiments show that the discrimination of the patterns of other classes is affected
slightly, after learning the additional network for some patterns. But the effect is
very little comparing with the increment of tie recognition rate of corrected pattern
class.

4. Simulation and Results
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A database used in experiments has 1500 digit characters (24*24 pixel) written by
150 people. A training set of 500 characters was generated by selecting 50 characters
of each digit from this database, and the others were used for recognizing experiment.
There are 22*22*4, 3*3*4, 30 and 10 units in layer CI, C2, 03 and C4, and 22*22*2 and
3*3*2 units in layer Cl' and C2' , respectively.

Feature extraction ability of the model was tested using 1500 character patterns.
The experiments was performed to make feature vectors (36 dimensions) made by four
types of f-c61l and (45 dimensions) by six types. It is ascertained that the pattern
of different classes makes different vectors in both cases. This means that
preprocessing model can transform tfte input pattern from pattern space (24*24;576
dimensions) to feature vector space (36 or 45 dimensions), correctly.

Learning by backpropagation learning rule, the system achieves i00% recognicion
rate for training pattern at a training time about 100 times. The recognition rate
was examined in two cases. First is the case where weight Wij' are set to zero and
then the additional network does not contribute to discrimination. The average
recognition rate was 939/6. The other case is where the additional network has been
trained for 8, 5, 3 and 2 whose recognition rates were lower in former case. The
recognition rates of them increased by from 6% to 1%. The recognizing experiment
for trained pattern were per- 10
formed again and the recogni-
tion rate were 100%6, i.e. no • 90.

change for using the additional 80- . .

network. Fig. 3 shows the 70 .

recognition rates in each case. c so

5. Conclusion 4 40
A model using feature .0

detector was discussed and t:--
proved to be useful for hand- 2 20 .-

written digit character recog- Q; 1
nition. In addition to the main o
network, we proposed an add- 0 1 2 3 4 5 6 7 a 2
itional network which supplemcnts Chcu.araCter-
main network :or some pattern Fig. 3 Recognition rates for digit ---
eabily misclassified. This can characters by main network
be applied in the pattern without (white bar) and
recognizing hardware system to with (black bar) additional network
supplement the system for device error.
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Abstract

Neural networks have been shown to be useful for a variety of tasks ranging from pattern matching and associative
memory to optimization. However, they have usually been applied to small problems in tightly constrained environ-
ments. This paper presents an example of how neural nets can be used in a commercial office business environment.
The problem studied is that of dispatching delivery trucks under weight and volume constraints to minimize the number
of trucks required and the total miles tra.clled. This difficult real world problem is solved by a hybrid system including
IBM AS/400TM" data base facilities, AS/400 KnowledgeToolTl (a rule-based expert system), and self-organizing neural
networks.

Introduction

While neural networks have displayed impressive performance for a variety of tasks, they have yet to achieve any real
lv,•l f acceptance ifi the coM1ilCAcial buzi me enviionzziwt. Thi. ib avt due tv any deleJt v" ijeuial niutwuik teuii-
nology per se, but due to the large scope of any 'real' problem faced in such an environment. In many ways this
parallels the trials and tribulations that knowledge-based (expert) systems hove faced in being accepted into commercial
computing environments. Perhaps the most crucial feature of any new technology is, I low ran it integrate with
existing techniques for problem solving?' Unless a new technology claims to solve ail of the pieces of a problem,
integration is a necessity.

In the neural net research community, most development and delivery systems are high-powered workstations.
However, most companies fun their businesses on small and mid-range systems which are optimized for transaction
processing throughput and for data base operations. In order to evaluate the usefulness of n-ural nets in this environ-
ment, we used a combination of IBM AS/400 data base functions, IBM AS/400 Knowledgel ool rule-based knowledge
processing functions, and self-organizing neural networks.

"Ihe IBM A)ii4UU has over 25,UUtJ systems installed worldwide and is used heavily in commercial oflice busin-ss envi-
ronments. Thus, it serves as a good test bed for evaluating how neural networks perform in this e:ivironment. The
AS/400 integrated data base services were used to store customer information such as name, location, order informa-
tion related to the day of delivery, and the size and weight of the shipments.

AS/400 KnowledgeTool is a rule-based forward chaining inference engine with development and runtime environments
on ASi400t systems. It is an OPS5-like tool with procedural extensions which allow it to h:; integrated with COBOL
and RPG III applications. Both Knowledge lool inferencing and neural network routines are callable from RPG IlI
or COBOL programs.

The Truck Dispatching Problem

Our problem consists of cleating a day's distribution route for eadi of a number of trucks which deliver prodtcts from

a store to customers. 'Ibis problem contains three intcrrclatcd .ub p)lublerns:

(1) Deterinining the iuuiuer of trucks to use.
(2) Deterinining which deliverine to 1-1- on each truck.
(3) Ueterinining the route each truck should trdvel through the city-

Our goal is to mniinii/c !he rumtrher <f irucks teedeed ;au(d to nriiirniiz,. iti: ist;.,ute vtit- trick must travel.
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The city is a square with coordinates ranging from 0 to I West to East and from 0 to I South to North, with the store
centered at (0.5,0.5). Distributed throughout the city are customers who have ordered deliveries from the store. There
are three different types of deliveries which a customer can order; these are mnemonically named I leavy, Big, and
Little. The weight and volume of each delivery is tabied below.

DELIVERY I Weight (Units) Volume (Units)
----------------------------

Heavy I 50 10
Big I 10 50
Little I 1 1

Each day consists of from 30 to 70 deliveries, with 48 on average. Customers order, on average, Ileavies and Bigs
equally often, hut order Littles fives times as often as either Heavies or Bigs. The trucks have capacity constraints of
200 Weight Units and 200 Volume Units, and are only allowed to make 2(1 deliveries in one day. Clearly, carrying a
load of only all Iteavies, all Bigs, or all Littles wastes resources.' A truck mat carries a mixture of deliveries is more
productive, and more efficient loading allows fewer trucks to be used. Ir letining this problem, we also made some
simplifying assumptions:

(1) All trucks are considered identical.
(2) A truck performs only one delivery circuit per day.
(3) Each customer receiver at most one delivery per day.
(4) There is no limit on the distance any truck can drive.

A Hybrid Solution

Our solution proceeds in four steps. First, we determine the minimon, -*lumber of trucks that will be needed. Second,
we make an initial assignment of deliveries to trucks. This assignnvent ts valid, but not necessarily good. In this step,
we also determine if more trucks are needed. Next, we improve the aifignments by swapping deliveries between trucks
to reduce the distances the trucks must travel. Finally, the travelling . 'desman problem is solved for each truck to
produce the actual route to drive. These steps will now be dcscr-ted 'n detail.

Number of Trucks Required

After reading the problem data from a customer and deliver 1 daisAbase on the AS,'400, the bare minimum number of
trucks required is first calculated. This step is performed by ;sre'.cdural code upon entering KnowledgeTool. Extra
trucks are only added to this calculated minimum if they are deemed necessary later in the initial assignment step. The
minimum number of trucks depends simply on the capaciues of a single truck and the total number, weight, and
volume of all the deliveries for the day. From these totals, we calculate three load factors, LFW, LFV, and LFN,
which indicate the number of trucks needed only by weight, volume, and number, respectively. For example, consider
a day's total deliveries of 10 Heavies, 14 Bigs, and 42 Littles:

day's single truck resulting associated
totals capacities load factors delivery type

total weight = 682 200 LFW = 6fi2/200 =.41 Heavy
total volume = 842 200 LFV = 842/200 = 4.21 Big
total number = 66 20 LFN = 66/2G 3.30 Little

The minimum number of trucks is then the maximum load factor, rounded up. In the above case, LFV implies five
trucks at least are needed.

Initial Assignment

"lhe initial assignment of deliveries to truL:ks is perlormcd next using KnowledgeTool rules. -ach truck's centroid, the
average posilioo of thie delis cry locations assigned to the truck, roughly indicate' the section of the city tra eied by the
truck. Since each truck roust start, at the store, all the centroids are initially (0.5.01.5). 'lie deliveries are then assigned
to the trncks by type, ;,ccorrliu, to ihe load hictors. La;Ich naIl ,I taor has associated with it the delivery t.,- % s ch
most irilliciceus it. viaie. Clearly, I leavics inliheicec I'M the io-'t, Bigs iillueiici. 1l1V lie iiost. mid I tiles iilhilenice
LIlN the most. The deliveries are assigned ftrom highest load factor to lowest, Intuitively, this is because it will be
harder to assign the deliveries with higli load tIators, o Ihleiy arc ,l,,ie Ih .,. \'ithin each type, deliveric nrv :: ;,'-cd
fromn locatliot• f I, . iwai,, front tlhe store to those cUiisi't. " his allowvs the Iruck ,i, itiids; I- mior, razpidy, peolartec
aold prodtwch lit01c" iniliti,id , 'is llii lit',. I.i0. %0l dIsele i, ,ssitiied to ihIe best, truck %hiiih still hi, rim,,l ,,- ile older.

"I iIC "bes tr-uck has tile oittijitni \\'r-iightcd I)istatnic froni the deliicr1) loatlion. Multich is deuiccd as lo;lSws:

WiV Itvihl I)isft;L'c i alpha' l)i,ttii-c +- (I - alpha)%(",%rcrsurvc uosed)
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Distance is the distance of the delivery location from the truck's centroid. Alpha is a parameter which is initially 1 and
ranges from I to 0. It allows the initial assignment to parametrically favor the truck with the closest centroid, or the"emptiest' truck, or some mixture in between. The %resource used varies according to the delivery type (weight for
I leavies, etc.), so that 'emptiest' indicates the lightest truck when assigning I heavies and the truck with the fewest deliv-
eries when assigning Littles. After a delivery is assigned to a truck, its centroid is updated.

Two types of backtracking are implemented. First, a high value of alpha may re, ult in inefficient loading and leave no
room on any truck for a particular delivery. When this oce'-irs, alpha is lowered to favor assignments to the 'emptier'
trucks, and the process is repeated. If alpha is already low, an inability to assign a delivery indicates that not enough
trucks are being used. A new truck is added, alpha is set back to 1, and the process repeats. The initial assignment is
concluded when all deliveries have been assigned to trucks.

Mopping Up

The 'mopping up' step is also performcd using KnowledgeTool rules. By this time, a valid assignment of all the
deliveries has. been made, although it may not be very good. The put pose of this step is to improve the routes by
swapping deliveries between trucks so that all delivery locations are as close to their truck's centroid as possible. There
are three types of swaps used:

(1) Two trucks swap deliveries of the same type.
(2) Two trucks swap deliveries of different types.
(3) One truck gives a delivery to another.

These swaps are performed if the distance from the delivery !ocafions to their respective truck centroids would decrease
if the assignment was made. Clearly, swap #2 and swap #3 can only be performed if the resulting swap does not
exceed either truck's capacity. These three swaps are sufficient to eliminate overlap of truck routes in all but the most
exceptional cases. In order to reduce the search space for the swaps, certain deliveries arc 'locked" and not considered
in swapping. These deliveries are those for which all other truck centroids are more than twice as far away as its own.
Intuitively, it is very unlikely that such a delivery would get reassigned to another truck so far away. After 'mopping
up', the trucks are relatively balanced with little overlap between their areas of coverage.

Planning a Truck's Route

The problem of finding each truck's delivery route is solved using neural networks. Finding the shortest path between
points using neural networks has been studied in detail. 1topfield (1985) has proposed a method which finds good
solutions but does not scale well. Durbin and Willshaw (1987) proposed a method using a variation of Kohonen's
feature maps called elastic nets. We implemented a variation of the method proposed by Angeniol et. al. (1988) which
is also based on feature maps.

This method dyiamically allocates and deletes nodes as it trains. It is based on a self-organizing map, with output
nodes competing for each delivery location. If any particular node wins twice in any epoch, a twin is created with the
same input weights. An exponential gain function is used to progressively decrease the range and size of weight modifi-
cations of nodes near the winning unit. This implements the neighborhood function of Kohonen (1984). A single
parameter, alpha, is used to set the number of steps (i.e. how fast the gain exponentially decays) which affects the
quality of the answer. A %mzailer alpha for a given initial and final gain would result in more steps being taken and
would give a better answer.

The solution returned by the network is dependent on the order of training data. Five random orderings of the
delivery locations for each truck were presented to the network. From this, the shortest delivery route was selected.

Further Work

In our original fu ,'nulatioli of tie solution to this pirobletvi, we used tie rules to perform the initial assigilnment of items
to trucks and to perform the 'mopping uip' operations which line tunc the delivery assignments. I lowvevcr, we feel that
it would be posimblc to use neural networks for both of these( 'urIctions.

We are curr-oit) wl'tGtI i8udilicd nctwork models which pc lorrm the initial assignmenlts [n a sic gte trlitiint. pas. This

is, u.\pccted to pio% idu a sust•nitji,al WC'rilllltl dc i pruveincrIt. Wc aie all.o stud)i:g tlL' p,;,ibilWt) of Colllbinlillg the
assignment. weithit and siie constraints, and routing calculations into one network formuilation.
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Sample Results

Below are three sample runs showing the final assignments and routes for each truck. The Hi's, B's, and L's indicate
Ileavy, Big and Little deliveries, the + 's indicate the truck centroids, and S shows the store's location at the center of
the map.

+ i L L L

LHL

H 
LI L 

L
H L IL LH L

Conclusions

In answer to the question, 'Can neural networks be useful in a commercial office business environment?-, the answer is
a qualified yes. Neural networks have been used in several transaction processing applications suich as credit scoring
and risk analysis. Moreover, the data base facilities of most data processing systems can be used to provide training
data for the network.

However, neural networks can only do small parts of large business problems, so they must be integrated with the
other software development tools on the host system. Careful selection of neural models is also required, since training
some networks is very compute intensive. This can degrade system response times, which is unacceptable if a business
depends on order entry or transaction processing applications. However, this can be circumvented by training the
network during off-peak hours.

The combination of strong data base services, rule-based expert systems, and neural networks have been shown to be
synergistic. When thoughtfully applied to problems in the commercial business environment, neural networks can play
a significant part in providing a total solution.
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Abstract

A coiinect- ist network was devclopcd to assign appropriat~e colors to screen elenielits of the'
Apple Maci; . it 11 interface. The network was trained with a siiiall set of colorings designed by
exp~erts, yet could handle a vast number of possible color conibinations. NWe used it mlulti-layer
network with recurrenit links t~o itiodel anl asylinmet~ric ait~o-assoclative illeilory. A gradlienit dc-
scenlt relaxation algorithmii Was derived to enisure convergeceIC, 0111 Wills ('01IIIiioired (0 the StAndard

reccirreit, relaxation. T[he color network also learned nonlinear continuous niiippli~~lg aliiaoig Well
ininicled colors, mid1( was capable of genieralizinig such illappilig to colors nievel, iase' inl the Iitrining
,4e t.

1 Introduction

Thei N avinitos. Ii I sytevili gives users the' ability to apply color to Oli Finider desktof, interla-ce. I owever, uIsers,-
oft inl jiold It. difficult to seleI(ct appropriate colors For variouls intier-face eleaiieit~s, froim screeni hmackgroiiiid to ai
wido sc(1W roll bar [63]. A goodl design lilist. take Into coiisidlerat~ioil not. only inwierface eleiiieit. chn~raicmurisrilcs
suiiCh1 is shapfw. Si/i' aiild locit~ioii, liit. :1so how)% well colors 1)l these cloiniii-iis imiatci \it Ii ut' iiiiilliii . Aui iiit.(

as-sociative coiliiictioiiist nietwvork was iiipleineiited to aid uIsers Ill the (leiV-li, of' their ('0lor scli'ell (1leskto(Th.
(Color liatlerlis withi ten interface celieimiiuts were collected froml design expeirts t~o I raill (lii' color selectionl
iietwork. A user canl thenl ,pecify colors for any subset of' t~hei teli iiiterlaci eh'liiiiits mnd thel network will
"1relax" into a state that combines the user's preference withl (.the experts' iiestlii't ics ( l'iguire I). WN'-eCxpe'cted

ait ittited set of exp~ert desigins, which could emlploy oiily at smlall subset of all 2 Ia d ilferreit colors sup ported by
the sysiteiii. Thlus our goal was iiot 'lilst to, inuplenient anl associat IV"' IlelorN, blit. to have at ietWoi~k that cali
Ibe trnuinied to "design" a color sc reeln, ai anely, to generalize to niew co loiir pill.tt~eriis w Inii a tiIser. selectsl colors
or cominuoiations of colors never used( Iin the training set. Suchi requi ireiluel t~s jiecessitat-ed a iion-stauudaurd
network architecture.

2 Color Net

A t-wo-layer Fhedforwaud network with recurrent links is used to miodel anu ;i.ymiiiit~ric (oiitiiliilols auto-

assicikitive nivinlliry ( higlite *2). Thie colors of tcll iiiteihiii eliiuu ale uuritdh;y W-it sit~s (o1 ililpilt.
1uiiit's us well as 1.4ii crreuspoildiuu1 . sits of oiutpiut. tiiiit-'s. 'Fluic iils ale lijid Ill ivol 'Pt. or()IiIU II P6 (redl,
gre.'ii, Mile) enIcodIing of a color. Thle inlput unlitsi of' cilil (liniiiiit arc eomiiiicted to tle ou ot. its ol'
the ot~liir nline eleilientits, huit not. to0 their own correspolidiiig (lt)iit.jil 11nu1s. 11iis luisuirevs t~Ilat tHe wt-work
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Figure 1; Color Net Interface

cannot learn to simply copy an input pattern onto the output dir-ectly, nor Call it learn to compress an input,

pattern at the hidden layer and restore it at the output, layer 12]. The set. of connectIlions between each pair of

interface elements consists of complete (nine) connections from the input ROB units of oie element to three

hidden units, and nine connections from these hidden units to the output RG1B units of the other element.

Recurrent links are used to propagate the activation value of each output unit back t.o its corresponding input.

unit. Iterations of such recurient activations until the network reaches a stable state are often referred to as

relaxation. The configuration of the color net can be thought of as a ten tiiode llopticld net [3] WWIt complete

asymmentric connections, each modified with local hidden units to facilitate iionlinciea iiapping betweelIi two

sets of RGB3 values.

OutputLayerScroll Bar

Menu Scol( GeenBu
Desktop Teiti Bar." a 0 Thumb

esCto 4te Bar , * * Tumb Red Green Blue

Menu Teuut

Input Layer

Figure 2: Color Net Architecture
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relaxation space. The simple non -recurrent learniing enforced smioothi lanidscap~es wit Iiin and ( across hasinus and
t- I(s Fa IlI Itatedl ge IIeralizatio n of relations amiong colors of interface e~emueiits, without. spek I ic designiat~ioni of
units to represent claiiped versus unciamped colors.

3 Gradient Descent Relaxation

T1hue standuard recurrent relaxation, ie. thle. process of repeatedhly teeding out put. ac tiva tionus balck t~o their,

corre'sp~onding inpulit uiinits, is iiot guiaraniteedc to converge asymptotically t~o a stahle state (IIe( to asymmuietric
conectionis [4]. A new algoritli in that followed steepest gradient (descenit along the re!iaxat~ioii space was

derilved( t~o ininiiiiize color Iiicohiereiice and( to ensure coinvergence. InI addit ion t~o r'eCuurreiutl. updaitinig each

Inutmiilt. accordiiig to- the activation of its correspondiiig ouitpuit. liiit., 1.ins rehlxat ioul ilgorit~liiii uiade
fizrtliei adjustmenuts according to errors back propagated froiiu ou1t~put units Of other01 iii terface eCuiMItets.

Define the global error

E = ~ Ej = i _ 0(j )2

where ii and oi denote the value of anl iiiput unit i and thle. activation of its corresponiiniug Output. unit.

To follow steepest giadient descent, we need to take the p~artial derivative of the global error with1 respect.

to thle value of each input unuit.

91i aii a.i

Siince thle input color units of ail interface element are not. conniected to its owiu corresponding out~put.

uniits,

O9i~

"wliere 710k, denotes thle ne~t Inpu~it (sum of weighted iiieonming mletvatiotis) of' the kilh hidden uni1t. connected
fromu 1iiuit. i, atiu Wik d(le~titS the Weight associated with the coninectioii betwceen itipuut. 11nit. i aiid hiddenl unit1

A:.

Unrthcan he obtainied through error back prop'agationii as iii the wvell known buc k p'ropagationt learni iig
algo r titlii

Thus each input unit i adjusts its value by

-7)--O-7

at. each tinue step until the iietwork reaches a stable activatit i st-ate asnpo ial.hor thiS appl)Cictionl,

-In' relaxation rate i) was set iii proportion t~o the logarithi ii of' the global error to speed upI coinvergeince.

4 Result

'[i trained color net was able t~o geiierate quite pleasiiug color coiiihiiiat.nus. 'Fle noe work cleairly de't~ecetd

t.hIe t~opograp~hiical relat~ioins amlong the interface eleimenits firotut thei( tramiuuig set, as t lie Color oh' anI eletuietit.

affected iiost. strongly the colors of adjacenit areas. Also, the ii,'.work coiisisteuitll j reserved,Ilsarp rotitratst
h(et%%u','i t,'xts aid backgronuids. As ant associative niviiiory, tII(' tnt worjk l'louhlatturui eouuph't1iot well
whcei itliot tlihan hall of the teii colors were chamiped by the tiscr. Witht hew colors clamuped, th lieu'twork still

did %yell oii noise filtering, but ofteii settled iiito sputriouis iueuoriies it' thei iiii(tial c olor ohtle iuiuclaiipupd
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units were totally random. Tlhe color net also generalized well upon colors never used in the training set.

When one or more of the colors of a stored pattern were changied and clamped by the user, the network
settled into color designs where the unclamped colors underwent similar changes. This is likely the result of
interpolation on the numerical mapping between the RGB values of colors. When dissimilar colors were used
and clamped by the user, the suggested color design often combined fragments of different stored patterns.

The gradient descent relaxation algorithm compared favorably with the standard recurrent relaxation
method. The standard method updated unclamped units according to the activations suggested by other
units, but ignored errors on the clamped units, whereas gradient descent relaxation minimized total error and
distributed error among all units, clamped or unclamped. Such difference was not essential during memory
recall, when the values of the clamped units were part of a training pattern. However, when novel colors
were selected and clamped, i.e., when the network was expected to generalize, the standard method could
not minirmize-the total error and often relaxed into a less coherent state. In theory, the standard recurrent
relaxation may not converge due to asymmetric connections, but that never happened in our experience.
Nevertheless, since such relaxation did not necessarily descend along the color incoherence landscape, the
system mnomentarilyjutiped from one basin to another before convergence. The gradient descent relaxation,
on the other hand, exhibited much better local stability of stored point attractors when few units were
clamped.

5 Summary

While only a handful of training patterns were available, the color selection network was expected to handle
an exceedingly large number of possible initial color sets, with any number of colors clamped. Bearing this
in mind, we used a feedforward network with back propagation learning, and gradient descent relaxation,
to model an asymmetric auto-associative memory. With limited storage capacity, the network was designed
to learn nonlinear relationships among well matched colors, and to generalize such relationships. We think
such approach can be applied as well to other situations, where human expertise is best captured by a
connectionist network.
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INTRODUCTION
Deterministic Parsing of Natural Language, as performed by PARS IFAL (Marcus, 1980), has shown that such a task
can be conducted under the somewhat severe restriction of the determinism hypothesis using a rule-based approach.
Others have independently extended PARSIFAL to the task of parsing ungrammatical sentences in PARAGRAM
(Chamiak, 1983), resolving lexical ambiguities in ROBIE (Milne, 1986), and acquiring syntax in LPARSIFAL
(Berwick, 1985).
Why have these researchers chosen to focus on extensions with these rather narrow goals? The answer, in part, lies
in the general difficulty of the task and the limitations of conventional, symbolic means. We have found it
beneficial to combine these tasks into one implementation which is partly symbolic and partly sub-symbolic. The
results of our experiments hold implications for rule-based c xpert systems.

A Connectionist Deterministic Parser (CDP) is under development (Kwasny & Faisal, 1989). CDP combines the
concepts and ideas from deterministic parsing together with the generalization and robustness of connectionist,
adaptive (neural) networks. A backpropagation neural network simulator, which features a logistic function that
computes values in the range of-1 to +1, is being used in this work. The ultimate goal is to produce a parser that
has some reasonable facility with language and does not fail on inputs that are only slightly different from the inputs
it is designed to process.
There are important advantages to constructing rule-based systems using neural networks (Gallant, 1988). Our
focus is on building a connectionist parser, but with more general issues in mind. How successfully can a connec-
tionist parser be constructed and what are the advantages? Success clearly hinges on the careful selection of train-
ing sequences. Our experiments have examined two different approaches and compared them.
The "deductive" strategy uses rule "templates" derived from the rules of a deterministic grammar. It is deductive
in the sense that it is based on general knowledge in the form of rules although the resultant network is required to
process specific sentences. The "inductive" strategy derives its training sequence from coded examples of sen-
tence processing. It is inductive in the sense that it is based on traces of the processing of specific sentences but is
required to generalize to a wider range of examples. The goal of deductive learning initially is to produce a network
which is capable of mimicking the rules on which training is based. The goal of inductive learning initially is to
nrdhlce, , a network which is canable of -nrr-essinc-- the ntencEes on which it, trairing is bk d Once thhat C.!h _npinga
has been accomplished, simulation experiments are done to examine certain generalization capabilities of the result-
ing networks.
Deductive training generally performs well on all generalization tasks and outperforms inductive training by scoring
generally higher on all experiments. Reasons for this include the specificity of the inductive training data as well as
the lack of a large amount of training data in the inductive case required to provide sufficient variety.

LEARNING A RULE-BASED GRAMMAR
A deterministic parser applies rules to a stack and buffer of constituents to generate and perform actions on those
structures. One of its primary features is that it does not backtrack, but proceeds forward in its processing never
building structures which are later discarded.

Training of CDP proceeds by presenting patterns to the network and teaching it to respond with an appropriate
action using backpropagation (Rumelhart, et al, 1986). The input patterns represent encodings of the buffer posi-
tions and the top of the stack from the detenninistic parser. The output of the network contains a series of u'tits
representing actions to be performed during processing and judged in a winner-take-all fashion. Network conver-
gence is observed once the network can achieve a perfect score on the training patterns themselves and the error
measure has decreased to an acceptable level (set as a parameter).

The sponsors of the Center are McDonnell Douglas Corporation and Southwestern Bell Tclephone Company.
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Once the network is trained, the weights are stored in a file so that various experiments can be performed. Each
sentence receives a score representing the overall average strength of responses during processing. The score for
each processing step is computed as the reciprocal of the error for that step. The error is computed as the Euclidean
distance between the actual output and an idealized output consisting of a -1 value for every output unit except the
winning unit which has a +1 value. The errors for each step are summed and averaged over the number of steps.
The average strength is the reciprocal of the average error per step.
Deductive Learning. Each grammar rule is coded as a training template which is a list of feature values, but tem-
plates are not grouped into rule packets. In general, each constituent is represented by an ordered feature vector in
which one or more values is ON(+1) for features of the form and all other values are either OFF(-1) or DO NOT
CARE (?). A rule template is instantiated by randomly changing ? to +1 or -1. Thus, each template represents
many training patterns and each training epoch is slightly different. During training, the network learns the inputs
upon which it can rely in constructing its answers and which inputs it can ignore.
The probability ofa ? becoming a +1 or -1 is equal and set at 0.5. Each rule template containing n ?'s can generate
up to 21 training cases. Some rule. templates have over 30 ?'s which means they represent approximately 109
unique training cases. It is obviously impossible to test the performance of all these cases, so a zero is substituted
for each ? to provide testing patterns. Zero is used since it represents the mean of the range of values seen during
training.
A slightly modified version of the grammar from appendix C of Marcus (1980) was used as a basis for all deductive
training experiments in this paper. This appendix includes the rules specifically discussed by Marcus in building his
case for deterministic parsing and can be taken as representative of the mechanisms involved. To assure good per-
formance by the network, training has ranged from 50,000 to 200,000 presentations cycling through training cases
generated from the rule templates.
Inductive Learning. Inductive learning begins with training data derived as "sentence traces" of deterministic
parsing steps. Training proceeds by presenting patterns of these steps to the network and teaching it to respond with
an. anpropriate. action. A .mall -et of positive sentence examples were traced which resulted in 64 unique training
patterns. These were used for all inductive experiments in this paper.
This approach can be compared with LPARSIFAL which attempts to learn PARS IFAL rules from examples of posi-
tive evidence (i.e., grammatical sentences). LPARSIFAL starts with a small set of rules and gradually builds up
new rules. In effect, the system is inductively learning the grammar rules from sentence examples. The target ýor
learning in LPARSIFAL is the PARSIFAL grammar. LPARSIFAL requires several hundred sentences to acquire
approximately 70% of the parsing rules originally hand-written for the Marcus parser. Ia our experiments, the net-
work exhibited better than 70% coverage of our rule-based grammar after training on a small number of traces.

NETWORK ARCHITECTURE
Patterns consist of a list of syntactic features, divided into four groups to match the three buffer positions and the top
of the stack. These are represented in a localist manner in the network with each syntactic feature being represented
by a unit, The cbor- nf A !valist .nnresentatioon allows the- grammar to he. represented in a very straightforward
manner and permits experimentation with sentence processing in a direct way.
In the set of experiments described here, the network has a three-layer architecture with 35 input units, 20 hidden
units, and 20 output units. Each input pattern consists of three feature vectors from the buffer items and one stack
vector. Each vector activates 14 input units in a pattern vector representing a word or constituent of the sentence.
The stack vector activates seven units representing the current node on the stack. In our simplified version of the
gnurmar, only two items are coded from the buffer and thus 35 input units are sufficient. One hidden layer has pro-
ven sufficient in all of our experiments. The output layer represents the 20 possible actions that can be performed
on each iteration of processing. All weights in the network are initialized to random values between -0.3 and -10.3.
During sentence processing, the network is presented with encodings of the buffer and the top of the stack. What
the model actually sees as input i, not the raw sentence but a canonical representation of each word in the sentence
in a form that could be produced by a simple lexicon, although such a lexicon is not part of the model in its present
form. The network produces the action to be taken which is then performed. If the action creates a vacancy in the
buffer and if more of the sentence is left to be processed then the next sentence component is moved into the buffer.
The process then repeats until a stop action is performed, usually wihen the buffer becomes empty. Iteration over
the input stream is achieved in this fashion.
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PERFORMANCE COMPARISON
CDP is capable of processing a variety of simple sentence forms such as simple declarative, simple passive, and
imperative sentences as well as yes-no questions. For test and comparison purposes, several sentences were coded
that would parse correctly by the rules of the determinis'ic parser. Also, several mildly ungrammatical and lexically
ambiguous sentences w..;i, coded to determine if the retwork would generalize in any useful way. The objective
was to test if the syntactic context could aid in resolving such problems.

TABLE 1: Grammatical Sentences Used In Testing

Sentence Form Deductive Average Inductive Average
Strength Strength

(I) John -hould have scheduled the meeting. 283.3 84.7
(2) John has scheduled the meeting for Monde). 179.3 84.2
(3) Has John scheduled the meeting? 132.2 64.4
(4) John is scheduling the meeting. 294.4 33.5
(5) The boy did ha Jack. 298.2 76.2
(6) Schedult the meeting. 236.2 6.8
(7) M .ry is kissed. ý,76.1 84.9
(8) Tom hit(v) Mary. 485.0 80.3
(9) Tom willtaux) hit(v) Mary. 547.5 78.7

(10) They cmi(v) fish(np). 485.0 80.3
(11) They can(aux) fish(v). 598.2 76.8

Parsing Grammatical Sentences. Grammatical sentences, by our definitinn, are those which parse correctly in the
rule-based grammar from which we derived the training set. Table 1 shows several examples of grammatical sen-
tences which are parsed successfully along with their response strengths in both deductive and inductive learning.
Each exanple shows a relatively high average strength value, iniicating that the training data nas been learned.
Also, the ieductive average strength value is higher than the corresponding inductive average strength.

TABLE 2. Ungrammatical Sentences Used In Testing

Sentence Form Deductive Average InduLuive Average
Strength Strength

(12) *John have should scheduled the meeting. 255.1 6.6
('3) OHas John schedule the meeting? 38.1 13.2
(!4) *John ii schedule the meeting. 4.1 4.Ot
(15) *The boy did hittu.g Jack. 26.6 7.5t

Parsing Ungrammatical Sentences. An irmportant test of the generalization capabilities of COP is its response to
ungammatical sentences. Such capabilities are strictly dependent upon the experiences of the network during train.-
ing since m deductive training no -elaxation rules were added to the original grammar to haadle ungrammatical
cases and in inductive training no ungrammatical sentences were used.
In this set of exper. "nts a few ungrammatical sentences were tested, that were similar to the training data and
within the scope of our encoding. Table 2 contains examples that have produced reasonable structures when
presented to cur system along with their response strengths. Note that overall average strength is lower for ungram-
matical sentences when compared to similar grammatical ones.
In sentence (12), the structure produced was identical tu, that produced while parsing sentence (1), but with lower
strength hi the inductive case. The only difference is that the two auxiliary verbs, have and should, were reversed.
Sentence (13) conviins a disagreement between the auxiliaiy has and the main verb schedule and yet the comparable
grammatical sentence (3) parsed identically in both approaches, but witu lower strength again in thp. inductive
approach
Sentence (N.4) can be compared with sentence (4). In the deductive case, a structure similar to that built for sentence
(4) is indeed constructed. However, in the inductive case (marked with t), the network attempts to process 'is' as if
it were indicating the passive tense. Although this is incorrect for this sentence, it is not an unrcasonablc choi.ke.
Sentence (15) can be compared with sentence (5), but there is not one clear choice in how the sentence should
appear if grammatical. The deductive-traincd network processes sentence (15) as sentence (5), while the inductive
result (marked with t) shows the sentence procesced as if iý were progressive tense ('The boy is hitting Jatk'). In
PARAGRAM, a nonsensical parse structure Is produced for sentence (15), as reported by Charniak (p. 13.;.
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TABLE 3: Lexlcally Ambiguous Sentences Used in Testing

Sentence Form Deductive Average Inductive Average
(Words in o am presented ambiguously) Strength Strength

(16) <Will> he go? 83.6 14.3
(17) Tom <will> hit Mary. 118.7 19.9
(18) Tom <hit> Mary. 39.0 2.5
(19) They <can> fish. 4.5 2.6
(20) Thevy can <fish>. 172.2 4.9

Lexical Ambiguity. In a final set of experiments, the parser was tested for its ability to aid in the resolution of lexi-
cal ambiguity. Grammatical sentences were presented, except that selected words were coded ambiguously to
represent an ambiguously stored word from the lexicon. These examples are shown in Tfable 3. Several of these
examples come from ROBIE.

Sentence (17) contains the word will coded ambiguously as an NP and an auxiliary, modal verb. In the context of
the sentence, it is clearly being used as a modal auxiliary and the parser treats it that way. A similar result was
obtained for sentence (18). In sentence (19), hit is coded to be ambiguous between an NP (as in playing cards) and
a verb. The network correctly identifies it as the main verb of the sentence. Sentence (20) presents can ambigu-
ously as an auxiliary, modal, and main verb, whilefish is presented uniquely as an NP. Can is processed as the main
vern of the sentence. Compare this example with sentence (10) of Table 1. Here, each word is presented unambi-
guously with can coded as a verb andfish coded as an NP. The same structure results in each case, with the average
strength level much higher in the unambiguous case. By coding fish ambiguously as a verb/NP and coding can
uniquely as an auxiliary, the result obtained is as shown for sentence (21), which is comparable to sentence (12).

In the cases shown, the lexically ambiguous words were disambiguated and reasonable structures resulted. Note
that the overall average strengths were lowui Oran comparable grammatical sentences discussed, as expected. Also,
the deductive average strength value is higher than inductive average strength.

DISCUSSION

While deductive training exhibits better performance than inductive training for all tasks, there are tradeoffs in tb-
two approaches. Deductive training requires rules as the basis for rule templates while inductive training requires a
large amount of data to be successful. Fortunately there is a middle ground which allows mixtures of the two train-
ing strategies. Training can be performed using rule templates as well as patterns based on sentence traces. In a
recent set of experiments in which the two types of training data were combined, the network was capable of gen-
eralizing in ways similar to deductive learning, but also showed particularly good performance on the specific cases
reflected in the inductive data.

What does this mean for expert systems? Where knowledge naturally exists in rule form and such rules can be reli-
ably stated, rule templates can be tormed which generate appropriate training cases. However, where kitowledge
only exists in the form of anecdotal cases, it can be expressed in the form of inductive training patterns. As new
cases are discovered for which the rules do not apply, inductive data can be easily constructed and the network re-
trained. Contrast this with the typical rule-based expert system in which each new rule may require re-thinking an
entire set of existing rules.

Our work has shown the trade-offs between deductive and inductive learning. Both have a place in the construction
of a neural network designed to perform a complex rule-based task such as parsing.
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1. INTRODUCTION

Currently most of the neural network research concentrates on the adaptive properties of neural networks
[RuMc 86]. However, as recent research in machine learning theory clearly indicates, generJl learning, in
particular learning of higher concepts from raw data, is extremely difficult and time-consuming (see for example
[PiVa 88]). Hence it seems that the most promising approach would be to develop hybrid methods, combining
both symbolic and neural techniques. The symbolic component can then be used for complicated inference (for
which current neural techniques are completely inadequate), while the neural component provides a basic
robustness to knowledge representation even in the presence of noisy or incomplete data. Some recent attempts
towards this goal are reported in [Dert 88], [Died 88], [DoSm 881, [Dyer 88] and [Hend 89].

Inspired by this general idea, we will introduce a knowledge representation scheme for robust storing of
concepts. This scheme can eventually be embedded in a Prolog programming env.ronrnent. Our work is in the
same tradition as Shastri's [Shas 88], but with several important differences. Firstly, our approach is based on a
distributed representation of concepts (see e.g. [HiMR 86]), as opposed to the local representation adopted in
[Shas 88]. Secondly our computational process is an (efficient) relaxation, whereas Shastri computes activation
values by an ordered sequence of sweeps over the network. As we will show, these differences provide our system
with a greater flexibility to use all the relevant information during the retrieval process. Our main point is to
demonstrate the ability of this particular representation scheme to perform limited inference in the presence of
partial and even inconsistent information. As this "inference by similarity" is a property of our representation
structure and the computational mechanism used, it is completely transparent to the user.

2. COMPILING A HIGH LEVEL LANGUAGE TO A NEURAL REPRESENTATION

The term "neural network programming" is usually taken to mean very low-level operations to set
interconnection weights and activation levels. Our approach is a radical departure from this tradition. We argue
that neural networks can be programmed for concept property inference by giuvin a structure with similar
notational convenience as in e.g. logic programming. On the other hand, since a neural computational structure
is used, the language is not restricted to describe only necessary properties, as in logic based concept
specification languages, which have to be augmented with awkward additional constructs for inference with
incomplete information - witness the well-known problems of handling uncertainty in rule-based expert
systems.

NEULA (NEUral LAnguage) is designed for robust representation of concepts with a possible associated
inheritance structure. Complex inferences are intended to be performed by a more traditional inference cngine,
which can retrieve the information stored in the knowledge base described with NEULA by simple queries.
However, part of the inference process is transferred from the explicit inference engine to the structure of the
knowledge representation.

The concept structures specified in the language are labelled collections of (property,value) pairs. The values
of attributes are also concepts, and thus concepts may be arbitrarily complex. For instance, a concep, labelled
Hobbit may be specified as follows (this example is a part of a larger specification):

t This research is supported by Technology Development Center (TEKES) in Software Technology
Programme (FINSOFI), and by the Academy of Finland.

I1 - 475



CONCEPT HOBBrr IS MIDDLE_EART11_INHABITANT.

- NATURE GOOD.

- 1EIG117T SHORT.
- NOT ISFONDOF SWIMMING(MANY).

- NOT ISFONDOF FIGIrITNG.

- ISFONDOF I3RTHIDAYPARTIESROUND TIri]NGS.

- LANGUAGE COMMONSPEECH.

- NOT LANGUAGE SECRET.LANGUAGE.

- LIFE MORTAL.
STRENGTII DURABLE.

- HAVE-BUILDINGS LOWiHOUSES.
- NOT HASENEMY DRAGON.

The concept structures specified in the language can be thought of as labelled collections of(property,value)
pairs. Hence one of the properties of a concept Hobbit is 'nature' which has value 'good'. These (property,value)
lairs can be interpreted as features typical to the concept in question, i.e. Hobbit as a concept is associated to the
(property,value) pairs represented by the above list. NEULA allows the use of graded values to describe the
degree of certainty of a particular feature. For instance,

- NOT ISFONDOF SWIMMING(MANY).

is to be understood that not being fond of swimming is typical to most Hobbits but not necessarily to all
(the default value is 'ALL'). In addition, some simple logical relations between the concepts can also be
expressed. These language elements will be converted to a connectionist network by the NEULA compiler.

In the implementation of NEULA we assign one unit in our neural network to each of the statements in a
specification to be comDi!ed. Hence a concept C is realized as a distributed collection of property units,
C (P],V1),(P2,V2),...,(Pn,Vn)), To bind together all the different property units we add to this set a special
label unit (labe!,C). From the label unit we th-'n draw directed ar.:.s to all the other property units of concept C.
For each positive statement "C - P V [W]" we create an arc with the weight determined by the corresponding
certainty factor W. For the negative statements "C - NOT P V [WM" we create similar arcs, but with equally
sized negative weights.

The compilation scherpc above can be understood as a method for creating connections from a concept C to
values Vi through properties Pi. As the values Vi are also concepts defined in the network, the links drawn can
be interpreted as implementing associations from concept C to concepts Vi. To allow bidirectional associations,
we similarly associate concepts Vi with concept C. An obvious choice for the property through which these
connections are created is the inverse relation of P, denoted with P-1. According to this idea, the compiler adds
implicitly for every compiled sentence "C - P V [W]" the code corresponding to the sentence "V - P-I C [W]".

If the activation level of a label unit is high, we interpret that the network represents the corresponding
concept. Similarly, if the ac dvation level of a property unit is high. then the network is understood to represent
some concept having this specific property. During the computation, the activation is propagated along the arcs
between different units in the network, as described by the activation propagation formula discussed in the sequel.
The arcs, having either a positive (excitatory) or a rnegative (inhibitory) weight, impose an inference order in the
network. However, due to the iterative nature of the activation propagation process, the arcweight from unit i to
unitj cannot be interpreted simply as the probability of the statement "if (Pi,Vi) then (Pj,Vj)". Nevertheless, an
arcweight indicates the approximate effect on the occurring inference. To be able to carry out similar inference for
concept recognition, i.e. to recognize an object from its properties, arcs from the property units to the label units
are also required. This is accomplished by creating an echo arc for every existing arc. The direction of an echo arc
is opposite to the original one, but with a proportional weight smaller than that of the original arc. In our
experiments, we have simply divided the original weight with a small constant, usually 5.

Implementing the hierarchical relation "CONCEPT C IS C' " is somewhat different from the method to
implement properties. As concept C may appear as a value of several different properties R1,...,Rn, to make the
hierarchy influence each cf these propertes, we have to draw an arc from all the units (Ri,C) to the units (RiC),
respectively, If only one of these units exists, the other one is automatically created. In particular, as thi
connection is also created between the corresponding label unit, (Rk='label', for some k), we have created a path
from the property units of C to those of C" (see Figure 1). In other words, we have linked an instance ot a class
to the class itself, thus implementing the hierarchy of concepts.

11 - 476



property unts of C'
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Figure 1. The connectionist network implementing the specification of concept C, given that
C is C'. Notice that the property unit sets for C and C" do not necessarily have to be

disjoint.

A property unit (Pi,Vi) is generally connected to several different label units. As the concepts corresponding

to these label units may be hierarchically related to each other, the compilation scheme offers a natural way to

imiplement exceptions in the inheritance of properties.
The inference in the network is carried out by activation propagation. The idea is that initially a user query is

compiled in such a way that some corresponding nodes are tarned on (initiated with activity level 1) and some are

turned off (initiated with activity level -1). The other nodes have activity level 0. All the nodes then

synchronously change their activity level accordikg to the activation propagation formula (1, below). The

resulting activity level depends on the activity level rif the nodes from which there are incoming arcs, and on the

weights on those arcs. The activation propagates through the network, and spreads from the initialized nodes to

other nodes. This process is continual, thus each node will change its activity level itemtively. The arcweights

remain unchanged during the computation. For computing the change in the node activity level, we use a

formula of the general form

k+1 k k . kai =ai + (I-l-i1 im~ -
I £ J

activity level of node i after the k update, and by wij the weight on the connection
(by a k we denote the aciiylvlo oeiatrthe t

from nodej to node i). In the formula the sum states that each nodej incident to node i affects the activation of

node i in proportion to the weight on the arc from j to i. If the connection wij is highly positive, node i tends to

get an activation similar to that of nodej, and if wij is ncgative, the activity level of node i tends to De opposite

to that of nodej.
If we use the formula above, the activity level of the nodes with initial activity level I or -1 will remain

unchanged during the whole computation.
Some kind of termination conditions are also needed. One solution is to terminate the computation when the

activity level of any of the nodes representing possible answers to the query is within distance e from 1 or -1,

where e is a limit given in advance. In our experiments with about 300 nodes and E = 0.1, the computation has

always terminated fast, in less than about 10 synchronous steps.

3. AN EXAMPLE

To test the validity of the ideas discussed in the previous Sections, we have simulated a larger example (over

100 statements compiled into a 300 node network). Our implementation is built on the floating-point version of

the Rochester Connectionist Simulator 4.1 (RCS) [GoLM 88]. The software runs on a SUN 3!60 workstation

under Unix SUNOS 4.0. The NEULA declarations are compiled into an intermediate code, which consists of

some high-level functions. These functions then call the built-in functions of the RCS to construct the

corresponding network. The nodes in the network apply the activation propagation formula (1) in a synchronous

order, hence the results are fully deterministic and can be easily reproduced.t In the sequel we present an

illustrative example of the actual qitucries perfomied against a large d&claration. More detailed description of the

compilation scheme and its implementation can be found in [FMOT 89].

t Those interested in reproducing the experiments may obtain the source C-code (excluding 1he RCS-software)

by sending a request to tirri@cs.helsinki.li (Internet).
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Risk Assessment of Mortgage Applications with a Neural Network System:
An Update as the Test Portfolio Ages

by
Douglas L. Reilly, Edward Collins, Christopher Scofield, Sushmito Ghosh

Nestor, Inc., One Richmond Square, Providence, RI 02906

Nestor's multiple neural network technology has been applied to many problems; among
them, applications in signal processing for character recognition [I], in medicine [2,3], in
vision [4], industrial inspection [5,6], diagnostics [7], speech recognition [8]. Neural net
applications have also been developed in the financial services arena. One particular
problem domain that has been under investigation is that of automated decision-making and
risk assessment for mortgage insurance underwriting. The application of Nestor's neural
net technology to this problem has been previously reported [9,10,11]. This paper
presents an update to this work, returning to the risk assessment portion of the problem to
analyze how well the risk prediction has fared for the mortgage portfolio under study, now
that the portfolio has aged.

Mortgage risk assessment begins with mortgage origination. A mortgage originator filters
the general population of potential property owners according to a set of simple guidelines
on acceptable ranges for such risk measures as the proposed loan-to-value ratio, the ratio of
proposed obligations to income, etc. Fannie Mae, and others in the secondary mortgage
market, publish guidelines that serve to qualify and segregate the home loan applicant pool
into risk categories. Some of the higher risk loans are referred for private mortgage
insurance. The process of determining whether or not a loan applicant should be accepted
for mortgage insurance involves in effect a second underwriting. If the applizant exhibits
an acceptable level of risk, he will be sold insurance. Mortgage insurance applicants are by
nature a higher risk group than the general population of mortgage applicants. These
applicants have already been underwritten by the mortgage originator and assessed as less
secure cases. Thus, this second order underwriting performed by the mortgage insurer is
bound to be more difficult, and prone to greater uncertainty.

The mortgage insurance problem can be divided in two parts. The first problem is that of
automating the decision-making process of the underwriters. This can be served by
constructing a system that can learn to emulate the decisions that underwriters make on
mortgage applications. AM cotern that correctly mimics the Judgement of human
underwriters on some subset of the loan applications presented to it can have economic
benefit as a result of introducing consistency in underwriter judgements and in allowing an
underwriting agency to better handle peak work loads. The strategy of apolying a neural
network approach to this phase of the problem is to capture data that represents loan
application information together with the corresponding judgements that an underwriter has
made on each application. The pool of data represents judgements from a number of
underwriters. The neural net system trains to emulate the decision-making of this collection
of experts on the problem.

A different aspect of the problem arises not from the use of the network in automating the
human decision-making, but rather from the use of the network to improve upon the quality
of the decisions through its ability to learn to estimate some measure of the risk of a loan
applicant's defaulting on his mortgage payments. Underwriters for loan originators and
private mortgage insurance companies do not perform this task flawlessly. Although these
insurance underwriters typically decline approximately 20% of the applications they
review, of the remaining accepkd group, some 20% will go delinquent during the course
of the loan. Approximately 6% will eventually lead to losses as a result of claims. The
peak in claims rates occurs some three to five years after the loan is granted. Because any
feedback from an incorrect decision occurs some number of years after the decision is
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made, and because of the high turnover rate in underwriter staffing, there is little
opportunity to improve on the underwriters' judgements from observations of historical
outcomes.

Although the economic payoff of improving the quality of the underwriting decisions can
be substantially greater than that of simply automating and replicating their current decision-
nwaking trends and practices, the acceptance of the former can require a higher level of
commitment and reliance upon the technology. It is relatively easy to immediately verify
whether or not the system is deciding as the underwriter would decide. From the simple
perspective of "trusting the machine", it requires more commnitment to accept that the
machine, when disagreeing with the underwriter, is actually making the better decision
about something that may happen three to five years from now.

The neural network that was used for this application is a derivative of an RCE network
that has been reported on previously [ 12]. The RCE network is a three layer network that
has been described extensively elsewhere [ 13,14,15]. Essentially, the network trains by
committing cells on its single internal layer that represent prototypical "exemplars" of the
pattern classes that it sees in the training set. It automatically selects from the trairiiig set
the exemplars that are to be stored in memory, storing in its weights the values that define
the prototype features. Associated with each prototype cell is a cell threshold, a number
that cap-,ures the extent to which this prototype's exemplar will participate in the
classification of incoming new patterns. This cell threshold represents a region of influence
around the prototype in the pattern space.

Data used for the risk assessment study was taken from a collection of some 111,080 home
mortgage loans from the period July 1984 to December 1986. The status of the loans was
noted as of December, 1987 and this served as the classification of "Good" and "Bad"
loans. For the initial study, "bad" was defined as any loan which had gone delinquent at
least once in the period from origination through the end of 1987. A total of 758 good
applications and 844 bad applications was used for the risk assessment study.

The results of the initial study are shown in Figure 1. For a certain percentage of the
applications (10%) it is possible to predict with 95% accuracy the loans which, if granted,
would go delinquent in payment. (Delinquency is not the same as default, but it is a
necessary precursor.) If the system's decisions are accepted at this throughput (10% of
applications) then some number of good applications will also be called "bad". Rejecting
such loan applicants would amount to turning away good business. Since the cost of
replacing this lost business is far less than the cost associated with underwriting loans that
go to claim, this 10% throughput represents an operating point with a viable economic
benefit.

As noted earlier, these results were reported on a portfolio of mortgages whose
delinquency/default status was dated as of December 1987. Since the portfolio represented
originations between July 1984 and December 19S7, the age of the applications at the time
of the study ranged from 1 to 3 1/2 years. Updates on the status of this portfolio were
provided as of September 1988. Since claims begin to peak in the 3-5 year period after
origination, we would expect to see significantly more claims in the updated portfolio. We
will present results and analysis of the effectiveness of the neural network risk assessment
predictions with regard to the updated status of the portfol'o under study. Special attention
will be paid to those loans that, at the time of the initial study had been labelled good, but
have since gone bad.
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Additionally, we will present experimental evidence on the sensitivity of the model to the
size of the training set. The collection of a portfolio for training purposes can often have
some cost associated with it, if all the information that is typically available to underwriters
is not available in electronic file format for the the neural network to process.
Consequently, it can be important to establish some measure of the additional marginal
benefit in risk assessment as a function of additional loan examples made available for
training. Figure 2 shows a learning curve for the neural net risk assessment system as a
function of the percentage of the data set trained on.
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FUZZNET: TOWARDS A FUZZY CONNECTIONIST
EXPERT SYSTEM DEVELOPMENT TOOL

Steve G. Romaniuk and Lawrence 0. Hall
Department of Computer Science and Engineering
University of South Florida, Tampa, FL. 33620

Abstract

In this paper we present a raw expert system development tool, based on a connectionist
architecture for representing knowledge. Our work is centered around rule based systems as a
basis for a connectionist expert system, which can be expanded, and updated through learning of
sample domain specific cases [1]. A cell recruitment learning algorithm [4,5] capable of forgetting
previously learned facts by learning new ones is incorporated. Using this learning mechanism, we
let the system learn the knowledge bases of GEMS (Gem stone classification) and FEVERS
(Fevers diagnosis system), examples of which were extracted prior to this, from the corresponding
rule knowledge bases. The learned knowledge bases compared favorably with the existing rule
based expert systems.

1. FUZZNET -- A Fuzzy Connectionist Expert System

A fuzzy connectionist expert system development tool dubbed FUZZNET [4,5] has been
developed. FUZZNET uses fuzzy logic for the implementation of reasoning under uncertainty and
takes advantage of a connectionist like architecture for knowledge representation. It has a shell like
structure, allowing it to construct expert systems, either by using rules or making use of its
learning capabilities. In FUZZNET a variable number of expressions can be placed on the left and
right hand side of rules. Information can be deleted, thereby allowing knowledge to be updated.
Expressions can be negated, and the ability to activate partial patterns has been included.
Furthermore, variables have been included (Attribute, value pairs are supported), which we believe
are a necessity in most classification systems, but have not been included in most approaches to
constructing connectionist expert systems [1,6]. With the inclusion of variables, we have also
addressed the question of how to achieve variable binding, which has now become an inte".ted
part of the tool. By allowing fuzzy and relational comparators, the systems potential hAs been
further increased. The user can construct aggregating quantifiers, and use them within rules,
which is a step towards integrating more nawral language like constructs. Finally, the system can
M, useu iui u'l generation o1 stand aIuone expert 0 a 1 n0I'wlcdgc bas..c .ta

either through rule formulation, learning, or a combination of the two.

2. Fuzzy Logic and the Connectionist Model

A connectionist model is a network, which in its simplest format has no feedback loops. It
consists of three types of cells (input, output, and hidden cells). Every cell has a bias associated
with it, which lies on the real number scale. Cells are connected through links which have weights
associated with them. In the FUZZNET model of a connectionist network, each cell can take on an
activation value within the range [0.. 1] (Corresponding to the fuzzy range of membership).

In fuzzy set theory, sets are combined by performing the union, intersection, or set difference.
In fuzzy logic we define disjunction (fOR) as the maximum operation, conjunction (fAND) as the
minimum operation and complement (fNOT) as strong negation [2]. Since fOR and fAND are
defined as maximum and minimum operations, we let certain cells act as max and min functions, in
order to provide for the above operators. In order to be able to distinguish cells as modeling the
min (fAND) or the max (fOR) function we use the sign of the bias of a cell to determine which of
the two functions is to be modeled. Furthermore, we denote a bias value of zero to indicate when a
cell should operate as an inverter (fNOT). It is important to note, that these complex cells can be
reduced to networks of linear threshold cells, which are commonly found in connectio-ist models.
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3. Representing Knowledge in FUZZNET

The FUZZNET tool allows knowledge to be represented either in the form of rules or by
learning of domain specific knowledge, via a cell recruitment learning algorithm [4,5]. Rules
consist of a premise and an action part. The premise contains a list of parameters, which are
combined through conjunction and disjunction connectors. The nesting of these connectors can be
of arbitrary depth, The action part is a list of conclusions, which in case of a positive evaluation of
the premise, are activated. With every conclusion a fuzzy membership value (We refer to it as the
rule-range) is associated indicating an upper threshold for the activated conclusion (An example
follows next).

if and(or(sl,s2),s3) then dl (0.8);

Only if the premise evaluates to 1.0 (completely true) will the conclusion dl be derived with a
belief of 0.8. In all other cases the final conclusion will be less then 0.8. We will next look at the
FUZZNET network model.

We can think of every cell in a network accommodating n inputs In with associated weights
CWn. Every cell contains a bias value, which indicates what type of fuzzy function a cell models,
and its absolute value represents the previously mentioned rule-range.

Every cell Ci with a cell activation of CA i (except for input cells) computes its new cell

activation CAi' according to the formula given below. If cell Ci (with CA i) and cell Cj

(with CA i) are connected then the weight of the connecting link is given as .iJ, otherwise
CW1iJ=o.

CA i . cell activation for cell Ci, CA i in [0..1].

cw j-- weight for connection between cell Ci and Cj, CWi in R.
13 -- cell bias for cell Ci, CBi in [-1,..+1J.

min {CA.*CW .1*ICB. 1C <o0
j=0,..,i-1,i+,.._n or

CA' = max [CA *CW ij *I3,, 1 3, >0CA ij=0,..i-i,i+1,..n or

1 -CAPCB =0 A CW.J 0

By successively tran-siating rules into sub-networks, and by combining these, we are capable of
constructing complete networks that model our rules. In the final process an extra layer of two
cells (denoted as the positive and the negative cell) is placed before every output cell. These two
cells will be collecting information for (positive cell) and against the presence of a conclusion
(negative cell). Both cells are connected to every output cell, and every concluding intermediate
cell (these are cells defined by the user in the FUZZNET program specification). The final cell
activation for the concluding cell is given as:

CAoutput ` CApositivecell + CAinegativecell - 0.5
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Whenever, there is a contradiction in the derivation of a conclusion, this fact will be represented in
a final cell activation close to 0.5. For example, if CA ositive cell = 0.9 and CAnegative cell =
0.1, then CAoutput -0.5, which means it is unknown. If either CApositive-cell or
CAriegative-cell is equal to 0.5, then CAoutput will be equal to the others cell activation. The
FUZZNET system also allows for the construction of quantifying operators. It is for example
possible to construct an operator like almost, which can be defined as:

almost := they almostall are completely true;

and then use it within a rule like the aggregating operators and and or.
Besides allowing for rules as a knowledge representation scheme, the system allows learning

of information. Learning is achieved by a recruitment of cells algorithm [4,5]. It recruits cells
from a conceptual pool of fully connected cells, whenever they are needed to represent new
knowledge. The learning algorithm can be used in conjunction with an existing rule knowledge
base or alone. Learned knowledge can also be extracted in fonn of rules from the network model.
This is extremely important within the explanation phase of the system. Here the user can ask the
system how certain conclusions were derived, or why certain questions where asked (when
entering the consultation phase).

One of the major reasons for having learning capabilities in a system is to overcome the
knowledge acquisition problem and be able to change knowledge whenever this becomes
necessary. It also supports the synthesis of different experts, who may not even know of one
another, but are all modifying and contributing to the knowledge base of the expert system. In
conventional expert system this can represent a serious problem, and special care has to be taken to
avoid introducing contradicfions and inconsistencies in the knowledge base. We 'i!! next describe
the learning algorithm used in FUZZNET using the following input vector <sl=l, s2=.8, s3=.5,
s4 =.5, s5=.2, s6=1, dl=.l, d2=.9> (range for cell values is [0..-]). Here Si is an input cell and
di is an output cell.

Let us assume that the activation for an input cell is Si < .5 (like s5), then the input cell
activation has to be sent through an inverter cell. This will ensure, that negative evidence will be
converted to positive evidence, which is necessary for evaluating the premise of a rule and finally
firing the rule. The fact that a piece of information is negative evidence, is not retained in the cell
activation of the appropriate cell, but rather in its connection to the negative cell, which is used to
collect negative evidence. This conversion is shown in Fig. la. For the input cell s5 we would
obtain the specific network presented in Fig. lb. If the input x for cell s5<=.2, then a fuzzy value

1, popagated by that cell. Othrwise, the activation fails within the range [0..1). Let us
assume x=0.3, then according to the formula for calculating the cell activation of an inverter cell
(CA=l-x) we obtain as an cell activation for the inverter cell in Fig. lb (CA=1-.3=.7). The value
CA is next multiplied with the associated weight 1/.8 from the learn stage (the weight is calculated
by the formula 1/(1-Si). In our example Si=.2. therefore we obtain as a weight 1/(1-.2) = 1/0.8).
The final output of the cell in Fig. lb is given as .7/.8 = .875.

One can view the value given to s5 (.2) as being a lower threshold. Only a membership value
of .2 or less is necessary to propagate a final value of 1. For the case of Si being greater than .5
we use a similar argument. Again a lower threshold is used for the input cells. Take s2=.8 for
example. If the activation of cell s2 is greater or equal to .8 a value of 1 is passed to the next level
of the network. We represent this by a simple arrow up with an associated weight (Fig. 1c).

We next show the cell structure needed for combining all the inputs into one final fuzzy value.
We again take separate looks at the combined cells, depending on whether di is above or below .5.
We present the case of di<=.5 first (Fig. 2a).

For the case that di>0.5 is given in Fig. 2c. The links labeled with output in our two
examples will be fed into the negative and positive cell of the output layer of the network. If di<.5
then the cell is connected to the negative cell, and if di>.5, it is combined with the positive cell.
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inverted accumulate cell d) non-inverted accumulate cell for d2 .

4. Summary and Results

After allowing the system to learn the knowledge bases of GEMS and FEVERS,
comparisons where made with a EMYCIN [3] version of these two knowledge bases running
under MultiLisp [3]. In all cases the results where almost identical and only differed by a few
percent in the certainty factor of the final conclusion. From our tests we can conclude, that
FLZZNET is capable of iearring knowledge bases from scratch and can achieve siiiilax overall
performances as conventional symbolic expert systems. Other features such as consultation and
explanation facilities have been added and tested favor:•bly. By allowing variables, fuzzy and
relational comparators, and the ability to construct quantifying operators, the systems capabilities
have been taken beyond existing connectionist expert systems, and conventional (pure symbolic)
expert system shells. Because of its hybrid structure, the system incorp,.rates both the advantages
of symbolic and purely connectionist models, were no symbolic information is contained.
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1, Introduction.
Production systems have proven to be a powerful tool for exploiting knowledge that can be stated explicitly, via
rules. Neural networks offer a complementary ability: they can acquire and generalize from implicit knowledge
extracted from training examples. In this paper we present an elegant approach to merging neural networks with
production systems. Our solution allows an OPS5-based expert system to selectively invoke neural net inference
components for making certain types of decisions which would be difficult to describe with symbolic rules. We also
introdutce a rule-based knowledge manager that auews an expert system to incrementally improve the competence
of its neural network components by acquiring new training examples when appropriate.

2. Overview of ELSIE.
ELSIE is a Common lisp system that consists of a production system module, a neural network simulation module,
and a knowledge acquisition module. The production system used is OPS5 [2]. It has served as the implementation
language for a number of classical expert systems, the most famous of which is probably McDermott's XCON/R1 [4],
the first commercially successful expert system. The neural network simulator is YANNS, an extensible Common
Ltsp simulator developed by CMU's connectionist research group under the direction of the second author. The
knowledge manager was developed by the fast author.

11 ttree modules comrnunicau. via OPS5 working memory elements, or ..WMEs (prounou'nced "woorn-'es"),

which are flexible record structures. The fields of a WMEv may be accessed either by name or by numeric subscript
We interface a neurci net to the production system by specifying a mapping between WMIE fields and thv net's
input and output layers.

3. An example from a real application,
To illustrate the merger of a rule-based system with a neural net, we briefly describe a veterinary diagnosis task we
havt. been researching as part of a larger agricultural management expert system. The task is to detect clinical and
subclinical mastiis (udder infection) in dairy cows [3,6], given a series of measurements of milk production and
leucocyte counts (white blood cells per volume of milk).

Most of the work in the sytem is done by a set of production rules programmed in OPS5, plus some auxiliary
Common Lisp routines. But the actual diagnosis decision is performed by a 36-6-3 neural net. The first step in
interfaciig this net to the production system is to give it a name by which it can be referenced in the OPS5 program.
The DEFNETWORK construct below accomplishes this. It also records the location of the network descriptor and
saved weights files, which must be loaded before the network can be invoked.

'This work was supported in part by D.L.O., Department of Agriculture, Wageninge&i, the Netherlands.

IThi_% warl was sup'mrled in part by National Science Foundation grant F-T-87" 6324, and by the Oflice of Naval Research under contract
number NO014-86-K-0678.
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(defnetwork mastitis-net
:network-file "mastitis.lisp"
:weights-file "mastitis.save"
:wme-.iame 'cow-descriptor
:fieids (cow-number

calving-date
(kgs-milk :input 18)

(cell-counts :input 18)
(healthy :output)
(subclinical :output)
(clinical :output)))

The second step in the interfacing process is to declare the format of the WME that will be used to exchange
data with the neural net Each WME has a name (corresponding to a record type in Pascal or C) and some number
of fields. The WME-NAME and FIELDS arguments to the DEFNETWORK macro supply this information. As far
as the neural net is concerned, there are three types of WMB fields. Ordinary fields, such as COW-IDENTIFIER
and CALVING-DATE, are ignored by the net. Input fields, such as KGS-MUK or CELL-COUNTS, hold data
which is to be copied from the WME into the input units of the neural net when the net is invoked. The notation
(CE.LL-COUNTS :INPUT 18) indicates that the CELL-COUNTTS field holds a list of 18 numbers to be copied
into the next 18 input units; the layout of the fields in a DEFNETWORK expression must match the layout of the
neural net'r input and output fields. Output fields, such as the three diagnosis fields -. ALTRY, SUBCLINICAL,
and CLINICAL, will have their values filled in from the corresponding output layer units at the completion of the
forward pass.

*-o 0 3W !!3

II 
I:

1D50 • • #
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Figure 1: Normal cow. Figure 2: Subclinical. Figure 3: Clinical.

Figure I shows a plot of the cell count and milk production levels of a healthy cow during a lactation period.

Figure 2 shows the plot of a subc'linicai mastitis cow, and Figure 3 shows a clinic~al mastitis catse. The solid lines

represent milk productior and the dotted Lines cell counts.

The following OPS5 rule identifies an undiagnosed cow (denoted by NILs in the WME's output fields) and sets

up a diagnosis s,,bgoal:

(p RECOGNIZ -UNDtIAGDOSED

(cow-descrip,:or ^healthy nil ^cow-number <n>)

(goal ^type diagnose-cow ^number <n>))
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The next step is to feed the cow data to the neural network. This is accomplished by the rule FEED-COW-TO-
MASTITIS-NETWORK.

(p FEED-COW-TO-MASTITIS-NETWORK
{<subgoal> (goal ^type diagnose-cow "number <n>))
(<cow-w•ne> (cow-descriptor ^number <n>))

=-•l invoke-network mastitis-net <cow-wme>))

(remove <subgoal>))

The INVOKE-NETWORK function appearing on the right hand side of the rule maps the contents of the WME's
input fields into the actual neural net inputs. Next, the forwaid pass of the mastitis network generates the output
unit values which represent the diagnosis of the cow. The network's outputs are copied into the corresponding
output fields of the WME, where they replace the NIL values. Finally, INVOKE-NETWORK returns control to the
knowledge manager, which deletes the diagnosis subgoal from working memory. It will then examine the result of
the diagnosis.

4. The Knowledge Manager.
We have implemented a knowledge manager in ELSIE. The task %f the knowledge manager is to operate as an
intelligent rule-based dispatcher within the system. One of the subtasks of the knowledge manager is to exploit the
occurrence of improperly-classified cows to extend the neural net's training set. Such cows are detected by a set of
OPS5 rules that examine the net's diagnosis decisions, contained in the output fields of the cow WME. The rules
look Like the ALL-LOW-DIAGNOSED rule below, which would fire if th. network rfusced to dr-aw any conclusion
about a cow.

(p ALL-LOW-DIAGNOSED
(cow-descriptor ^healthy low ^subclinical low
"^clinical low ^cow-number <n>)

(goal ^type obtain-feedback 'number <n>))

For every improper classification, the rule ACQUIRE-RECLASSIFICATION generates a plot of the cow's milk
production and ce-l counht history. An expert veterin-aian is asked to reclassify the cow ba--ed on Lhis graph. A new

training example is then generated by taking the input values from the cow descriptor WMIE and the output values
from the vet's response. The expanded training set is used by the knowledge manager for retraining of the neural
net, resulting in an incremental expansion of the knowledge captured in the network.

5. Experimental results.
The WARP systolic array supercomputer was used for training and retraining of the mastitis network on a dataset
of 116 cows [5]. The data were selected from a cow database maintained by the Department of Herd Health and
Reproduction, Utrecht University, the Netherlands. The data had been collected on a controlled farm at 21-day
intervals. All cows were standardized on a 37G day lactation period, resulting in 36 input values for the neural
network: 18 cell count values and 18 milk production values. For lactation curves spanning a period shorter than
378 days, the missing data values were filled in from an idealized cow model. Missing production data were
substituted either by interpolation, or by calculating expected lactation values based on a ncreial dropoff rate [1].
Missing cell count values were replaced with a standard value of 50,000, representing a ipical cell count in a
mastitis-free animal. The output units in the training data were set to either 0 or 1 depending upon the expert's
classification of the cow. Each output vector had exactly one of the three units tumed on, representing either a
healthy, a subclinically sick, or a clinically sick cow.

During initial training on the entire dataset, the network classified 87% of the cows identically to our expert
veterinarian informant. Analysis of the errors showed that the rnastitis net had detected inconsistencies in the
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training data that were the result of classification errors by the veterinarian. This was confirmed by showing our
informant some of the data again, without telling him why. In several cases he revised his opinion to agree with
the net. Training the mastitis net on the corrected dataset resulted in 98% correct performance.

Unfortunately, our original database was too small to provide separate training and test sets large enough to
demonstrate good generalization. Mastitis can occur any time during the lactation period; the net needs to see
examples at each point in the period in order to recognize novel cases correctly. We are currently expanding the
database with additional cows to remedy this problem.

The two curves we are using are only a small part of the data human experts rely on to make accurate diagnoses.
Veterinarians typically employ such additional factors as milk temperature and electrophoretic conductivity of the
milk. We intend to expand our network to selectively make use of these additional factors. Furthermore, we wish
to apply multiple networks to perform other classification tasks on the data, under the control of the knowledge
manager. One example is predicting estrus from temperature curves, which is useful for scheduling inseminations.
The software we have developed makes it easy to combine multiple networks into one rule-based system.

6. Discussion.
We have presented a novel approach to merging production systems and neural networks. Our solution allows
multiple neural networks to serve as inference components of rule-based systems. We have also described a
knowledge manager that performs knowledge acquisition by incrementally expanding the training sets of the neural
networks under its dominion. This approach is general and can be applied to other systems that need to make
implicitly-defined classifications under explicit rule-based control.

The practical uses of our present system wae as an .aid for herd cullig and selection dccisions, and for the
education of non-expert veterinarians. With further work, we hope to extend the present retrospective analysis to
the on-line classification of cows at the moment of milking. Our long-term goal is to develop an i'4expensive system
for on-line detection of both mastitis and estrus for everyday use on dairy farms.
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ABSTRACT

Among the various potential applications of neural networks, forecasting is considered to be a major
application. Several researchers have reported their experiences with the use of neural networks in forecasting,
and the evidence is inclusive. This paper presents the results of a forecasting competition between a neural
network model and a Box-Jenkins forecasting expert system. Seventy five series, a subset of data series which
have been used for comparison of various forecasting techniques, were analyzed using the Box-Jenkins approach
and a neural network implementation. The result show a dead heat between the two approaches. The simple neural
net model tested on this set of time series could forecast about as well as the Box-Jenkins forecasting system.

I. INTRODUCTION

Forecasting has been mentioned as one of the most promising applications of artificial neural networks.
The autoassociative memory of certain neural network models can be tapped in prediction problems.
Smolensky(1986) specifies a dynamic feed-forward network in the following way:

u1(t+l) = F[Y_, Wki G(uk(t))]

where u(t) is the activation of unit i at time t, F is a nonlinear sigmoid transfer function, G is a nonlinear
threshold function and W,, is the connection strength or weight from unit k to unit i. This relationship can, in
principle at least, be used for predicting future values of variables.

Several authors have attempted to apply this idea for forecasting a time series. Werbos(1988) states that
he laid the foundations for use of backpropagation in forecasting in his doctoral dissertation, Werbos(1974). We
have not yet seen the 1974 reference. In his 1988 article, he describes an application of backpropagation to locate
sources of forecast uncertainty in a recurrent gas market model.

Lapedes and Farber(1987) used a multilayered perceptron to predict values of a nonlinear dynamic system
with chaotic behavior. They reported that neural network gave superior prediction for their dynamical system.
Fozzard et al(1989) discuss a neural nets based expert system for solar flare forecasting, and claim that its
performance is superior to human experts.

However, the experiences with neural networks in forecasting are not all positive. Fishwick(1989), for
example, reports that the forecasting ability of neural networks was inferior to simple linear reigression and siirfnaei
response methods. There are some trade magazine articles about use of neural networks in stock price
forecasting, but no concrete writeup can be found (perhaps for confidentiality reasons). Even when the use of
neural networks in forecasting has been shown to be positive, it is usually based on test data sets from a
particular problem domain.

This paper reports results of a forecasting competition between a neural network model and a traditional
forecasting technique, Box-Jenkins forecasting. Several data series from a comprehensive forecasting competition
were analyzed using a neural network model and the Box-Jenkins time series forecasting techniques. The data
series came from a variety of sources. The results show that the performance of neural networks was on par with
the Box-Jenkins modeling technique.

II. DATA, MODELS AND METHODS

DATA
The time series were selected from the famous M-Competition (Makridakis et al 1982) to compare the

performance of various forecasting techniques. Out of 1001 series collected, only 111 series were analyzed in M-
Competition using Box-Jenkins methodology. This was done because the Box-Jenkins approach requires an
analyst's intervention and is thus quite time consuming. Pack and Downing (1983) examined this Ill series subset
and concludc-d that several series were not appropriate for forecasting using the Box-Jenkins technique. We took
our sample of 75 series from this Ill series set after considering Pack and Dcwning's recommendations. Our
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test ,ci ;ontains 8 annual, 18 quarterly and 49 monthly series. In Table 1, series numbers < 112 are annual, series
numilers !5 382 and > 112 are quarterly, and the rest are monthly.

MODELS
Box-Jexnkins Method:

This approach to time series forecasting is well known(Box & Jenkins 1976) and has been applied in
rij.actice. is considered to be a 'sophisticated' approach to forecasting, but is quite complex to use. Essentially
tic- anatyat exalimnes both the auto and partial autocorrelations and identifies models of the form

4(B)4(B )VdVD, (Zc) = O(B)E(B')a,

wh-ere B is the back-shift operator (i.e Bx,= x,, )
V = 1-B; s=seasonality, a,=white noise;
O(E) and 4(B') are nonseasonal and seasonal autoregressive polynomials respectively;
0(B) and E(B') are nonseasonal and seasonal moving average polynomials respectively;
Z, = series (transformed if necessary) to be modeled.

After identification of several candidate models, the analyst can iterate through the process of estimation and
diagnostic-checking. Once the final model has been selected, the forecasting process can begin.

The process of model identification, estimation and diagnostics-checking has been automated and is
available in the form of a forecasting expert system. The performance of such an automatic 'expert' system has
been reported to be comparable to real experts (Sharda &Ireland 1987). For our tests, we used such an automatic
Box-Jenkins modeling expert system, AUTOBOX (AFS Inc, 1988). This program can take a dataset and iterate
through the model identification, estimation and diagnostics process to develop the best model.

Neural Network Mo~lel:
A simplest form of backpopagation rule was used to train a three layer perceptron network (with one

hidden layer). A commercially available neural network simulator, BrainMaker was used. It uses a version of delta
wule used by Sejinowski w•id Rusunberg (1987) in dteir NETtalk appiication which is;

AW,j = E ((1- 8,t) j Oj + p.A1,W~j )

where AW 1i is change in weight W,, due to pattern p, TP and O, are target and output neuron values, TF is a
transfer function and A, is activation level of neuron i, p is one of the N facts used for training, C is the learning
rate, gt is the !ý:noothing factor:

8pi = -(5EP,/5OP,) TF(AP)

and E, -- V2(T, - O1); is the squared error in the actual and desired output of the network.

E =½ V P, (T•j- - P)2

Throughcui thu 5nTdysis we had only one neuron in the output layer as only single step ahead forecasting
;s twsted. The a1gorldrr used is not a true gradient descent in the error E where the weights are changed after
ea-. pattern 'rcewwon (Rumelhart, Hinton and Williams 1986).

METHOD
SeCvity five data 'eis were analyzed using the following approach. For each data set, n-k observations

were used to buld !he forecast model (to train the network), and then the model (the trained neural network) was
used to fotecast thu: future k values, where k=6, 8, 18 for annual, quarterly and monthly series respectively. These
values are well established ibr such comparisons in tie forecasting literature. The forecast were generated only
one step aheld. That is, at the end of period n-k, n-k+1 value was forecast; at the end of n-k+l period,
r.-k+2 value wa; f1a.jaok-t and so on. The generated forecast were compared with the actual values for the k
periods, and moeant aoolutý percent error (MAPE) was computed for each series as:

k

MAIPE, = (Y IA,, - Pj 1*100 ) / k
j=l
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The series weie nin in AUTO3OX using its default setting with no intervention detection. For the neural
network model, the trainiag set ,. 3s censtructed in the following way. Each record consisted of two years of
history and the target (to be fore-ist) value. Thus the annual series model consisted of 2 input neurons, quarterly
series were trained using 8 input neurons and monthly using 24 input neurons. The number of neurons in the
hidden layer was the same as in the input layer, The output neuron was always one, since only one step ahead
forecast were desired in this experiment. The training tolerance was set to 0.08 and learning rate was set to 1.

III. RESULTS AND CONCLUSIONS

Table 1 exhibits the MAPE's of AUTOBOX and the neural network approach. It shows that the simple
(training algorithm) neural vetwork approach performed as well as a forecast expert system.

The mean of the MAPE's for neural nets model is slightly less than that for the Box-Jenkins modeling
system. However, due to a large standard deviation, the difference is insignificant. A pairwise means test also
indicates the same result. Forecasts using AUTOBOX resulted in lower MAPE's for 36 series, and thus the neural
network model was able to do better in the other 39 series.

When the series are grouped on the basis of periodicity, the MAPE's are still insignificantly different
between the two approaches. This suggests that the periodicity of the series being modeled does not affect a
technique's performance. It was quite interesting, atleast for us, that the neural network model was able to
incorporate seasonality automatically, just as AUTOBOX is able to do.

Chart 1 shows a graphical comparison of MAPE's for two approaches, this chart indicates that the
pattern of MAPE's for both approaches is quite similar.

These results are quite encouraging for the proponents of neural networks as a forecasting tool. Obviously
this work needs to be replicated to assess the full potentiality of neural networks for forecasting. Possible use
of other neural network architectures and more sophisticated training algorithm may improve the results. Repeating
the same experiment with n-step ahead forecast remains as a future work. We also need to examine the
connection weights to compare the underlying models developed by AUTOBOX and neural network models.
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Table 1. Mean Absolute Percent Error in AUTOBOX and Neural Network

series # autobox neural net series # autobox neural net series # autobox neural net
MAPE MAPE MAPE MAPE MAPE MAPE

4 23.53199 14.20809 382 32.77625 17.946 652 15.22743 17.52494
13 6.575614 11.51651 400 14.14283 9.147532 661 19.79772 25.85414
31 81.0658 6.276065 409 42.79787 97.43216 670 28.38675 30.25353
40 10.16478 3.846814 418 19.23414 22.73318 679 20.41933 36.5198
49 24.76677 39.85942 427 9.891018 9.315865 688 12.86458 14.30556
58 72.57376 16.1733 436 7.091606 5.853671 697 4.132447 5.241174
85 37.00226 7.533853 445 25.70834 13.53341 706 20.11109 7.86965

112 4.55244 7.533853 454 8.475374 16.16669 715 61.3126 76.65439
184 20.61459 6.668924 463 6.186729 8.034003 724 17.43141 22.26727
193 44.42916 40.79303 472 19.20641 15.28932 733 14.20924 20.34063
202 21.51311 4.081104 481 32.35556 26.7007 742 4.99641 4.510452
211 26.31219 50.35743 490 7.904338 8.114671 751 5.189672 8.625431,
220 37.10015 42.24019 499 13.50357 17.14914 769 7.748496 8.867242
229 42.19236 7.109735 508 16.11352 11.52449 787 3.169144 7.897152
238 14.22043 3.233037 526 9.946912 20.28435 796 17.68344 15.16847
265 21.14956 10.50463 535 69.14082 48.262 805 7.930251 7.34254
292 12.67486 24.85503 544 2.720653 3.109809 823 1.290048 2.038724
301 2.913655 10.77437 562 30.62689 34.09323 832 7.964891 5.262468
310 4.462999 11.30166 571 5.568459 10.39477 877 3.726682 5.949852
319 14.30099 11.20045 580 3.027975 1.337604 904 3.878792 3.165669
328 8.01775 1.873045 589 9.658729 7.767564 913 58.52926 57.16597
337 8.522994 3.684558 598 23.48701 5.624283 922 26.35101 17.23289
346 20.22541 15.64341 616 7.216475 5.725161 949 51.11555 88.25377
355 4.750817 9.749221 634 13.70159 15.23605 958 13.66954 10.84574
364 3.734731 1.880796 643 18.92017 20.7128 967 38.74342 10.60136

average 19.76869 17.65528
std dev 17.51539 18.85821

Comparison of AUTOBOX and Neurai Network
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1. Intro•taction
A majority of the applications of artificial neural networks (ANNs) to real-world problems are concen-

trated on emulating living activities of biological systems such as perception and memory. This paper is
an attempt to apply ANNs to one of the most sophisticated processes; multiple criteria decision making
(NICI)M) under certainty.

A general problem of MCDM under certainty can be formalized as

DR: max c = F(d) (1)tiED

where DR stands for Decision Rule, d = (dl, d2 , ... , dp)" is a p-tuple decision variable, D is a set of available
decisions; c = (cl, c 2 , . ., cq) is a q-tuple vector of criteria (objectives) of the the decision maker's (DM's)
concerns, C is a set of possible consequences. The above formalization of the problem can be interpreted
as deriving a DR according to the DM's preference and rationality principle(s), then applying the DR to
determine an optimal decision d* in D.

In the process of MCDM, because of the non-commensurate multiple objectives and the large set of
alternatives, it is often desirable to obtain complete knowledge on the DM's global preference structure
explicitly expressed by a prescriptive model such as a ruultiattribute value function (MAVF). Once the DNI's
underlying preference structure is assessed, then a rational decision rule can be derived, and the application
of the decision rule is reduced to a conventional optimization problem.

During the past three decades, great efforts were made by decision theorists and practitioners from a
variety of disciplines in developing theory and methodology for assessment of the DNI's underlying preference
structure, especially in the form of MAVF. In the literature, the common practice for assessment of a
DM's MAVF is decomposing the MAVF into different functional forms such as additive, multiplicative
or multilinear representations under some independent conditions. Under a particular decomposed form,
marginal utility functions and scaling constants then are assessed, and the MAVF is aggregated [1].

Numerous studies indicate that the existing approaches have some inherent disadvantages. The de-
composition approaches theoretically require that the problems satisfy one of the independence assumptions
t_ be decomposable, which restrict- the applicability of the approaches. Furthermnore, a limitation of the
existing approaches is the requirement of predetermining functional forms of the MAVFs which are usually
assumed to be analytical. This excludes the possibility of logic-style or rule-based descriptors which seem
common in practice and in expert systems. From a practical point of view, the approaches impose substan-
tial cognitive burden on DMs in verifying the independence assumptions and also are subject to response
biases in the sense of lacking a formal mechanism to minimize errors. Since in general a human decision
maker's preference behavior is a complex phenomenon and determination of a functional structure of formal
representation for general preferences is usually difficult if not impossible, assessment of a DNI's underlying
MAVF using existing methods is not an easy task. This reduces the value of inultiattribute utility theory
which, otherwise, is very effective among existing MCDM theories and methods.

In this paper, we present a connectionist approach to inference of decision rule in a geeral setting of
MCDM under certainty. The objective of the development is to capture the essence of the DNI's rational
preference with ANN representation. Specifically, our motivation is to construct ANN-based rational prefer-
ence models (I? VMs) from available information through supervised learning which follows given rationalit y
principle(s) and resembles the DM 's underlying preference structure.

2. Model Configuratioin
The primary interest of the research is to reprcsent. the DI)NI's preference structures with connectiommist

IHP.Is. A IHPA[ of ;L I)N i., a INr'scriptive mnod.lel which should (i) satisfy a set of specified comnmon axioms
oIf r•tion ality ;in(d (ii) pertain to the l)NIl's intdividual value assessiuents for the outcomes and reflecis thli
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DM's implicit tradeoff amneng tile attributes. Since ANNs possess very robust generalization power on a
variety of mappings including algebraic and logic functions, they iiay represent a general form of RPIAs.

2.1 Formulation of the Decision Processes: Let's consider an A N N as a mechanlism of many-to-one
mapping fromn attribute space or Cartesian product of attribute space to a real line, viz.

RPM : X×EIC-*Z - ANN: X x W - Y

where Z is the set of outptut of a RPAI; Y, X, and W are the set of output, inputs, and adaptable parameters
of all ANN respectively; I is a prespecified index set.

The fundamental assumptions of the development on the MCDM problems are: (i) The DM is able
to articulate with adequate discriminatory power, in a format, his or her preference over tile power set of
alternatives according to the his or her underlying preference structure and knowledge about the decision
problem; (ii) the decision situation is fully characterized, i.e. the sets of decision variables D, and the
objective functions F(d) are known. Due to the goal seeking nature of prescriptive models, it is necessary to
specify a set of axioms of rationality for further dev'l~j~uent. The basic axiom of rationality on the decision
maker's preference relation is Parcto principle which can be characterized on the binary preference relation,
i.e.

(c' > c") *- (C' >- C) V (c' - c"), (2)

where >- denotes preference and - denotes indifference. All alternative c* is Pareto optimal if 3i,Vc 5
C*, C! > ci.

In this context, the whole decision making process can be decomposed into two sequential phases:
learning (system modeling) phase and ranking (decision making) phase. The learning phase consists of
three stages: preprocessing stage, training stage, and testing stage. The preprocessing stage begins with
determining the representative a!ternatives as the basis of the inductive inference. The minimum requirement
for these alternatives is Pareto optimality (nondomination), since dominated alternatives are less informative
and the preference information of dominated alternatives can usually be deduced from that of nondominated
ones. The preference relations of particular type (e.g. holistic ratings or paired comparisons) on the selected
alternatives then are extracted by presenting the outcomes of these alternatives in some format to the
DNI for evaluations. The results of the DM's evaluation then are checked according to the predefined
rationality principle to eliminate irrationality. Based on properties of the specific RPMs, additional data
may be generated from that preference information. The selected alternatives with associated preference
relations constitute an information database. The data in the information database are divided into two
sets corresponding to their usage in the two subsequent stages: training set Stn and testing set St,(. In
the training stage, the instances in tile training set are presented to the ANN. Based on a prespecified
performance criterion, tile ANN modifies its adaptable paranmeters according to a tuning scheme to learn
the D.. !'s rational prefereuice behaviuJr itirneeitaed by the training insLancCs. Figure 1 illustrates the dynallics
of the learning process in the training stage. In the testing stage, tests are performed with the data in the
testing set. It is important to test the performance of the inductive inference using data different from those
used in the training stage. There is the possibility of retraining the net if the results of tests are unsatisfactory.
The purpose of the learning processes essentially is to infer a general robust decision rule which represents
the DM's rational preference from a limited number of input-output training instances; more precisely, to
discover tile DM's rational preference structure based on available preferential information and rationality
principle. As prescriptive models, tile rationality of the decision rule is ensured by (i) proper selection of
training instances; (ii) proper guidance of learning processes; (iii) proper testing of the synthesized models,
i.e. the rationality principle niust be part of the te.ting criterion I'or validation. III the ranking phase,
the synthesized ANN-hased RPAI can act as a rational proxy for the DNI to evaluate or rank any given
alternatives.

2.2 Constructive Specification of ll.PMs: Tlhe most l)popular RPA for deterministic MC-MI
problems is M AVI". A MAV" is a ,iap from attribute set to valhe set, that is, All : C - II, sumch that
c' >- c" -. Ml (c') > All (c") and c' - c All (c') =. Al• (c") where the, input of the Inodel is c; tihe output
of the model is v, assessed value corresponding to the outcome z. In order for the configured A!l to behave
rationally, according to P'areto principle an(d tile modtl definition, All(c) mut. be monotone nondecreas-
ing with respect to c. The I)?R For All(c) is maxIED A!1 [l(d)], !.e. select d" G D such that Vc = '(d),
Al(c') !> Alm(c).
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Since ý-, -- , and - constitute a partition in C x C, another type of RPM is Comparison RPM
(ClRi'"l). A C(IPM is a mapping from tile Cartesian product of attribute space corresponding to any pair
of alternatives to a set of trinary values, e.g. A12 : C x C -- {0.25, 0.5,0.754. More specifically, tile input is
x" = (c ..... c', c",. .. ., e), an augmented 2q, tuple vector; the outputs z are given bascd oil the results of

paired comparisons, a preference relation in C x C.

0.75, if c' -c";

z ft 0.5, if c' , l" ; (3){ 0.25, if c' -< c".

B]y definition, the CRPM has the following properties.

Vc',c" E C, A2 (C',c") = 1- A1 2(c",c'), & A1 2(c',c')= A12 (c",c") =0.5. (4)

According to Pareto principle and the constructive specification, M 2 (c', c") is monotone nondecreasing with
respect to c' and nonincreasing with respect to c". The DR for A12 is selecting d* E D such that Vc = 1(d),
M.(jc*, c) > 0.5.

The output of Al1 is an interval scale variable whereas the output of Al2 is a an ordinal scale variable.
2.3 Functional Beohavior of ANNs: Based on the theoretical results of our previous research work

[21, the architecture of the ANNs used in assessing RtPMs is shown in Figure 2.
The incorporation of the information in addition to that given by training instances into the supervised

learning, or the utilization of prior knowledge of the trainer, is an important aspect of the learning processes,
which seems neglecLed in ANN literature. One way of doing this is to ensure that the ANNs possess the
functional properties of the underlying processes such as mnonotonicity that the configured RPAls possess.

Theorem: Let each neuron activation function be a sigmoid function, i.e. fJk(uk) = (1 + C-\)') A

where Uk is an instrumental variable standing for net inputs to neuron k, for output neuron ul = 2= 2 wai +
Z ,xi + w!4" and for hidden neurons uk uikzi -U-+ w4"' N is thie total number of neurons, n is the

number of input components, at is the state variable of the I1" neuron, w't, 11)", and w"' denote the weight
from neuron I to output neuron 1, from input I to neuron k, and threshold of neuron k respectively. The
output y of the ANN is monotone nondecreasing coordinatewise with respect to input xj,
(i) if the parameters satisfy the following inequality

9k U)1kW + wit > 0 (5)

('t 'I - (

who.re Vk, g/ = 1 0 "l '' < 0 vice versa for nonincreasing ANN&; or
0. 25Ak 1 k ti- <>0

(ii) ifT(=5) holds wvhere Vk,,k Akfl k)[I-fk( h=)I= Uk 1  ) 'k andVl, I x U1,k,, u 'kw < 0

I and h are t+h olptimal solutions to MaX"EX(K" I UlXt + ) arnd mnxEx (~jL1 wjx + w'.)"
respectively, vice ver.sa fIr nun incr'asing A V Ns.
Proof: Omitted for lack of space.

'hese c,,n•train t~s clh aractrize a feasible region in the paranieter space ,V. Because of t.be high nonhi ear-
ity it i6 obvioulsly diliffiult to incorporate the complicated constrLints into learning paradigms. Nevert hI. lss,
these" constraiitt.s can he used as alt additional testing criterion for validatim of tile synthlesized A N As.

3. Computer Simulation-
Simulat ions were pCrfi- rined using The Adaptive Delta Rule [2) which is based on conjugate direction

and golden section search meltlod to assess MAVIFs, All, and CI PNMs, •A2 . Three different types of vahlu
lun Ilions, a (ihelu''clhev, all additive and a quadratic function, were wssumed t.o act implicitly a.s the DNI's

underlying rational pref•rence in lproviding r,.,,m -. s ,of" r r it•ial information, i.e.

('l,(c), C2 , CA m {1{h c), c. , e-' C,',C,:c) = 0.5c, + 0.3-2 + 0.2c3 ,

"-(ci, Cr2 , ,.) -0.5c. (j.t,. - t.'2,. + cl + O-6e 2 + 0.4c3 .
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Fifty (50) non-dominated (Pareto optimal) alternatives of 3 attributes were generated randoml" based on
uniform distribution over the interval [0, 11. The alternatives are divided in half arbitrarily into training and
testing sets. In assessing Ml, 25 training and 25 testing instances were used. In assessing M!2 , to make full
use of the preference information, property (4) was used to generate additional training data, i.e. 20 paired
comparisons, 40 additional training and testing pairs of data were deduced. For simplicity, in the simunlat ion
we also assume the DM is confident about his or her value assessments about all outcomes. Therefore,
according to the propositions in [2], the least square error functions was used, and the total number of
neurons (including one output neuron) N is 30 for M1 and 50 for M 2 respectively. The number of iterations
is 50,000.

The results of the simulation show that the synthesized ANNs possess a remarkable capability of learning
from examples. The synthesized ANN-based RPMs can determine the optimal alternatives correctly,
and-generate the output values very close to the expected values in both training and testing sets. In
addition, the synthesized ANNs also preserve the monotonicity of the RPMs checked with the above
Theorem. The following table shows the percentage of correct ranking of all alternatives and mean square
error (MSE= P.y(Y -_ z) 2 /P) of outputs in assessing MAVFs and CRPMs based on Chebychev, additive,
and quadratic function respectively.

%/M.SE Chebychev Additive Quadratic
Mi Sirn 88/5.35 x 10-7 100/6.52 x 10' 100/1.50 X 10-6

MAl St.t 76/8.42 x 10-4 100/3.47 x 10-1 96/3.25 x 10-1
M 2  Str 100/4.80 x 10-7 100/3.17 x 10-7 100/6.20 x 10-7
M2 : St., 88.3/5.50 x 10-s - 93.3/6.74 X i0- 95.0/1.67 x 102--•

4. Cuiululu

In this paper, we have demonstrated the applicability of ANNs to assess the DM's rational preference
structure. We found that the synthesized ANN-based RPA'fs are very robust, and represent generalizations
of examples. The main advantages of the connectionist RPMs are that they are functional form independent
and internal parameter insensitive. The proposed approach could also be extended to model intelligeýnt
decision support systenvi and advanced connectionist expert systems.
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INTRODUCTION
Weightless neural systems are distinguished from those classically used in neural computing by the fact that they
store required responses to their input patterns in addressable locations rather than as combinations of connection
strengths. This line of research has been pursued by the authors (IA) for some time, and it is the aim of this paper
to review the way in which the idea lines up with what has now become the classical domain of weight-based
systems. In fact, it will be shown here in a non-rigorous way, that weightless systems cover the general neural
network paradigm. The reason for building neural nets the weightless way lies both in ease of implementation and
in new insights on neural computing.

DEFINITIONS AND TERMS
A RAM node is the most basic type of element for the design of weightless neural systems. It receives N binary
inputs at the address trminals (XI to XN)and produces one binary output at the "data-out" terminal (Fj for the jth
neuron in a net). Training is achieved by supplying the desired output values of 0 or 1 at the "data-in" terminals for
given input patterns, while the writing mechanism of the RAM is energised ("write-enabled" in computer designeres
jargon). Logical neural nets have well defined learning phases when the elements of the net are write-enabled and
changes occur in the stored content of the RAM. In contrast, there are running phases during which the writing
mechanisms are disabled and the net performs computational tasks based on previously learnit material. A
conventional RAM which stores M bits per word is viewed as being M RAM neurons with their inputs receiving
the same data, while each of the M outputs can learn independent responses to this data.

Logical neural nets may be run either synchronously with all nodes making a new attempt at firing at the
simultaneous arrival of a clock pulse at all nodes, or asynchronously with nodes firing at random, but making a
known average number, W, of attempts per unit time. The latter is precisely the arrangement assumed by Hopfield
(1982) and by Hinton et. al in Boltzmann machines (1984).

RAM-neuron or PLN

N inputs per node

D, ',epth of A
the pyramid

No. of overall inputs = W (for WIDTH) --

Figure 1: A pyramid.
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A Probabilistic Logic Node (PLN) differs from the RAM neuron in the sense that a q-bit number is now stored
at the addressed location in a RAM. The content of this location is turned into the probability of firing (i.e.
generating a 1) at the overall output of the node. Say that q is 3, then the numbers 0 to 7 can be stored in each
location of the RAM. One way of treating the actual number stored may be as a direct representation of the fhiing
probability by treating the number as a fraction of 7. So a stored 2 would cause the output to fire with a probability
of 2fl, and so on.

A pyramid is a network of cells as shown in fig.l. We note a simple relationship betwecen the Width W, depth
D and number of inputs per cell, N:

W =ND (N and D are integers)
Therefore, for a given input width (or given depth) the pyramid is seen to be canonical, in the sense that its
definition depends only on N. Armed with these definitions we shall now look at examples of the behaviour of
some canonical networks.

PARADIGM COVERAGE 1: PERCEPTRONS
The one-layer network shown in fig. 2, is called a discriminator. This may be compared to a single perceptron
unit in a single-layer net. Each RAMs encompasses an A-unit and a weight in the perceptron. The discriminator
starts by having all RAMs set to 0 and has ls fed to all data-in terminals for all patterns in the training set. The
response r of the discriminator, to an unknown pattern U is given approximately by: (A<max>)N, where
A<max> (in the range 0 to 1) is the proportion of overlap between that pattern in the training set which is closest
in Hamming distance to U and U .tself. Details may be found in Aleksander and Morton (1989). It should be
noted in passing that it is this scheme which was incorporated in the WISARD neural image recognition rnechine
which, in 19_84 becaime on'e of the first commercially developed neural systems to be used in industrial settings. it
recognises 512x512 bit images at the rate of 25 per second.

Input Pattern
X2 •,

X(N+1)
X(N+2) RAM

i rx2Nr2

RAM
K FK

Figure 2: A Discriminator

PARADIGM COVERAGE 2: CONTENT ADDRESSABLE SYSTEMS
a) Discriminator Based.
The Hopfield/Boltzmann axis of the paradigm calls for large neurons, that is, neurons with I inputs for I-element
nets. Discriminators, as described above, may be thought of as being such neurons. Their inputs are connected to
the outputs of each discriminator via an overall threshold on the responses r of the discriminator. Attractors are
created by training the system to output the chosen attractor pattern with the same patter, at the input. It may be
shown that the memory capacity in terms of the number of I-bit stored vectors is a variable which goes from 2 with
N=I to 21 with N=I. In the latter case we have a universally variable finite-state machine with 21 states. The extreme
cases are not of much use, but the ability to hit targets in between has an advantage over the Hopfield/Boltzmann
methodology.
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b) Fully Connected PLN nets
Such nets have each PLN connected to all the others in the net. Consider PLNs that store only 3
messages: 0, 1 and 0.5. Through storing 0.5, the neuron has the ability to "say" "I don't know". Therefore,

before any training takes place, all the nodes in a net are set to "0.5". The initial Makov chain for such systems is
easily imagined: equal transition probabilities between all states. An important question is whether the training of
a fully connected PLN net , through the creation of stable states, makes those states attractors of transitions from
similar states. In the general case, consider an N-element net. Say that it is trained to make the all-0 pattern stable.
Now consider what happens if the system is started in a state which has all Os except one. Say that the kth neuron

is in the 1 state.

In the synchronous case, all the neurons except the kth are addressed by a string of Os with a single I in their midst.
This finds a "0.5" stored at this majority of addresses and a 0 at the kth neuron. The next state will then have a 0 at
the kth neuron ani arbitrary values at all the other neurons. This means that about half the neurons will output a 1.
So the next state will be even less like the trained state than the state with only one 1. This means that the training
has not created an attractor and transitions to the trained state are purely accidental, In ,he asynchronous case, only
one neuron output can change at any one time. The addressing is the same as above so that when a neuron ettemnts
to fire, all except the kth neuron will output a 0 with 50% probability. This means that half of the states with only
one disruption will enter the trained state. So, even if the trained state is not a perfect attractor, it is much more
successful than the synchronous case.

It has been shown in Aleksander (1989) that the way to overcome the problem in the synchronous case is to "clamp"
the desired output while the feedback connections are subjected to small amounts of noise. Here it is worth pointing
out that the problem is less severe for nets that are not fully connected because a single disruption finds fewer
neurons with a "0.5". The major difficulty with fully connected PLN networks is that their memory cost escalates
exponentially with size of net. For an N+1 node net, 2N storage locations are required in each. In the next case
considered in this paper, it will be shown that a very similar performance may be obtained through the use of PLN
pyramids which implies a lower cost. This also covers the third leg of the paradigm: error learning.

PARADIGM COVERAGE 3: ERROR LEARNING
In weightless systems the tasks done by error back-propagation can be achieved by feeding error information to all
the hidden layers of a feed-forward system in parallel. Consider the structure of fig. I with each element a PLN.
We also start by assuming that the PLNs are of the three-message variety, storing 0, 1, or "0.5". The key fact
about a pyramid is that it inherently has hidden units. This means that an error is known only for the output of the
entire pyramid and it is necessary to cater for the training oft An untrained PLN pyramid wn1l

output 03 and Is with equal probability in response to any input pattern as all the nodes contain only "0.5" values.
This means that it starts with 50% error. The following steps constitute a training algorithm for a single pyramid:

1. Identify the training set. This mu3t consist first of a set ZO0 say, input patterns for which the response is
to be 0, say: Z0 = (z01, z0 2, ... ).Similarly the set for which the pyramid must respond with a 1, that is, ZI
=(z1, z12, ... ) is defined.

2. A training regime must be selected. This refers to any specific way in which the two sets above are to
be presented to tl, net. For example, the two sets could be applied in random order, interleaved, one after the
other, and so on. in quoting experimental results it is always worth stating the regime, in case it might have
had an influence.
3. For the first (or, in general, next) training pattern applied to the input, if the output is consistently
right (e.g. remains at j for a pattern that belongs to ZJ), do nothing. If the output is varying in time between 0
and 1, as soon as it becomes right, examine the current output of all nodes and cnsuie that this becomes stored.
Thi2 means that all the nodes whose input currently addresses "0.5" will have the "0.5" replaced by their current
output (which, as a resalt of the "0.5", has been arbitrarily sclected). If the output is consistently wrong, all
nodes that output a consistent output (i.e. do not have their "0.5" addressed) have the content of their stored
location returned to "0.5".
4. Repeat the above, applying the training patterns according to the regime until no errors are detected or
the error rate reaches an irreducible minimum.
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In, general, this algorithm will find appropriate values in the hidden layer and hence not fall prey to "hard learning"
difficulties. More taxing tasks, (i.e. the problem of detecting parity) are discussed in Aleksander (1989).

Clearly, should the PLNs store more than three messages the training algorithm needs to be modified. Step 3 above
may read something like:

3. For the first (or, in general, next) training pattern applied to the input, if the output is consistently
right (e.g. remains at j for a pattern that belongs to ZJ), do nothing. If the output is varying in time between 0
and k, as soon as it becomes right, examine the current outpi.t of all nodes and" encourage" the currr;nt output.
This means that if the addressed location contains a probability of firing greater than 0.5, increase it by some
amount a, while if it is less than 0.5, decrease it by . . If the output is consistently wrong, all nodes that
output a consistent output (i.e. do not have their "0.5" addressed) have the content of their stored location
"discouraged" by altering it towards 0.5 by an amount D.

Myers (1989) discusses optimai ways of selecting values of a.

PLN PYRAMIDS: GENERALISATION
Space does not perrait a detailed account of generalisation in PLN pyramids. It is simply asserted that the pyramid
has a characteristic that strongly distinguishes it from the discriminator discussed above. It is possible to make the
pyramid very sensitive to samll differences. For example it is possible to make the pyramid fire 100% 1 for the
all-I input pattern and 100% 0 (i.e. 0% 1) for all single-0 pattern. Aleksander and Morton (1989), contains details.

SUMMARY
In this paper, weight variation has been replaced by updating procedures for the content of the memory neurons and
it has been shown that the central characteristics of perceptrons, Hopfield nets (seeking of energy minima at run
time), Boltzmann machines (training of hidden units, escape from local minima) and lcarning from errors (by
methods that are more direct and faster than error back-propagation) have been retained. The methodology however
offers additional parameters such as directness of implementation using digital logic techniques, choice of
synchronicity (asynchronous systems are fundamentally stabl, synchronous ones require a scheme of noise
reduction in training, but can provide a richer set of state changes) or the use of probabilistic outputs from the
nodes.

At a theoretical level, an analysis (described in Aleksander and Morton, 1989) using Markov chains provides a
simple link between the state transition diagram of a logic/memom y net and the energy concept. that nrk! use in
weight-based systems.

REFERENCES
1. Aleksander, I, and Morton, H.B, An introduction to neural computing, Boston: MIT pr., 1989.
2. Aleksander, I., "The Logic of Connectionist Systems", in Aleksander, I., (ed,), Neural

Computing Architectures, Boston: MIT press, 1989
3. Hopfield, J. J.,, "Neura! networks and physical systems with emergent computational

abilities". Proc.Nat. Acad.of Sciences, USA12_, pp. 2554-2558, 1982.
4. Hinton,G.E. Sejnowski, TJ., and Ackley D.,"Boltzrnann Machines: Costraint

Satisfaction Networks that Learn" (Tecn.Rep.CMU CS84,. 19,Carnegie-Mellon U) 1984.
5. Myers, C. E., 1989, "Outprmt functions for probabilistic logic tiodes", IEE Conf,

Neural Nets, London, 1989.

I1 - 502



Optimization Search Using Neural Networks
Henzer Chen and Shuo-Jen Lee

GE Corporate Research arnd Development
P. 0. Box 8

Schenectady, NY 12301

ABSTRACT

This paper discusses a novel application of using neural networks for nonlinear search. It is
well known that a feedforward network can perform function approximation at any degree of accuracy if
enough data and enough hidden neurons are used. In optimization of an implicit function, numerical
data is generated sequentially following the optimization algorithm toward the function optimum.
Neural networks can conduct a search by approximating the implicit function using sequentially
calculated data. The appoximation is refined by adapting newly generated training sets and finally the
search leads to the finding of a maximum or a minimum. A comparison study using traditional search
algorithms was also conducted. The result shows some promise of using neural networks for function
optimization.

INTRODUCTION
Neural Networks have been characterized as a robust, distributed AT tool for problem solving,

which can perform adaptive learning instead of using sophisticated algorithms. The most mature and
widely used network model is the feedforward network with backpropagation training. Sometimes this
network model is referred to as a mapping network, since it does nothing but map between input and
output. A backpropagation network has been used to approximate arbitrary functions defined as sets of
Lnput variables and their respective function values[I]. With sufficient hidden layer neurons, it can
provide fairly accurate approximation. Most significantly, these function approximations can be done
without specified explicit function forms. Deploying a large number of hidden neurons, it can increase
the accuracy of the mapping similar to other data fitting schemes, but it will lose the cepability of
generalization. This is true especially when only a small fraction of data is used to represent a wide
range of mapping. With the capability and limitation of a backpropagation network in mind, an
optimization procedure was developed.

OPTIMIZATION PROBLEM
In an optimization process, numerical search is implemented over the function definition

domain. For unconstrained optimization, factors that have a strong effect on optimization results are
problem formulation, initial design point, optimization technique and convergent criteria. Using neural
networks to conduct optimum search can have a more robust outcome than traditional algorithms, i.e.,
it depends less on the initial design points and uses more effectively the data that has been analyzed.

To demonstrate the neural network search algorithm, the banana function[2] was selected to
simulate the optimization process. The optimization of the banana function using traditional algorithms
is also performed for comparison. The banana function is an algebraic function defined as:

F(x,y)= 10x**4-20x**2y+ 10y **2+ x**2-2x+ 5

where -2.0 < x < 2.0, and -1.0 < y < 4.0. The iso-value plot of the banana function is shown in
Figure 1. This function resembles the shape of a bnana with highly nonlinear numerical characteristics
when far from the optimum and a flat plateau when near the optimum. Because of the difficulties in
obtaining its minimum, it is widely used for testing new optimization algorithms.

NONLINEAR PROGRAMMING APPROACH
Numerical experiments using ADS optimization software[3] on optimization algorithms such as

Fletcher-Reeves, Davidon-Fletcher-Powell(DFP) and Broydon-Fletcher-Glodfarb-Shanno(BF(;S) and
various linear search techniques such as golden section, golden section plus polynomial and polynomial
interpolation were performed. The variation on performance for different combinations of these
methods was significant. The DFP method with polynomial interpolation was found to be the best in
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terms of optimization solution and number of analysis calls, therefore, it was chosen for further
optimization runs.

Eleven starting points spread over the design range were chosen to conduct searches. The first
nine starting design points were also used as the initial training sets for neural net approach. Although
the optimization results shown in Table 1 were generally close to the true optimum of 4 at (1,1), the
optimal parameters were widely scattered. For example, the search starting at (-2,4), which was
furthest from the optimum, had a low initial value(13) but took the highest number of iterations(16)
and analyses(103) to reach the second best result(4.003). On the other hand, the search with the
closest starting point (0,0) had the lowest initial value(5), took 13 iterations and 76 analyses to reach
the final result of 4.014.

TABLE I Summary of Optimization Results of Banana Functions
Using ADS Optimizer[3] with DFP technique, Option (0,2,3)

Starting Optimal Initial Optimal No. of No. of Termination
Point Parameter Obj. Obj. Iter. AnalysLs Criteria
(-2, 4) (0.944, 0.888) 13.000 4.003 16 103 absobj, delobj
( 0, 4) (0.651, 0.357) 165.000 4.166 5 39 absobj
( 2, 4) (2.000. 4.000) 5.000 5.000 1 5 K-T condition
(-2, 2) (0.952, 0.904) 53.000 4.002 14 89 absobj, delobj
( 0, 2) (0.759, 0.613) 45.000 4.073 8 57 absobj
( 2, 2) (0.925, 0.875) 45.000 4.009 4 40 absobj
(-2,-1) (0.920, 0.976) 263.000 4.173 4 33 absobj
(0,-1) (0.813, 0.658) 15.000 4.035 8 55 absobj
(2,-1) (0.358, 0.160) 255.000 4.422 4 33 absobj
(Ui, 0) (0.883, 0.775) 5.000 4.014 13 76 absobj, deiobj
( 0,1.5) (0.758, 0.596) 27.500 4.063 9 63 absobj

NEURAL NETWORKS APPROACH
In applying backpropagation networks for nonlinear search, one needs to choose an

appropriate number of hidden neurons such that the network can perform good mapping but does not
lose the generalization, It is beyond the scope of this study to investigate the criterion for an optimum
number of hidden neurons. A feedforward network with one hidden layer of four hidden neurons was
used throughout the study. Initially, a number of training data sets, about the number of the
connections, were required. In this study, the first nine starting points in Table I were used. Since the
data sets used to train the network are sparse at the beginning, it usually comes out an approximation
very different from the real function. The approximation can then be improved by using more training
data sets generated in selected input domain based on the previous trained network.

The initial fitted function surface is plotted in Figure 3, while the banana function surface is
shown in Figure 2. At this stage, no information about the global minimum is revealed in Figure 3.
But based on the fitted surface(Figure 3) four additional (x,y) sets were selected, which represented
two maximum and two minimum values in the mapped surface(see Table 2). Numerical experiments
(i.e., to evaluate their banana functions) were then conducted and the new data sets were used for the
succeeding training.

TABLE 2 Selected (x,y) Pairs for Numerical Experiments
(x,y) Fitted Value Banana Function (x,y) Fitted Value B '-ana function
(-1.2,2.5) 12.727 20.076 (-0.8,1.5) 13.182 14.636
(1.6,0.5) 249.677 46.796 (1.2,1.5) 231.441 4.076

The result from the second round training i: plotted in Figure 4. It is seen that the added
information has improved somewhat the approximation of the real surface. After a couple more
training runs, the approximation improved further(Figure 5) while the sum of the squared error for the
training sets also increased sthstantially from zero. It is suspected that further addition of training data
can improve the mapping, since thc surn of the squared error will incrcasc continuously. To conduct
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further search, choices are either to increase the hidden layer size or to drop some training sets which
are far away from the minimum of the fitted surface. In this study, the latter was chosen. Dropping
the training data sets is equivalent to reducing the search range. This action will be successful only if
sufficient data sets have been used for training, i.e., the generalization of the neural net mapping can
reflect the real function landscape.

By narrowing the range of search, the valley of the mapped suiface (Figure 6) was gradually
approaching the real valley of the banana function (Figure 7) in the succee-ling searches. Training sets
were dropped again after sufficient training data was accumulated. It was found that after 25 analyses,
the search had reached (1.02, 1.06) for a function value of 4.004. The progression of the optimization
process is presented in Figure 8 by the graph of minimum value searched versus the number of
numerical experiments.

DISCUSSION
The benefit of using the neural networks for numerical search can be realized in the

situation where numerical experiment is very expensive, for instance, using the finite element method
to implement engineering analysis and design. The advantage of a neural net search should become
more significant .when search dimension increases. In the numerical optimization algorithms, only the
last few data sets are used to conduct the search, while the neural network approach can use all data
obtained during the progress of the numerical search. Therefore, the global optimum may be more
likely found in the neural net search than in the traditional search methods.

In most of the earlier search algorithms, initial search point is critical to the success of the
optimization. Therefore, multiple searches with intuitionally selected initial starting points have to be
conducted before a good optimization result can be of certain. Contrary, the neural network search
doesn't depend much on the initial training sets.

The training of a feedforward network using back error propagation is slow, especially when
the number of connections is large. Using fewer hidden layer neurons seems more attractive during
optimization. However, using too few hidden layer neurons, the accuracy of the function
approximation may be jeopardized. As a result, more numerical experiments will be required. The
optimum number of hidden layer neurons for a given problem depends on the number of dependlent
variables and the complexity of the function. Further study in selecting a suitable hidden layer size is
desirable.

It is seen that the neural network search can reach the vicinity of optinmum quickly, and
then the search efficiency drops substantially. This can be explained by the nature of a neural network
in that a neural network can approximate a function robustly but usually has difficulty in obtaining a
great degree of accuracy. There might be an advantage in switching the search from a neural network
to another method when a neural net search becomes less cfficient.

CON CLUSION
After studying a feedforward network for optimum search and comparing it to the nonlinear

programming search algorithms, the preliminary results indicated that neural nets can perform better
than the traditional search algorithms. Neural net search reaches the vicinity of the optimum in a very
few trys, but further improvement requires narrowing the search range with the help of the
approximated function generated by a neural net. However, the selection of the optimum hidden layer
size and the criteria to terminate neural net search need further investigation.
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Abstract

The paper describes the architecture and performance of neural networks capable of learning and computing
complex mappings using the back propagation algorithm. Implementation of hashing functions is an important
application of these connectionist netwoiks, offering several advantages over traditional hashing methods such as
robustness, and limited error correction. The user does not have to provide the hashing function explicitly, nor
does he/she has to worry about collision detection and overflow management. Multiple indexing can be easily
implemented by training a network for each key attribute. The neural network approach can be. used to train
very large number of pattern associations by dividing the problems into smaller problems. Our neural network
consists of several subnetworks, each of them solving a specific mapping task. This could facilitate incremental
learning and selective forgetting relatively efficiently. Our experimental results show that small neural networks
with simple processing elements can learn complex mapping which implement index search in constant time.

1. Introduction

A neural network with n inputs and m. outputs can be seen as a hardware implementation of some transform
function or mapping. Hashing functions (Lewis and Cook, 1988) are a very important class of mappings used in
database applications to store and ret-rieve records given some subfield, which acts as the key attribute. This should
be done with minimal search effort, ideally in a single access. Databases are usually not static, and many updates in
the form of additions and deletions are made, which makes sequential data organizations awkward. A hashing function
which maps the key attribute to an index, should have several desirable properties. It should avoid clustering.
Collisions should be kept to a minimum, and the hashing function itself must be simple enough so that
computation of the function is fast compared to access on mass storage. The hashing function should also not waste
mass storage. It is not possible to design two hashing functions such that two key attributes for a given record
would map same index value for each record. Neural networks, on the other hand, can incotporate multiple indexing
by training the network on each key attribute. Hashing is very sensitive to even minute errors in the input and
usually yields unpredictable indexes for such cases. Apart from the input level, fault tolerance is also desirable at tht
hardware level. We show that neural networks (NN) can implement efficient and robust mappings.

An example of a hashing function is to compute an index of disk storage from a key attribute such as name or Social
Security Number (SSN.) The number of distinct possible names or SSNN 's very large, and in a typical application,
snch as a payroll database, we are interested only in a very small iraction of possible names or SSNs 1000s or
100,000s (depending on application) rather than billions of combinations. A hashing function is chosen such that
each name in the given database maps to an index. In general this mapping is many to one and causes conflicts.
Conflicts (or collisions as they are called) are resolved by special techniques such as chaining, bucketing and
overflow management (Maurer and Lewis, 1975). We show how one can implement mapping of one large space on
another space, using the methodology of neural networks (Lippmann, 1987). In particular, we have designed and
built connectionist networks which would take names as input and give a nine digit index as output. The neural
networks exhibit fault tolerance for some predefined classes of errors, and can be easily extended to incorporate
multiple indexing by training additional networks to compute indexes for other key attributes.

2o Parallel and Distributed Information Retrieval

Parallel search techniques are characteristic of an emerging area of research known as Parallel Distributed Processing
(PDP) or Neural Networks (Anderson and Rosenfeld, 1988). There are few working PDP attempts for parallel
retrieval and/or inference, and they have been implemented using Distributed Associative Memory (DAM) (Kohonen,
1988) or the Connectionist (Ballard, 1986) models. DAMs are akin to physical holograms, and result when Hebbian-
like (classical conditioning) associations between stimulus and response vectors are distributed across the memory.
Connectionist models arc multi-layer networks which accrue evidence for some interpretation. These models include
'hidden units' and the synaptic weights connecting the units are the result of learning and measure the relative
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strength of the interconnections. Success of a neural network model is judged based upon its performance subject to
the following criteria.
a) Scalability: A network should be scalable, i.e. the number of nodes and learning time or recall time should not
grow faster than the complexity of the problem, (measured by the number of names that must be mapped, for
example.) Ideally the network should correcdy map as many input-output pairs as possible without altering the
number of nodes or interconnections in the network.
b) Incremental learning: Addition and deletion of records are essential capabilities for a database system.
Incremental learning means that new associations should be learnt with incremental effort without altering the
performance in the already-known knowledge base. Most attempts by current NN models to learn another association
usually result in global weight changes which, in turn, lead to loss of all/most of the associations learned before.
c) Fault tolerance: This refers to the capability of the neural network to continue functioning, possibly with
marginally degraded performance, in the presence of malfunctioning nodes or hinks.
d) Performance: Performance is related to accuracy and learning time. If a name on which the network has been
trained is presented, we expect to retrieve an error free index for the individual, but in reality there may be a nonzero
probability of error on recall. The network should be also able to learn associations fast.

3. Connectionist and Back Propagation

Connectionist models are multi-layer networks and back propagation is one of the learning algorithms used in
trining such networks (Lippmann, 1987.) The back propagatior learning algorithm minimizes the mean square error
between the actual output of a multilayer network and the desired (correct) output. The weight change criteria, which
minimizes the mean square error requires the activation function to be differentiable as many times as there as are
hidden layers. The network topology also has certain restrictions. Sigmoid functions defined as

f(cE) = 1/(1 + e-( 9 0) are commonly used as activation function. i.e. if a is the algebraic sum of all the inputs to a
processing element, the output level is f(ax). The weights change during learning and the corresponding algorithm is
briefly described below.l) t ,., • ... .- i denote continuous valued input vector, d0 , di .., dn..1 denote desired
output vector, and yo, yl, .. , yn-1 the actual output vector. 2) wij(t+l) = wij(,: + il.dj.x'i + a(wij(t) - wij(t-1)),
where wij denotes weight from nodei to nodej. dj is an error term for nodej. i) If nodej is an output node, then dj
yj(l-yj)(dj-yj), ii) If nodej is an internal hidden node, then

dj = x'j(1-x'j)E dkwjk, where k varies over all nodes in the layer above nodej. il is called the gain factor and a is
called the momentum factor. The term dj.x'i indicates the correction to be done to the weights so as to minimize the
total sum of squares in this cycle. However, all the input output pairs interact on the same set of interconnections,
and it is desirable to reduce the rate of weight change. The gain term takes care of desired attenuation in the weight
change rate. On the other hand, the momentum term reflects the desire to continue the weight change in the direction
of the previous weight change. It assists in damping oscillations and instability in the network. Both the terms are
chosen such that 0 < Tj < 1, 0 < oL < 1. The algorithm iterates until the total sum of squares has reached the pre-
specified level.

The Hopfield net approach (Lippmann, 1987) and DAM approach were not considered because there is no guarantee
about the orthogonality of the inputs in our application. These network approaches are good when the inputs are
orthogonal. There is the issue of storage; the Hopfield net is binary, so 8 character input would require 48 nodes.
Since each node is connected to all other nodes, there would be a total of 48*47 links. However, the capacity of this
net is about 15% of the nodes; hence, we would not be able to store more than about 7 names, which is of limited
use. It is not possible to store more patterns by increasing the number of nodes since, with the same representation,
the input to the additional nodes will be zero, violating orthogonality the condition. Hence, essentially poor response
can be expected despite enormous increase in the size of the network! Similar difficulties apply to DAM as well. We
need extremely large number of nodes together with the additional assurance that the input data pattern is highly
orthogonal. We chose the back propagation learning algorithm for the connectionist model because it can handle
non-orthogonal inputs, and can store many patterns in a small-sized network.

4. Connectionist Architecture and Experimental Results

All the networks described below implement connectionist models arnd were run on a SUN3/60 computer using the
back propagation module (McClelland and Rumelhart, 1988). The networks map names to indexes and have the
following constraints: names are limited to lowercase, the maximum length of a name is set to 8 characters in order
to limit the complexity of the input. The names are assumed to be distinct (the same as in hashing, where the hash
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function is defined from key attribute to an index), so that a case of one name, such as "smith" mapping to different
indexes is eliminated in principle.

1T

0.04 = a 0.04 = a 0.04 = a
*0.08 = b 0.08 = b 0.08 = b
S...... ...... . .....

0.96 = z 0.96 = z 0.96 = z

Figure 1: Input Encoding

The character input is encoded using a continuous range. Each character is represented as a single number between 0
and 1 and inputs to a single node. The 26 letters are represented by splitting the range of allowable input [0.0, 1.0]
into 26 parts and assigning a unique sub-range to each letter. For example: "a" = 0.04, "b" = 0.08 and so on
(Figure 1). At the output, decoding is done by identifying a character with a subrange rather than a single number.
Thus, an output in the range 0.02-0.06 is interpreted as character "a". Output in the subrange 0.06-0.10 is
interpreted as character "b" and so on. The same approach is adopted for representing the 10 digits, for example, "1"
=0.1, "2" = 0.2 and so on.

Corrupted G Corrected '' . Erroneous "" Corrected
names r• indexes 9-50-9 ind,.exes -

Figure 2: Three Level Neural Network

Instead of constructing a single network to achieve fault tolerance, we trained three different networks, each
performing a distinct function. The networks are organized as in Figure 2. The network Ni takes input name
(possibly misspelled) and is expected to cor-ect small errors and reduce large errors to smaller errors which can
hopefully be corrected by other networks The network N2 takes the output from N1 as its input and recalls the
associated indexes. Under normal conditions, correct indexes are retrieved. However, relatively large errors at the
input of NI still leave small errors at the output of NI (which is the input of N2) and causes an erroneous index to
be computed. Another source of error is inadequate training of network N2 itself. The possibility of errors in network
N?. is oreater than in N1 (or N3) sine. the. manning, from names to indexes is random. These possibly erroneous
indexes generated by N2 are ted to the network N3, which is expected to output corrected indexes (Figure 2). The
network configuration is as follows:
1) NI network: The input layer consists of 8 nodes, a hidden layer had 50 nodes, and output layer had 8 nodes.
2) N2 network: The input layer consists ofR nodes, a hidden layer had 50 nodes, and output layer had 9 nodes.
3) N3 network: The input layer consists of 9 noies. a hidden layer had 50 nodes, and output layer had 9 nodes.

Each of the three networks were trained independently, using the back propagation algorithm but connected during
normal operation. Perfect recall on error frce input required 1200 epochs. An epoch is defined as one training
sequence of all patterns. This in itself is an encouraging result, since it demonstrates the usefulness of BP for
efficient pattern association, Fifty names, each eight characters long, need 2000 bits of storage, assuming a minimal
5 bits representation for a character. Similariy, fifty 9-digit indexes with each digit encoded in four bits requires 1800
bits of storage. The network N2 contains only 67 nodes and is able to store 3800 bits of information encoded as a
random mapping. Besides, this network was not yet saturated and could hold additional name-index pairs. The results
indicated that the network is capable of learning complex (random) mappings very efficiently, and would work
adequately if error-free input is guaranteed. However, these networks were sensitive to errors at the input, and the
output was altered as well. For example, if the N2 network was given a misspelled name "kaufmramn" (correct
name "kaufrnann" ) the output index was "514790268" instead of the correct index which is "514790278". The
network N3 was built and trained to map all combinations of small errors to a valid output. Thus, if the N3 network
was given the incorrect output produced by the N2 network, for example "514790268", then it is expected to correct
this small error and map to the correct index. The input errors to the network N3 were provided by inadequately
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trained network N2, i.e., weights after 700 epochs were used rather than after 1200 epochs, at which time the
network performance was error-free. Three strategies were used to train N3 networks:
1) Each digit in the index was corrupted at random direction by +1 or -1. This gave 450 different digits in 50
indexes. The N3 network was trained on these 450 corrupted indexes plus the 50 correct ones.
2) Each digit in the index was corrupted systematically in each direction by +1 and -1. The 450 different digits in
50 indexes (which was corrupted twice, once in each direction), gave a total of 900 corrupted indexes. The N3
network was trained on these 900 corrupted indexes plus the original 50 correct indexes.
3) One N3 network was trained on the set of 50 error-free indexes to serve as a control.

The performance of each of them was about the same. In fact, the network trained on the correct indexes did a little
better than the nets trained on the corrupted patterns. The networks trained with erroneous inputs were able to correct
some errors, however, they also introduced some errors of their own (with error-free input) as a result of a tendency
to deviate from the input. The N3 network trained completely on correct indexes performed better in terms of recall
and correction to corrupted indexes compared to N3 network trained on corrupted indexes. This was counter to what
was anticipated (evidence from Kukich, 1988), and yet another method was tried to generate an error-correcting
network.

The NI and N3 networks implement the identity function for error free input. There exists a trivial network
performing identity function. A network of 9 input nodes, 9 output nodes with weights of I for corresponding input
- output node pairs and weights of 0 for other input-output pairs performs such a function. Such a network, however
does not generalize at all and passes all errors to the output unattenuated. We trained a three level network, each
having 9 nodes. The links connecting nodes in identical positions in the three layers were initialized to weight of 0.9
and the other weights were initialized to 0.1. The idea was to train the network to correct small errors; the final
network would still compute a function close to identity. The cross links between nodes in different positions would
give a limited error correction capability to the network. Two networks were trained, one with error-free input
patterns and the other with 950 training patterns. The weights observed for both the networks had similar structure.
However, the error correction capability of the network trained on 950 patterns was not satisfactory. The network
corrected some errors of small magnitude, but it also tended to introduce spurious errors of small magnitude when
presented with error free input.

5. Conclusions and Future Research

We have shown in this paper that connectionist networks and BP are suitable for implementing random mapping.
With appropriate representation, BP can allow the storage of large number of patterns in a small network. The
networks do filter out some of the small errors. As of now, we do not have a good method for training networks for
error correction without the overgeneralization effect. This may be remedied by further manipulations in network
size, learning rate etc. Encouraging signs from the research show that it should be possible to efficiently interconnect
networks trained independently to perform more complex tasks as well as to perform larger size of tasks. For
exampl,, 10 , ,,ch storing 50 indexes, can beN combined horizontl-" ally to achieve a .•500 index systeu.
Alteration in such a database would require retraining of only the affected subnetworks, thus making the update
process efficient. Multiple indexing can be implemented easily by training a network on each of the keys.
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Abstract

We present some new results on setpoint control based on reinforcement learning. Based on our results,
we show that one can design adaptive controllers for setpoint control problems. Our primary
application vehicle was the control of a nonisothermal continuously stirred tank reactor at its unstable
state. Experimental results demonstrate good learning performance when reinforcement learning with
state recurrence heuristics are used.

1. INTRODUCTION: REINFORCEMENT LEARNING AND SETPOINT CONTROL

Reinforcement learning has been applied successfully for simple control problems, sach as the pole-cart
problem, or the inverted pendulum problem, where the goal is to maintain the pole in a quasistable
region, but not at a specific setpoint [1, 2, 3]. However, a large class of control problems requires
maintaining the system at a desired operating point. In solving the problem of setpoint control, we have
employed Barto's [11 Adaptive Heuristic Critic (AHC) that uses two linear elements, the Associative
Search Element (ASE), responsible for the control actions, and the Adaptive Critic Element (ACE), that
provides a secondary reinforcement to the ASE. The action output of the ASE is a binary output, y(t),
defined by:

y(t) = fRE wi(t)xi(t) + noise(t)) (1)
where f is a thresholding step function, and xi(t), 0 : i • N, is the cunrent linearly decoded state. The
added noise term results is stochastic learning. The weight updating rule during learning is given by
equation (2).

wi(t+l) = wi(t) +a rl(t) el(t) (2)
where a is the gain, rl(t) the secondary reinforcement, and el(t) is the eligibility trace [1] of the state xi(t).

Rosen [31 speeded up thu AHC using the state recurrence heuristic that reinforces cycles around the
desired operating region. The weight updating equation given by (2) is modified as follows:

wlt\t+)Lj- = i r.(t, ,i(,, i- "2 r2 t) a 2-(t) (.3)
where a2 is a constant gain, r2(t) a positive reinforcement, and e2i the state recurrence eligibility that is
defined as follows for reinforcing shorter cycles more than longer cycles:

e2i(t) = 02 xi(t)y(ti, lsat/(dP2 + t ias if (t - ti,last) > 1
= 0, otherwise (4)

where 02 is a positive constant, and ti,last is the last time the system visited ith state xi(t).

Unlike previous work in applying reinforcement learning, we examined how it can be applied to
applications that require controlling for specific setpoints not regions of success or failure. We were
interested in examining i) the setpoint control of a complex highly nonlinear systems, and ii) the speed of
learning since high learning rates are appropriate for quick in-situ learning and generalization. A further
goal was to explore how the learning depended on the parameters of the AHC algorithm.

To define the points where reinforcements must be provided to the controller, we set tolerance limits
around desired setpoint (or the state), say Xd. If the tolerance of operation defined by the level of control
sophistication required in the problem is T, then the controller is defined to fail if I X(t) - Xd I > T. The
controller must learn to maintain the system within this tolerance window 2T. If the level of
discrimination within the tolerance window is 2T/n, then the pumber of states required to represent the
control variable is n.
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2. APPLICATION: UNSTABLE CSTR TEMPERATURE CONTROL

Our application vehicle for testing
reinforcement learning for setpoint control
was the unstable CSTR (continuous stirred ,
tank reactor) [4] in which an irreversible Level
exothermic reaction occurs (Figure 1). The
exothermic heat released during the reaction is

sigmoidal while the control coolant loop linear.
The reactor has two stable states and an Coolant• . .
unstable state with the unstable state being the A 8 .
optimum operating point. Thus, if the CSTR Coo•w•pni,,

reaches close to, or near the set limit of the Rtana --4

asymptotically stable temperature limits, a
failure is recorded. The CSTR temperatureis Figure 1. CSTR and Control
controlled by adjusting the real-valued coolant
flowrate. In our initial experiments, we let the controller produce appropriate incremental changes of
fixed gain to the initial flowrate given the current temperature and flowrate.

The following initial conditions were used. The initial temperature of the CSTR was chosen randomly
from within the tolerance window 2T. The initial flowrate was chosen as either the median value (of
possible flowrates) or one of two, high or low, values. A number of different experiments were run on: i)
the effect of different parameters on learning rate, ii) the comparison of different versions of
reinforcement learning , and iii) constant control output versus variable control output. The three
versions of reinforcement algorithms were compared were:

1) The basic Adaptive Heuristic Critic (AHC) [11
2) Adaptive Heuristic Critic with Recurrence Learning of Short Cycles (RSC) [3]
3) Recurrence Learning of Short Cycles near Desired Target (RSCDT) - an algorithm derived from the
RSC algorithm by modifying the eligibility equation (4) as follows:

e 2 i(t) = 0•2 xi(t)y(ti,last) 2 T/(I32 + t - ti,last)/(2T + I xi(t) -Xd(t) I) if (t - ti,last) > 1
= 0, otherwise (5)

where the factor 2T/(2T + I xi(t) -Xd(t) 0 reinforces short cycles around the desired setpoint Xd(t).

3. RESULTS

The parameter dependence ex,- riments verify in part the results reported by Sutton [7] who found that
the learning performance, measured by the number of steps until failure, is a bell-shaped curve with
respect to the gain ca. Our experience shows that the performance depends strongly the ASE gain
parameter a (and also P) and the decay rate 6: AHC shows no significant change in performance for a
wide range of cc (10-2 to 105). However, RSC and RSCDT exhibit a performance improvement for some
specific range of values of o (optimal values of cc were not determined). For example, in the case of the
RSC algorithm, a "good" value for cc was 30000 (-105). Similarly, in case of RSCDT, the "good" value for
was 1. The effect of varying 8 is equivalent to varying the effect of the reinforcement on the the
probability of actions taken before a failure occurs. Thus, a high value of 8 will affect the most recent
actions executed before a failure, while a low value of 8 will affect the actions taken in the distant past.
The desired value of 8 therefore depends on the response time of the system.

Our initial learning experiments were based on a simulation model of the CSTR as a set of difference
equations. All variables normalized between 0 and 1; desired temperature setpoint of 0.5, tolerance
limits at 0.1 and 0.9. Only negative reinforcement values, [-1, 01, were used. We found that since the
desired state not stable, a positive reinforcement provided at the desired setpoint tended to steer the
CSTR away from the setpoint. Positive reinforcements were only used in experiments with state
recurrence learning, in RSC and RSCDT. The performance of the controller was measured on three
different criteria: i) mean number of steps to failure (N), ii) mean average temperature, and iii) mean
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variance or the mean square difference (MSD), which for a given trial is defined as
MSD = 4(Z (Xd -X) 2))/N (6)

where N is the number of time steps over which the summation is applied. Measurements of
performance data were taken at increasing number of trials to observe learning and generalization. To
minimize statistical variations, each experiment was averaged over 10 runs.

Figure 2 shows a plot of the mean number of steps to failure as a function of the number of trials. We
note that state recurrence learning with or without reinforcing cycles near the desired target (RSC or
RSCDT) performs much better than the basic AHC algorithm. There does not appear to be a significant
difference in the performance of RSC and RSCDT algorithms. We only present the mean square
difference MSD measure in Figure 3. RSC performs slightly better than RSCDT. We found, however,
RSCDT does better than RSC when mean temperature is monitored.

Comparative Performance: Limit 500K MSD fromSetpoint During Trial:Limit 50K

100000

a0.030-
.10000

_. E
u. 0.020. RSC

1000 RSDT

" 0.010.8=. 100 -. z-A14KC >,

--- RSC C'• "-m-" RSCT

_•.. - .. . .. . --. _ _0.000 120--• 4-- 0_- -- -- -------------- 000
10 I -• F "

2b 40 6 8 80 100 0 20 40 60 80 100

Number of Trials Number of Trials

Figure 2. Learning Rate for Three Different Algorithms Figure 3. Mean Variance from Setpoint

As a test of how the placement of the tolerance window affects the mean temperature, an experiment
was synthesized using asymmetric tolerance limits. We set the setpoint at 0.65 while the tolerance limits
remained at 0.1 and 0.9. We found that the mean temperature was always in the range of 0.25 - 0.29. The
system thus learns to avoid failure-prone region near 0.5. When the tolerance limits were placed at 0.3
and 0.9, which is still asymmetric but less than in the previous case, the mean temperature increased to
between 0.53 - 0.55. Our empirical results indicate that the tolerance limits for setpoint control nmust be
placed symmetrically about the setpoint.

A more accurate CSTR model, represented by a system of differential equations, was also examined. An
added variable, control valve lag, was considered in some experiments. Another difference in the
accurate model was the incorporation of absolute setpoint temperature values: desired setpoint of 6000,
tolerance limits at 5900 and at 610'. Also, the sigmoid function describing the heat rate was asymmetric.
Two key results were obtained. First, for precise setpoint control, the constant gain controller does not
work well. Second, continuous output control (flowrate) does. In our experiments, the control output
gain was proportional to the reinforcement which in turn was proportional to the error. This resulted in
faster learning. Our scheme is similar in philosophy to that of Gullapalli 16] where the mean and
variance in the control output are explicitly controlled. The performance of the RSCDT algorithm is
shown in Figures 4 and 5, where P and C indicate constant gain control and proportional gain control
respectively. These experiments assume no valve lag.

While setpoint control can be achieved for systems without lag, for systems with lag some modifications
are necessary in the controller design. The basic setpoint controller cannot learn the proper control for a
lagging system because of the incorrect association of the failure and its most recent control action. In a
system with large lag, the failure results from an action that was executed a number of steps earlier. One
recommendation to correct this faulty association, beyond the scope of current experiments, is to include
the control actions of the last few, say four, steps as part of the state definition.
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Variable Versus Constant Gain Control Average Temperature With Proportional Controi

100000 620
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Figure 4. Mean Steps to Failure (RSCDT) for Figure 5. Mean Temperature (RSCDT) for
Accurate CSTR Model Accurate CSTR Model

4. CONCLUSIONS AND FUTURE WORK

We have presented some interesting results of using reinforcement learning algorithms to develop
adaptive setpoint controllers. A number of extensions to this work is anticipated. One immediate goal is
to investigate how the learning strategy can be applied to systems with lag. Other experiments directly
extend the current work for continuous control outputs [61. Further, to avoid state explosion, we can also
examine nonlinear encodings of the input space [51 by using multilayer inputs in the ASE. Another
research issue that was uncovered was the reinforcement algorithm parameter selection. Besides using
available knowledge about the system, other options include muitivariabie search techniques such as
geneti < "• 4Yet another extension of the current control strategy that can be investigated is
that of optimization, that is, satisfying multiple control objectives such as minimizing energy expended
while maintairing the desired setpoint.
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Pattern Recognition of Handwritten Phonetic Japanese Alphabet Characters
Kazuhito HARUKI, Hisaaki HATANO
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Abstract
In this paper, a new pattern recognition method using neural networks is

proposed, and its performance on handwritten phonetic Japanese alphabet data is
examined and reported. This neural network method is considered a useful
improvement on conventional pattern recognition methods, such as the multiple
similarity method. The effectiveness of the method has been tested on a data set
of 32,000 handwritten phonetic characters. The recognition rate was improved
from the 96.6% obtained by a mutiple similarity method to 98.0%.

Introduction
Recently, neural networks have been studied in various application fields,

with regard to-pattern recognition, control, optimization problems, and expert
systems. Character pattern recognition is one of the fields where neural
networks are expected to achieve new progress. Although research on neural
networks, especially for the visual mechanism, has a long history [1], research
and development of pattern recogiition techniques for actual use has for decades
been based on statistical and other approaches, rather than the neural network
approach.

The neural network approach was not considered to be a realistic approach for
the realization of an OCR (Optical Character Reader), which is an imnportant
functions in OA (Office Automation) appliances, because there was no theoretical
foundation for the implication of connections, and there were no learning method
adequately which covered the whole recognition process. In the proposed method,
the neural network is applied only to the final decision making part of the
recognition process. Therefore, the recognition rate can be always higher than
the rate achieved by conventional methods.

Input/Output of Neural Networks
The structure of our neural network system is shown in Fig. l. The input data

to the systeit is a set of similarities, calculated by the conventional pattern
recognition method, "the multiple similarity method"(2). Since there are 46
characters in the 'katakana' phonetic Japanese alphabet, the input consists of
46 values normalized into the range (0,1]. The output is the character's name
recognized by the system.

4eural network

n/totwork block ,io
tseconddecision sTo

•[ý t makink block

Figure 1: The Mroposed systern of neural nectworKs
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Structure in Networks
The system consists of the first decision making block, 20 neural network

blocks and the second decision making block, as shown in Fig.l.
There are 19 neural network blocks, each of which is specialized for

recognizing characters from a particular set, such as ( I, ý, a ), ( ni, \, h )
and so on. The reasons for constructing 19 neural networks are as follows. 1)
The multiple similarity method seems to make recognition errors only within
small categorized group. 2) Training many small networks is easier than training
one large equivalent network and reduces the total learning time, because
convergence is faster and more reliable due to the small data set. The special
'selection' neural network block selects the right categorized group from the 19
categorized groups mentioned above. The 19 neural network blocts are structually
identical: each neural network has 46 units on the input level, 10 units on the
hidden level, and 3 units on the output level. The 'selection' network has 46
units en the input level, 50 units on one hidden level, 19 units on the output
level.

Table 1-a: Distribution of total trainin s.amples

difference between first and second largest similarity values
0:070 [0.01 0.0? 0.03 0,04 0.o050, 0 .0,07 0,080.09 0 10

_I1,00 191 251 515 704 945 997 1252 1125 1126 1.94j11386
""-0,95 246 242 276 297 368 399 454 413 455 464 5314
0 ,90 122 1021 97 96 116 108 128 125 111 111 1387

" T.85 57 44 50 37 53 42 42 41 35 30 277

" 080 128 221 20 20 10 F 14 1717- 8 11 511
-0.75 16 101 5 4 4 6 3 4 5 4 7

0,70 6 3 1 1 o 1i 1 0 0 0 1
0 11 1 0 o 0 0o 1 0 o_

10.6 0 1 0 0 0 1 -0 0 0 0 0 0

Table 1-b: Distribution of training samples on which the
multiple similarity method fails

difference between first and second lar est similari values
Q.00 1 01 . 0 .02 0.0 .04 0 0 , t0 , 0,07 1 0,08 0.09ff O. 0 10-

S_.00 60 32 15 9 2 2 5 Z 3 1 2
" 0 *,95 112 64 41 29 2[1 12 7 . 5 4 2

0, 90 521 31 23 11 8 7 3 3 4 4 4
019.85 28 22 20 4 9 11 3 1 1 2 C

) o0 80 19 15 10 6 4 3 .3 0 0 2 2o ~-075 9 2 1 4 2 0 1 0 1 0 0

0,70 2 2 1 0 0 0 0 0 0 0 0
0. 65 0 0 1 0 0 0 0 0 0 0 0
60.60 0 1 0 0 0 0 0 0 0 0 0

'he f' i rst decision making block determines whether or not the input date must
be procussed by the neural networks. Tire rule is; "it' the difference between thi
first. and second( largest values is small, then the3 character selected by the
neural network'; is believed, otherwise the characLtr, whose similarity value is
largcst., is sclect(ed." The distribut.ion ol data with respect to 1the largest.
similarity value' and ' tIte (dif fe r [ncc ), tw eui t h ii -s t arId thIL secnC d I aI;, es t

va lies', is I ist•d ill tablus 1- , -n. If the trai, iini g s am pi e, whose di f ferI'crcr

t)etween first anidI sec oitd largest similarity viIlues is less than 0.05, is used,
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the data used to train the 'selection' neural network is reduced from 32,000
samples to about 5,000 samples. In the second decision making block, the final
answer is decided according to the data sent from the 20 neural network buocks.

Learning by Sample Data
The data of 64,000 handwritten characters, were evenly divided to two groups,

i) training data and 2) test data (non-training data). As the dictionary pattern
table in the multiple similarity method was made using the training data, the
recognition rate of the multiple similarity method was 97.6% for the training
data, which is better than the 96.6% rate for the test data. The weights in each
of 19 networks were converged by the backpropagation learning method (3) after
about 200 iterations for each of 2,100 training samples. The recognition rate
for each neural network is shown in table 2, where values in () are recognition
rates obtained by the multiple similarity method.

Table 2: Recognition rates for training data

group recognition rate group recognition rate
1. 1,3,a 100.0% (98.53%) 2. A,A,A 99.85% (98.36%)
3. , 99.93% (99.25%) 4. VY, 1) 99.07% (96,90%)
5. " 99.30% (96. 90%) 6. ,/ b , ý 100.0% (98.62%)
7. f,j,* 97.84% (96.17%) 8. #,jj 99.56% (98.78%)
9. ý,7,7 98.48% (97.75%) 10. i,:,a 99.81% (98.44%)
!I. J,ý,5 99.90% (p8.79%) 12. ,,7 98 78% (90819%)
13. 'J, t, 99.42% (97.42%) 14. klt 99.67% (99.24%)
15. ,.$ 99.62% (98.62%) 16. t,tJ 99.95% (99.42%)
17. Y,7,, 99.67% (98.76%) 18. J,],A 100.0% (99.63%)
19. 4j,, 100.0% (99,78%) ___

The 'selection' neural network learning nec'ded 37 iterations to achieve the
95.9% recognition rate on about 5,000 training samples. The output error was
reduced little by little as shown in Fig.2, but the recognition rate was not
improved for the non-learning data after 37 iterations.

(ERROR)

2.08

.. ... ....

8 1 H 3 (;52

T THE)

F igure 2: Er'r'or Coll vur•',c c ill bi ackp.ropaga.i hcii I nr ill,
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Recognition of the Test Data
Each neural network block recognized the test data at the rate listed in

table 3. The selection of these neural networks was performed at the 91o4%
accuracy rate. For the test data, the recognition rate after being processed by
the system of neural networks was 98.0%, while the rate given by the multiple
similarity method was 96.6%.

Table 3: Recognition rates for test data

group recognition rate group recognition rate
1. 1I,:, 98.58% (97.35%) 2. AAh 99.18% (97.80%)
3. , 99.69% (98.70%) 4. '9,91,9) 97.93% (95.50%)
5. ",'Y,Y 97.81% (96.52%) 6. , 99.79% (98.51%)
7. f,i,t 96.66% (95.58%) 8. #,i,t 99.02% (97.59%)
9. 1,7,1 98.09% (96.57%) 10. 3,::, 99.15% (97.68%)

11. 1,1,9 98.50% (98.41%) 12. 1,ý,7 98.25% (97.66%)
13. ,fj, 98.34% (96.48%) 14. k,?,t 99.14% (98.76%)
15. t,*, 98.72% (98.30%) 16. t,,t, 99.37% (98.99%)
17. 7,X,7 98.91% (97.81%) 18. I,),)A 99.86% (99.81%)
9 4 99,87% (99. 60%) - I

In this method, there are three sources of error: 1) the first decision
making block, 2) the 'selection' neural network block, and 3) the neural network
blocks of the categorized groups. The error rate 2.0% was the sum of the 0.5%
error rate due to the first decision making block and the error rate 1.5% due
to the 'selection' neural network block. There were no errors due to the neural
network blocks of the categorized groups. In order to further reduce errors due
to the 'selection' neural network, a new structure of the neural network and the
learning method seem to be needed. In order to reduce errors due to the first
decision making, it seems that the parameters in the multiple similarity method
should be adjusted.

Conclusion
This proposed method gave us very promising results for an OCR application of

neural networks. However, there are two problems to be overcome before
implementing the method on OCR equipmer t. The first problem is that training is
extremely slow. The second problem is that the present learning method is not
sufficient for processing new additional training data. We plan to examine the
effectiveness of the proposed method with many kinds of real data gathered from
various fields, and also explore what neural network structures and training
algorithms are well-suited for character recognition.
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SMILES, PARITY, AND FEATURE RECOGNITION-
J M Minor and R L Waterland

E. I. DUPONT
ENGG DEPT
Newark, DE 19714-6090

ABSTRACT
A previous article1 described the similarity least squares (SMILES)
procedure and its associated artificial neural network with optimal
number of hidden nodes for general vector mapping. This paper
discusses network behavior when this number is smaller due to
latent structures in specific applications. In this case the network is
forced to fit associations using reduced dimensions where it searches
for basic factors or features which adequately reproduces the higher
dimensional patterns.

1. INTRODUCTION
The original problem is to determine a vector mapping function from
p dimensions to q dimensions,

g(x) = y

from a sample of N data points. The domain x and range y data
vectors are transposed and concatenated as N rows to form the
matrices X and Y. Similarity least squares (SMILES) solves this
problem using

w' oCj = Yj,

where the weight vector Wx is composed of vector similarity values,
discussed below. The coefficient vector Cj is the jth column vector Yj
from matrix Y plus corrections by the SMILES procedure to optimize
the fit to the data. For moving average filters and local regression
estimation, Cj equals Yj.

It is well known that a feed forward artificial neural net (FFANN) can
learn arbitrary vector mapping functions from its input (domain
vector) through a hidden (representation) layer to its output layer
(range vector). The SMILES method shows how to build such a
network. A procedure is developed for designing a neural net
requiring polynomial-in-time training effort to associate two finite
sets of vectors. If the domain set of data vectors used to train the
network is adequate, the net generalizes or predicts from an
arbitrary input vector in a reasonable and stable fashion.
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Similarity of two vectors is a symmetric scalar function which is
monotone decreasing with the magnitude of the difference between
the two vectors. The following expression is selected to calculate
similarity between the row vectors of X:

p

ri: I (Xik-Xjkf,
k=1

Sii= -I
1+e+br,-a with scale factor b and shift a.

We will augment X with one column containing the magnitude
squared of each row vector (denoted r2) so that the corresponding
FFANN will require only N hidden nodes to calculate S (since each
node can calculate this similarity value between each data x vector
and any iietwork input vector from their vector magnitudes and dot
product). See Figure 1. Each hidden node is associated with a unique
specific point in the data set.1

2, FEATURE RECOGNITION
If the number of hidden nodes K is less than N, one could select K
data points strategically located in the data set to construct the K
columns of S so as to minimize the fit degradation. However the
very best K points, called support points, may not correspond to any
of the data points in the data set, but are optimally located in the
domain of the vector mapping function. During training the FFANN
will find these K optimal domain vectors as represented and stored
in the weights of the K hidden nodes. See Figure 2.

3. APPLICATIONS
This restricted SMILES as applied to example problems produces an
adequate fit to the data while using a similarity matrix of
significantly smaller size. This indicates that features or factors
produce the patterns in the data. In theory given adequate efficient
samples of data, the full similarity matrix is required to represent
the patterns in the data. In practice the optimal locations for data
are not known for unknown functions. The SMILES support points
found by neural net training tend to collect at or near max or min
areas of the function surface as shown in Figure 3. For the N-bit
parity problem, the N support points tended to be uniformly spaced
at N locations on the main diagonal of the associated N-cube (with a
support point at each cud). Each point locates in a unique
hyperplane of constant parity.
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.4,L CONCLUS1QIi
This paper shows how SMILES both restricted and unrestricted can
be used to fit arbitrarily complex vector mapping functions and
discusses the artificial neural net architectures which perform both
SMILES procedures. Understanding SMILES gives one insights into
how neural nets learn and perform tasks such as feature recognition,
pattern associations, and the N-bit parity function.
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Figure 2. Parity or Feature Network

X2 - Y2

1.0

Figure 3. SMILES WITH THREE SUPPORT POINTS

•Y4

0. 1

0 RILES

X4

It- 522
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Abstract A common problem in using neural networks to solve optimization problems is the lack
of an appropriate measure to assess the performance. This makes it very difficult to compare the
effects of modifications or parameter variations on the solution quality. The definition of a simple,
comparative performance measure proposed in this paper can be used to overcome these problems. The
use of the performance measure is demonstrated for two examples, the Traveling Salesman Problem
and the Assignment Problem. Tiie numerical results indicate a principle difference in the performance
characteristics of the two types of networks caused by a quadratic versus a linear cost function as the
o Ln-ly diffe-micuc btwccWn the nerworks.

1. Introduction

Since Hopfield's and Tank's (H&T's) demonstration in 1985 [3] that a special type of Artificial Neural
Network (ANN) can 'solve' complex optimization problems in principle, there has been much effort in
applying H&T's method to other optimization problems, or in trying to improve on I-&T's original results
[1, 2, 5, 8, 9]. However, one problem is the apparent lack of statistically relevant measures to assess
the actual performance of a modification or of a new approach. Since the performance of a network
solving the Tra,,elin, Salesman Problem (TSP), for examplc, varies considerably not only fur dfereuiit

.. I -. ... Z, -,.-I 1, U li

city-distributions and different problem sizes, but also for different random initializations, it is usually
not possible to prove a point or make a meaningful comparison by looking only at a few examples.

Therefore, it would be desirable to have some performance measure that gives a quantitative answer
to the following questions: 1) What is the effect of a parameter variation or a certain modification of the
energy-function on the solution quality, 2) How good is the solution with respect to the global optimum,
3) How does the performance change with problem size, 4) How does the performance degrade under
the presence of (simulated) faults, and 5) What is the performance difference of two networks solving
two different problems, that is, are there principal, problem-dependent performance differences in the
ANN approach to optimization problems?

The definition (,f a performance index described in the next section is aimed at answering the above
questions, and numerical results are given for two examples, the Traveling Salesman Problem (TSP)
and the Assignment Problem (AP). The paper concludes with a discussion of the results and a personal
perspective on the use of ANNs to solve optimization problems.

* Thi5 research was supported t,, ,ne National Aeronautics and Space Administration under NASA Contract No. NAS 1-18605

while the author was in residence at ICASE.
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2. How Good Is Good: Definition of a Performance Index

It is a common practice to compare the ANN-solution for an optimization problem to the average
or to the distribution of random trial-solutions by stating, for example, that a solution is approximately
among the 108 best out of 4.4 x 1030 possible solutions [3], or that 92% of the solutions are among the
best 0.01% of all solutions [8]. While this can provide some insight in the ANN performance, it is hardly
a practical way of answering the questions raised above.

Our approach is based on the fact that every instance of an optimization problem has two distinct
characteristics, the value for the global optimum (minimal cost) copt, and the average cost value cave
for a sufficient number of random trials. Then, for a given ANN-solution c of that problem instance,
a solution quality q is defined as

Cave C (1)

Cave - Copt

By relating the difference between random average and actual solution to the difference between average
and optimal solution, the quality index q becomes a nomialized factor with a value q=l if a given solution
c is optimal (c=covt) and a value q=O if the answer corresponds to an average random tour (c=cv,).

While it is not difficult to obtain values for Cave, the above definition of q does also require the
knowledge of the optimal solutions Cor. However, this is not a difficulty, because in almost all cases where
ANNs have been applied to optimization, problems, there are very powerful, conventional algorithms
readily available to provide values for copt. For NP-complete optimization problems like the TSP, where
the global optimum is generally unknown except for special cases, heuristic algorithms like the Lin-
Kernigham algorithm [4] can be used to provide values for copt. A possible event C<Copt is reflected by
a value q>l. A negative value for q indicates a solution that is worse than the random average (c>cAve).
Thus, the normalized value for q is independent of a particular problem instance and independent of
the problem size. Numerical examples to illustrate the use of this performance measure are given in
the next section.

3. Examples: Traveling Salesman vs. Assignment Problem

A detailed description of the original approach of using an ANN to obtain solutions for the TSP can
be found in [3]. In order to get statistically relevant results we generated a test-set of 10 different city-
distributions for each problem size of n=10, 20, and 30, and 5 different distributions for n=50 and 100.
Values for copt and Cave were obtained for each city-distribution by using the Lin-Kemigham algorithm
[4] and 105 random trials, respectively. Since the performance varies considerably for different random
initializations, 10 different initializations were used for each city-distribution of size 10 to 50, and 5
initializations for n=100. The value for q was calculated after each run of the simulator. The average
values for q are shown in Table 1 for different approaches and problem sizes.

Another important performance criterion not reflected by q is the proportion of valid solutions, which
is shown in Table I in parentheses. Since H&T's original equations did not conlsistently produce valid
tours, we implemented and compared different modifications. The best results so far have been obtained
by using the approach published by Brandt et al. (1988) [1]. All approaches in Table 1 use the same
cost-function, but with different 'weight-factors' D [3]. The following list gives the ANN-paranieters for
the different approaches listed in Table 1 by usit)g H&T's original notation:

I. WXi,Yj = -5 0 0 6 xy - 5006ij + 1000xyb6 ij - 200, Ixi 200(n+5), D 500
2. Txi,yj = -4 0 0 6 XY - 4 0 0 6ij + 4 0 0bXYhij - 200, Ixi 200(n+l), D 90
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3. Txiyj = -26 xy - 2 6 ij + 4'5 xYbij. Ixi = 2, D = I t
4. Txiyj = -5Sxy - 5ij + 2 6 xybij, Ixi = 9, D = 3

Note that all listed modifications of H&T's original approach require a change of the energy-function
and are not merely a variation of H&T's original parameters [1, 6]. All modifications use an additional
self-inhibition as the main difference to the original approach. There seems to be an inherent tradeoff
between obtaining a better quality and producing consistently valid tours. A forthcoming technical report
includes a more detailed discussion of these results.

Traveling Salesman : Problem Size n (Number of Cities)
Different Approaches 10 20 30 50 100

1.) Original Method of 0.905 0.903 0.851 -

Hopfield and Tank (0.15) (0.11) (0.02) (0.00) .
2.) Our Modification of 0.836 0.844 0.808 0.817 0.860

Hopfield and Tank (1.00) (1.00) (0.99) (1.00) (1.00)

3.) Modified Method of 0.829 0.816 0.830 0.852 0.902
Brandt et al. (1988) (1.00) (1.00) (1.00) (1.00) (1.00)

4.) Brandt et al. (1988), 0.936 0.926 0.923 0.913 0.927
different parameters (0.98) (0.97) (0.84) (0.58) (0.18)

Table 1. TSP solution quality q and proportion of valid solutions (in parentheses) for different problem
sizes and modifications. The values shown are. averages over 100 different simulation-rmns
each (for n=10, 20, and 30), 50 runs (n-=50), and 25 runs (n=100), respectively.

Assignment Problem: Problem Size n (Number of Elements)
Different Parameters 10 20 30 50 100

1.) A=B=2, C=2, 0ýl 0.988 0.960 0.975 0.978 0.987
(1.0) (1.0) (1.0) (1.0) (1.0)

2.) A=3=200, C=20, D=50 1.0 0.999 0.999 0.998 0.998
(1.0) (1.0) (1.0) (1.0) (1.0)

1.0 0.999 1.0 1.0 0.9993.) A=0=200, C=3, D=50 (1.0) (1.0) (1.0) j (1.0) 1 (1.0)

Table 2. AP solution quality q and proportion of valid solutions (in parentheses) for different problem
sizes and parameters. Each value is an average over 10 diffircnt simulalin, ... ns.

The Assignment Problem (AP), or sometimes called list matching problem, is to find the one-to-one
assignment or match between the elements of two lists that has minimal cost given the cost for each
individual pairing. What makes the AP interesting as an example for an ANN implementation is the
surprising similarity to the TSP. Both problems have identical constraints and the only difference between
an ANN solving the TSP or the AP is that the TSP has a quadratic cost function with an encoding of
the data in form of interconnections, while the linear cost function of the AP maps the data onto the
external current of the ANN. When the method of Brandt et al. is used to enforce the constraints [11,
the interconnection values for the AP are Txi.yj = -Abxy - Bbij + Cbxybij, and the external current Ixi
= A + B - C12 - DpXi contains the cost pxi for a pairing between X and i. A test set with 10 problem

t Additional differences of the approach of Brandt et al. (1988) are a lower gain, an offset in the transfer function, and an
initialization in the center of the hypercube [I1.
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instances of random values for Pxi was generated for each problem size, and the values for the global
optima cop were obtained by using a simple textbook algorithm [7]. Unlike the TSP, the ANN solving
the AP does not require any random initialization and actually converges to the same solution despite of
initial random perturbations. Numerical results for different parameters are shown in Table 2.

The results clearly indicate a fundamental difference in the performance characteristics between the
TSP and the AP, given that the AP-Solver never converged to an invalid solution (with a 'constraint-
network' identical to the TSP!) and obtained the global optimum in most cases with an average quality
far better than the TSP. It is expected that ANNs with a linear cost function generally show a much better
performance than those with a quadratic cost function. If this can be substantiated by either theoretical
or empirical investigations, then this is an important classification that helps to identify problems which
are more suitable to an ANN-implementation.

The use of conventional algorithms to solve optimization problems provides another interesting
perspective on the ANN performance. For example, simulating an ANN to solve the TSP for n=100
cities takes more than a day CPU time on a VAX 780; the Lin-Kernighan algorithm obtains a much
better solution in less than 3 minutes! Although a hardware implementation of the ANN might solve
the problem in milliseconds, the need for a VLSI -chip with 10,000 integrated Operational Amplifiers
to solve a 100-city TSP in real time is truly questionable. Thus, we do not think that large-scale,
classical or NP-complete optimization problems are the appropriate candidates for an ANN approach.
There are other, small-scale, special purpose, real-time control problems that could benefit from the key
characteristics of ANN-hardware implementations: speed, fault-tolerance, and low weight and power
consumption. Future efforts should concentrate more on identifying these problems than on fighting a
battle against conventional algorithms that seems hard to win.
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FISH DETECTION AND CLASSIFICATION USING
A NEURAL-NETWORK-BASED ACTIVE SONAR SYSTEM - PRELIMINARY RESULTS
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ABSTRACT

Sonar is currently being used to collect quantitative fisheries data (for classifica-
tion, enumeration etc.) as a safer, cost-effective and environmentally attractive al-
ternative to netting. This study explores the potential of a neural-network-based
system in detecting and classifying the fish from the sonar echoes. Preliminary
results are encouraging and a simple neural network was able to identify up to 91
percent of the test samples. When the identification problem is divided into three
subproblems, over 93 percent of the samples are identified correctly. If borderline
responses are discarded, the success rate increases to over 96 percent.

1. INTRODUCTION

Recently, there has been considerable interest in the use. of active sonar for collecting environ-

mental data. Sonar is currently being used to collect fisheries data by industry, university and
government groups for assessing fish stocks and also for impact studies. This recent emphasis
on sonar is attributable to the fact that data collection can be done more safely than present
netting practices, is non-consumptive and is more cost effective and less labor intensive.
However, much work has to be done before sonar can replace current netting practices. Al-
though advancements have been made in the areas of developing real time data collection and
analysis systems, existing systems are limited in their ability to detect or classify fish (a feature
that is critical if sonar is to be used as a truly remote system), and the application of a neural
network for the purpose may prove to be superior.

This paper outlines some preliminary work being done on laboratory data at Ontario Hydro to
explore the potential of neural networks for distinguishing fish from debris and for speciating
fish from the sonar echoes. Although neural nets have been used for other active sonar uses
before (Gorman and Sejnowski 1988, Roitblat et al. 1989), this is the first fisheries application
that we are aware of.

2. EXPERIMENTAL PROTOCOL AND DATA COLLECTION

A dual beam 420 kHz transducer (Biosonics) with time varied gain was used for the acoustic
sampling. The reflected signals were received through a Biosonics 101 sounder and a wideband
sonar detection module (WSDM), and were recorded using an FM recorder (Racal Store 7). The
recorded data were digitized at a 60 kHz sampling rate for use by the neurocomputer (SAIC). A
block diagram of the data collection and analysis system is shown in Figure 1.

The sampling was conducted in the laboratory where the transducers were placed horizontally in
a large semi-anechoic tank measuring approximately 15.5 m in length and width and 1.5 [n in
depth. The dual beam transducer was placed at one end of the tank, and the targets were from
3 to 9 m from the transducer.
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FIGURE 1 - DATA COLLECTION AND ANALYSIS SYSTEM FOR SONAR SIGNALS

Data were collected on single targets which included a ping pong ball, a leaf, air bubbles
(defined as debris) and four species of fish (walleye Stizostedion vitreum 70 cm T.L., rainbow
trout Oncorhynchus gairdneri 27 cm, brown bullhead Ictalurus nebulosus 23 cm, sturgeon
Acipenser fulvescens 80 cm). Although it is somewhat unrealistic that these species and debris
would occur in nature at the same time, it was felt that this would represent a goo., test case.
Data collected on fish involved tranquilized (MS 222) indiv~duals suspended approxirr,'t"ly 6 m
from the transducer using monofilament. The leaf and the ping pong ball were also suspended
in the water column using monofilament. The monofilament line was not detected using the
420 kHz transducer. A continuous stream of small air bubbles was created using a wand
(Bioweve Inc). The four fish samples were positioned laterally (broadside) with respect to the
transducer. Two additional sets of signals for the sturgeon, with the fish positioned frontally
and at 45 degrees to the transducer, were also collected, making a total of nine targets.

Single target data were obtained using a transmitted pulse width of 0.5 ms. Only the 6 degree
data were used and forty eight signals from each of the nine different targets were digitized at
60 kHz. The pulses were transmitted every 0.5 seconds and thus the digitized data consisted of
short pulses of signal echoes interspersed by relatively long periods of noise. The signal echoes
(192 points each) were retrieved from the digitized data using the transmitted pulse as a guide.

3. DATA ANALYSIS

3.1 The Neural Network Architecture

Feedforward networks with three layers of neurons were used and the backpropagation algo-
rithm (Rumelhart et al., 1986) was used to train the network. The first layer consisted of 192
units and the size of the output layer depended on the subproblem being studied, as described
below. The number of units in the middle layer was varied from 10 to 30 units in an attempt
to study the impact of the hidden layer size on the results. The weights of the network were
initialized to random values between -0.3 and 0.3 and the learning rate and momentum factors
(Rumelhart et al., 1986) were set at 0.01 and 0.6 respectively. All the simulations were done on
a SAIC Sigma 1I Neurocomputer workstation.

The training set consisted of 38 of the 48 signals for each of the targets and the remaining 10
were used to test the trained network. Training continued until all the training samples were
learned, or until learning saturated. The analysis consisted of three experiments described below.

3.2 Experiment 1

The first experiment consisted of a network with nine output neurons corresponding to the nine
targets described above. Table I (case A) shows the performance of the network on the test set
of 90 patterns. As the size of the hidden layer increases, the performance improves, but when
the hidden layer size is increased to 30, the performance drops, perhaps a case of overtraining.
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The best performing net correctly identifies an impressive 91.1% percent of the test patterns. In
comparison, the average human (non-expert) performance on the same set was about 75 percent.

3.3 Experiment 2

It was decided that the network would next be tested by dividing the classification problem into
three subproblems. In the first stage, the net is asked to detect fish from debris; in the second
stage, to speciate the fish once the first stagi has identified the echo to be that from a fish; and
finally in the t0ird stage, to identify the fish angle after the second stage has identified the fish
to be a sturgeon. The three stages have 2,4 and 3 neurons respectively in the output layer.

The performance of three layered networks on these subproblems are shown in Table 1 as case
B, case C and case D respectively. The best performances in the three stages are 94.4%, 97.5%
and 100% respectively. A combination of the three stages scores 93.3% on the original test set.
It is interesting to note in all the cases, the performance increases as the hidden layer is in-
creased to a certain size and then be;3ins to drop.

TABLE 1 - Success Rates (in percentages) on the Test Set

Middle layer neurons 13 15 20 25 30

A: All 9 targets 77 81 86 91 86
B: Fish/Debr'5 93 93 94 94 94
C: Fish Type 93 98 98 95 95
D: Fish Angle 94 97 100 97 97
E: Best of B+C+D 93

3.4 Experiment 3

The third experiment consisted of accepting only urambiguous responses from the network. In

the above cases, the network is forced to come up with a guess for each i'nput signal. Typically,
there are m neurcns in the output layer to identify rm classes. T'ae ideal outputs currespond to
corners on an m-dimensional hypercube and diagonal hyperplanes are used to divide the space
into m regions corresponding to the m classes. Figure 2(a) illustrates the case for m=2. It is
perhaps more logical to allow the network to respond "not sure" when the distance r (suitably
defined) from the actual output to the ideal outputs are all greater than a preset value. Figures
2(b) and 2(c) illustrate the idea when the maximum distance allowed, r, is based on the
Euclidean norm and the max norm respectively. Clearly, as r decreases, the confidence in the
response increases '-t the expense of an increasad number of "not sure" responses. Note that, to
ensure that two region- of interest do not intersect, r should be less than re, where r is half the
distance between two ideal outputs.

CIO._ .a NotSurClan Not Sure

Si!;:~i "...... .. ........
...... C a~s ("l ss

(b) (c)

FIGURE 2 - ALLOWNG "NOT SURE RESPONSES
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Table 2 shows the performances of the nets in the above two experiments with r = 0.9ro (max
norm). In the table, the success rates are based on the unambiguous responses alone. As ex-
pected, the accuracy of the net increases (comparing the corresponding cases in Tables I and 2)
and the best performing net scores over 96 percent in the test set. It was found that (not shown
in the table) the accuracy could be increased to 100 percent, if one is willing to accept a 35
percent "not sure" rate. This may indeed be the case in fisheries, since all the fish in a school
tend to be of the same species and thus not all the echoes need be identified.

TABLE 2 - Success Rates when "Not-Sure" Response (Percentages in Brackets) Is Allowed

Middle layer neurons 10 15 20 25 30

A: All 9 targets 80 (10) 85 (12) 87 (9) 96 (17) 90 (16)
B: Fish/Debris 93 (1) 93 (1) 95 (3) 95 (3) 94 (1)
C: Fish Type 97 (13) 100 (10) 100 (13) 100 (13) 100 (15)
D: Fish Angle 100 (13) 100 (13) 100 (7) 100 (10) 100 (3)
E: Besi of B+C+D 96 (6)

4. CONCLUSION

This paper has described some preliminary work on the use of a neural network, based on the
back propagation algorithm, for the detection and classification of fish from sonar echoes. The
results on the laboratory data are quite encouraging. The success using only the time domain
data is somewhat surprising and is a tribute to the wide band detection module used. However,
the result3 are preliminary and further studies are required. Studies involving fish at other dif-
ferent angles to the transducer, multiple target analysis, as well as evaluations of other network
architectures are in progress. Studies using power spectral methods are also under way.
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Abstract. A modified and simplified version of the Counter-Propagation Network is
proposed to self-organize all the possible vector pair correspondences of two vector sets
onto two counterfaced topographic maps (together called a twin topographic map) and
ftirthermore to find a combination of one-to-one correspondences between vectors of the

two sets with the distances between each pair minimized.

1. Introduction. By combining a portion of the topographic self-organizing map of
Kohonen and the outstar structure of Grossberg, Hecht-Nielsen [1] proposed a new type of
mapping neural network (Counter-Propagation Network or CPN for short) which functions
as a statistically optimal look-up table and could be al-plied to solve problems of pattern
recognition, function approximation, statistical analysis, and data compression [2]. In this
paper, with some simplification and modification of the CPN, a new model, called a twin
topographic map, is proposed to explore the potential possibilities of extending the CPN as
well as the topographic map to some matching problems. Such problems are encountered
in structural pattern recognition, especially in computer vision.

As a preliminary stage, here we mainly discuss the problem of vector pair correspon-
dence. Given two sets of vectors xi,x 2 ,... , x,, and yY7, 2,... ,Ym, with m > n, the purpose

of vector pair correspondence is to find a combination of vector pairs (e.g., n pairs) with
one vector xi corresponding to one vector yj under some specific criterion such as the mini-
mum distance between each pair or the nminimal total distance of n pairs. A computational
solution would be to at first construct a list of all the possible vector pairs with correspond-
ing mutual distances, and then based on the list, to select the desired combination under
the given criterion.

In the following section, with some modifications and simplifications on the CPN
model, a twin topographic map is proposed consisting of two counterfaced topographic
maps in which the counter-cooperative competing method of the CPN is used to search
for a bert-matching unit on this twin map. By randomly choosing pairs (xi, yj) as input,
all the possible vector pair correspondences of the two vector sets can be self-organized
onto the twin topographic map. Furthermore, based on these ordered pairs, it is possible
to obtain a combination of one-to-one correspondences between vectors of the two sets
with the distance between every pair of vectors niinimized. In the last section, simulation
examples are given.

2. Vector Pair Correspondence By A Simplified CPN Model. A Twin Topo-
graphic Map is defined as follows. As shown in Fig.l, two Kohonen topographic self-
organizing layers are counterfaced, the lattices of both having the same structure and the
same number of units with the sarne dimensional weight vectors. For convenience, one

lattice is denoted U-lattice with the weight vector of its i--th unit denoted by ui, and the

This work was supl)ortel by Tekes Grant 4196/1988 under Fýinsoft project
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other lattice is denoted V-lattice with the weight vector of its i-th unit denoted by vi. We
call such a system a twin topographic map and call a pair of corresponding units (ui,vi)
the i-th twin unit ti.

In order to self-organize all the possible pairs (zl,yj) of the two sets ml, x2,.. , x, and
Y1, Y2, ... , Ym on such a twin map, vector pairs are repeatedly input to train the map. Each
pair (x, y) is randomly chosen from the two sets with z being drawn with equal probabilities
from X1 Z2,... ,7, and y likewise from Y1,Y2,... ,y,•. Vector x is input to the U-lattice
and y to the V-lattice, and two steps are implemented. One is a cooperative-competitive
step, the other is a weight vector updating step.

The Cooperative-Competitive Step: The method developed in the CPN model is
almost directly used here. The twin units tj will cooperatively compete for the input pair
(I, y) and a unit t, will be the best matching twin unit (denoted r, = 1) under the following
condition:

1 if I, < li,Vi; (1.a)
0 otherwise,

Ii = -- + 11i- vII (1.b)

The Euclidean distance is used like in the original form of the topographic map [3].
Such a counter-cooperative competing method has an importance role in catching all the
possible vector correspondences which are implicitly contained in the input data.

The Weight Vector Updating Step: After an input pair (x,y) has found its best
matching twin unit t,, the two weight vectors u.,v. of this twin unit will be updated by
a topographic leaini"ig rule which has some difference both from that used in the CPN
model and that used in the topographic self -organizing map. In the CPN only the best
matching unit itself is updated. We do not consider this case here. In the Kohonen map,
since an organized topological map is expected, the best matching unit as well as the units
within its certain symmetrical neighborhood are updated. Although the latter updating
rule will be suitable for the twin topographic map, too, in this case a poorly ordered map
is obtained when the neighborhood has a symmetrical form. The solution is to let the two
lattices become ordered in a way as shown in Fig.2, i.e., each vector is ordered in one row
(or column) and similar vectors are ordered in nearby rows (or columns). To this end,
we use a neighborhood of rectangular structure as shown in Fig.3. The neighborhood is
placed horizontally on one lattice and vertically on the other lattice.

Find;ng a Minimum Distance Combination: In order to obtain on the ordered map
a combination of one-to-one correspondences between vecto, s of the two sets with the
distance between every pair minimized, the U- and V-lattices are labelled in the foilowing
way:

(1) Sequentally re-input each vector of the set X1 ,X 2 ,! ... ,X, into the U-lattice, and
for each xi, find the unit k on the U-h1tttice with

at < aj,Vj,,j = Ix - nill + lIUI - vll2  (2.a)

and label the unit by xi (or simply i).
(2) Then sequentally re-input each vector of the set yi ,y,.. , y. into the V-lattice,

and for each Yq, find the unit p on the V-lattice with
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op < 1rV,1, = IlYq - V4,11 + I1V,- - U'.11 (2.b)

and label the unit by yq or simply q.
(3) Label a t,,in unit by (xi,yj) (or i,j) if its unit on the U-lattice has label xi and

its unit on the V-lattice has label yj; otherwise, label the twin unit by (0, 0).
After labeling, the nonzero (zi,yj) labels constitute a solution of vector pair corre-

spondences since they indicate a combination of several vector pairs (e.g., n pairs) with
the minimum distance between each pair. For the case of m = n, if the number of such
(zi,yj) is just n and there are no more than one pair having the same xi or yj, then
the resulted n pair combination is a solution of the so-called bipartite matching problem.
Computer simulations have shown that a good solution or even the optimal solution could
be obtained for a number of examples of the bipartite matching problem.

3. Simulation Examples. Due to the limited space, only examples on one data set
are illustrated here. This is a two dimensional data set with m = n = 8. The eight x
vectors are (0,0), (0.5,0), (1,0), (0.95,0.5), (1,1), (0.5,0.98), (0,1), (0,0.5) and the eight
y vectors are (0,0), (0.53,0.1), (1,0.05), (0.98,0.5), (1.1,1.1), (0.5,1), (0.1,0.94), (0.1,0.5).
The para reters used in self-organization are as follows: the gain factor (a in [3]) is initially
0.5 and in the first 2000 steps linearly reduces to 0.1, after which it linearly reduces to zero
during further 20000 steps. The structure of neighborhood given in Fig.3 is used with the
ratio of the two sides 2 : 1. The initial neighborhood size N. of [3] is 3 and in the first
2000 steps it reduces to 1 and then remains unchanged at 1.

By randomly choosing pairs (z,,y~j) to train the twin map, it was found that after
1fo the total.~ .o r~ h2000A .... 60 pairs - t. of 4id) w-re alr-ady ordered on the twin map and the

optimal bipartite matching solution was obtained as shown in Fig.4a. Furthermore, after

5000 steps, the ordered list of all the possible pair correspondences was obtained as shown
in Fig.4b. Note that the order is quite near to the desired form given in Fig.2.

Experiments on symmetrical square shaped neighborhoods were also conducted using
the same parameter set. A result is shown in Fig.5. After 12000 steps, the twin map
was still poorly ordered with only a few pair correspondences being learned, and only 5
minimized distance pairs of correspondences were obtained. Experiments using the original
CPN method, in which only the best matching twin unit was updated, were also conducted
and the result is given in Fig.6. The result is quite bad; after 15000 steps the results both

on vector pair ordering and the minimum distance pair correspondences were much worse
than those in Fig.5.
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In a previous paper [Bour89] we have shown that optimization problems can be solved by

neural networks using the competitive activation mechanism [Regg87J, instead of the usual

Hopfield model. The application studied was the scheduling of low level satellite broadcasting
times for a given set of antennas. Several drawbacks arose in simulating some of the scenarios.
In this paper, after a short presentation of the application, we describe the drawbacks encoun-
tered and present a new implementation with a modified activation rule which give amazingly

good results in each case in which it has been tested.

L The Application

Low level satellites gather information during each revolution around the Earth. Since they
have a limited amount of memory they need to send this information to a ground station, or

antenna. This can only be done when the satellite is in sight of an idle antenna. Each satellite
has a priority level which is related to the importance of the information it has gathered. In
addition, there is a certain minimum broadcast time which the satellite will need to send its
stored data. Thus, given the required broadcasting time, the priority level of each satellite and
the time intervals withiu which the satellites are in sight of the various antennas, the problem

consists of optimizing the total broadcasting time weighted by the priority of satellites. This
optimization must be done with respect to the following constraints:

- Only one satellite can be assigned to a given antenna at a given time.
- The required broadcasting time of a satellite may be split between several antennas.
- The actual broadcasting time of a satellite is no more than its required broadcast time.

- A satellite cannot send its information to several antennas during the same time interval.

M. Notation

Let S.,Sp,...be the satellites, A4,A,,...be the antennas.
Let U, be the required broadcasting time of S,,, and p. be the priority of S,,.
Let ji',TP] be the time interval within which Sjis in sight of A4 .

Let [(•i,rl.')] be the time slice assigned in the solution to the ith broadcasting of S for a given
antenna. Then the optimization function is r p,Min[2 a a i U,,].

III. The previous solution and its drawbacks
We have proveu in [BourS9j that, for s, a given total number of divisions of the satellite broad-

casting times, there is an optimal solution such that the time slices r of the solution are

time slices resulting from the s divisions of the satellite broadcasing times (the set o.). Therefore
the problem amounts to assigning the time slices of the set o, to the satellites. To perform this

assignment, we defined a three layer network. A competitive activation mechanism was used

between two of the layers. The central layer consists of R nodes in which R-' represents the

tAcknowledgerments: Supported in part by NASA Award NAGI--06 and ONERA-CERT.
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assignment of satellite a to an antenna a, during the time slice i. Once the network has stabil-
ized, the nodes of the R layer at or near unity represent the solution set; the assignment of the
antennas to these satellites in the time slices indicated represents the network solution.

The R nodes of the same antenna and time slice compete for activity from a node of the C
layer; there is a node in the C layer for each antenna-time slice pairing for which multiple satel-
lites are competing. The nodes of the T layer keep track of the amount of antenna time assigned
to a particular satellite (there is one T node for each satellite). The activation of a T node is
then used to modify the weights on the competitive connections between the R and C node
layers. Initially, the weights on these connections are set to the priority of the R node's satellite.
As the total assigned time for a satellite increases towards its required broadcasting time, the
weights on the connections between the corresponding R nodes (of the satellite) and C nodes
decreases towards zero.

The solutions with the previous network were quite good, especially for those situations in
which there was no solution which could satisfy all of the requests; in such a situation, the
optimal solution was reached. But two drawbacks surfaced. First, with this method, an
interpretation of the observed activity level towards which the system converges is needed, since
the activity level could be any real number between zero and one. An antenna is assigned during
a time slice to the satellite with the most active R node among the time slice competitors. In
some instances, not all of the R nodes have stabilized to their maximum or minimum activation
level, so there is no clear-cut winner and interpretation is difficult.

Secondly, in this method the interpretation is quite impossible when there are several
equivalent optimal solutions. In this case the activity level is divided between R nodes which
belong to one of the optimal solutions. Sometimes, when there are many equivalent optimal
solutions, an R node which does not belong to one of the optimal solutions wins, producing a
non-optimal solution.

IV. The Revised Implementation

The basic equation of the competitive activation mechanism is as follows. Let a,{t) be the
activation level of node i at time t and let In,{t) be the summation of the inputs to node i for this
time interval. Then:

da,-(W - [Ivi,{•)-ajt)I[1-a,{t)]
dt

with In,{t)= E outjt); out,,(t) stands for the output from node j to node i. Let wi* be the strength
i

of the link from node j to node i. In our previous network, activation from node j was competi-
tively distributed to node i and its neighbors using:

outd( t )= w,,a, (t)

x;Wk/Zk(t)
Our modification to the implementation has been to use the following activation output func-
tions. The output from the C layer to the R layer nodes competing for a time slice on a particu-
lar antenna is competitively distributed according to

outjo(t)= wij(t)a,{t)aa(t)(i - > ak)

where k ranges over the competing R layer nodes. The outut among competing R layer nodes
is outolt)=- w(t)a,{t)a,(). Along with these new output functions, we have modified the activation
update rule for R layer nodes to be
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da,4t)

where Out{t) is the sum of the outputs from node i. The C layer nodes always remain at the
activation level 1.0.

The activation update function for the nodes of the T layer has also been modified. Let
r.(t) be the activity level of R,. T,(t)l - • p~rL(t) is the activation level of the T node T, at

time t. The weight modification function remains the same: wG(t)=p,

Our network is illustrated in figure, which shows an example with three satellites ab,c, one
antenna o, and three time slices 1,2,3. The two satellites a and b compete for time slice 1, b and
c compete for time slice 2 and satellites a and c compete for time slice 3. In the figure, the nodes
with the number 1 in the circle are nodes with a constant activity level which equals 1.

WS

Wb WL w, I -

Wb

W€bW

The differences between the original and the new versions described here are the following:

a) A new competitive output function distributes C layer activation among 1R layer competitors.

b) Links have been added between R nodes which compete with each other.

c) Decay has been added to the activation rule for the nodes of the R layer. I~ach R node R,"

decays K•l-r•)r~a at each time step, where ro. is the activation level of the nodeRandKia
small constant (10-•). The decay factor takes some activity from each of the R? nodes at each

time step; more activity is drained from the R nodes with low activation values than from those

with activities close to the maximum. Thus, when a solution is possible, the decay, in combina-

tion with the other R node inputs, produces a stable network with all 1? nodes at or near either m

their maximum or minimum activation values (1.0 and 0.0, respectively).

d) Noise has been added to the activation update rule for the R nodes. At time t± dt, the new

activation value of node a, is

a,-(t+ dt)= a,{t) + • [.999 + 1O-•sin(1lOOO~a(t)R]m
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where R is the number of nodes in the R layer. The noise factor breaks the symmetry given by
totally equivalent solutions.

V. An Example
We have simulated the first example in [Bour89] with the new network formulation to observe
the differences between the two methods. In the example, four satellites compete for nine time
slices:

TimeSlice 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9
Competing a a b a a a b b c
Satellites b b e b c c c d d

c d d

With durations U.- 5, Us= 2, U,= 1 and Ud= 1 and priorities p.= 1, p4= 2, p,- 3 and pd= 4. The ini-
tial method produced the following results:

Time Slice 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-- 8-9

a 0.818 0.850 * 0.885 0.868 0.868 * * *

b 0.072 0.085 0.264 0.115 * * 0.666 0.709 *

c 0.109 * 0.390 * 0.131 0.131 0.333 * 0.492

d * 0.065 0.346 * * * * 0.065 0.346

The new method gives these results:

Time Slice .0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

a 0.999 0.999 * 0.999 0.999 0.999 * * *

b 0 0 0.999 0 * * 0.999 0 *

c 0 * 0 * 0 0 0 * 0.999

d 0 0 * :I * 0.999 0

With our new method, the network stabilizes with all R nodes near their maximum or minimum
activation level. Those activations near 1.0 represent assignments of satellites to antennas for a
•-r-t••lar time slice. The lower table of re.uit shows that the. system solution assigns each satel-
lite its requested broadcasting time, using the given time slices.

"VI. Conclusions
Several drawbacks were identified with our original solution to this problem. Modifications

were made to the network and the activation functions, which kept the activation mechanism
competitive. The addition of a decay factor forced the network to make a decision since nodes
were driven to their maximum or minimum values. As the above example illustrates, the
modified system avoids the previous drawbacks and gives definitive results for this scheduling
optimization problem.

[Bour89] Bourret, P., S. Goodall, and M. Samuelides. "Optimal Scheduling by Competitive
Activation: Application to the Satellite-Antenna Scheduling Problem," Proc. IJCNN,
1:565-572, 1989.

[Regg87] Reggia, J. "Properties of a Competition Based Activation Mechanism in Neuromimetic
Networks," Proccedings First International Conf. on Neural Networks, 11:131-138, 1987.
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DASA/LARS, A LARGE DIAGNOSTIC SYSTEM USING NEURAL NETWORKS
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GTE Government Systems
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Needham, MA 02194

Major Jody DeJonghe Acres
Defense Communications Agency

Defense Communications Engineering Center (DCEC)
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This paper describes the DASA/LARS, a large system making extensive use of neural networks to
perform a number of diagnoses on satellite communication networks. The system was developed
by GTE under contract DCA100-88-C-0063 to DCEC, and is currently being used operationally at
the DSCS OC (Defense Satellite Communications System, Operations Center) at Ft. Detrick, MD.

DCEC's interest in neural networks was based on a desire to automatically detect anomalies that
cannot be detected with current conventional systems. Neural networks were preferred over expert
systems because the networks are trained from examples rather than defined by rules.
Furthermore, neural networks have the ability to generalize, identifying problems that are not
specifically included in the training.

The goal for the DASA/LARS application of neural networks was to determine the usefulness of
neural networks using live sensor information in an operational environment. As an added benefit,
if the prototype was successful, it could be left in place with an immediate operational capability.
The secondary goal was to learn about how to apply neural networks and what applications they
are best suited for. This information is very valuable for future applications.

DASA/LARS SYSTEM. Currently, the monitoring and diagnosis at the OC's are
accomplished in part by the DSCS Automated Spectrum Analyzer (DASA). DASA is a
conventional spectrum analyzer system that was developed and fielded employing 1970's
technology, Thbe system is used to diagnose spectrum anomalies associated with the Frequency
Division Multiple Access (FDMA) satellite links and requires extensive operator involvement. The
DASA/LARS is a DASA-like system using neural network technology to extend and automate the
diagnoses. The system was designed using GTE's proprietary LARSTM environment for
designing and training large back propagation type ANNs (artificial neural networks).

The diagnoses are based on two inputs: data obtained from a swept-frequency spectrum analyzer
and database information obtained from another OC subsystem, the DOSS computer. See Figure
1. The spectrum analyzer monitors the satellite downlink in such a manner that all the FDMA
carriers transmitting through the satellite may be observed. The DOSS database provides a listing
of all the authorized carriers and their planned parameters. DASA/LARS diagnoses problems by
comparing the observed spectral data with the planned parameters.

DASA/LARS uses nine different ANNs to diagnose a total of thirteen different problems. See
Figure 2. Data foimat probl"ms such ,s wrong modulation, wrong coding, and wrong SENU
(transmit filter) result fromn operator error at a satellite earth station. Data transmitted from these
earth stations may not be usable or may interfere with data transmitted from other earth stations.
Problems such as saturated transponder occur when the transponder operates in a non-linear region
due to excessive power demands. This can cause severe degradation of service to the users and
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often results from one or more earth stations inadvertently increasing their power beyond
authorized Limits. Autotrack failure is a type of earth station failure which will degrade data
transmitted fromn and received by that earth station.

X AN SPECTRUM LARS

: MODULATIONICODINGSUN 4 *DATA RATE
WORKSTATION C/KT

*SENU *
*CONNHCTrTY

FIGURE 1: DASAILARS INTERFACES

EXPECTIED ~ --.-- CARRIER POWER TOO HIGHiTOG LOW
C/kT's

S I& A IP AT 191 E ANN FlýSAThIJJTE TRANSPONDER SATURATION
SPE lrqý rNO C/kT ANTER1MINAL POWER TUO HIGHflOO LOW

PAJ INDIVEDUAL 4EXTIMATES ISAUIATO

SPCRA2-O NNIJ LOCAL RAINALL

TERMINAL AUTOTRACK FAILURE

CARMX ANNLOCAL A UPThrACK FAILUE

4o. WRONG MODULATION

EXFCTMANNWRONGCOI ONG

SPECTRA UNA Un-ORM CARR0ER

FIGURE 2: APPLICATION OF ANN'S IN DASA/LARS

DESIGN AND TRAINING. T1he challenge was to employ neural network technology to the
maximum extent reasonable to diagnose the satellite communication problems. The symptoms for
many of these problems were not well understood at the start. In order to characterize the
symptoms arid develop training examples, extensive recordings were made at the ITF (Integ-rated
Test Facility) at Fort Monimouth, NJ. The ITF has a satellite simulator as well as a large
population of earth station equipment. Most of the end problems of interest were simulated at the
ITF and subsequently Studied extensively 'in order to define the features which would cattgorize
each problem into a distinct class. The following paragraphs describe the design anti training
approaches used for three of the more interesting diagnostic features.
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Saturated Transponder. This feature diagnoses the onset of transponder saturation. The examples
of transponder saturation simulated and recorded at the ITF were initially studied to see which
phenomenon might be used for the diagnosis. Of several possible phenomena, the only one
consistently present was the occurrence of one or more carriers whose power was higher than
predicted, causing the remaining carriers to be suppressed (or attenuated). The closer the
transponder was to saturation, the more pronounced this phenomenon tended to become. The
resulting design first measured the carrier levels in terms of C/kT (ratio of carrier power to noise
power density), compared these measurements with expected levels, and used this difference data
to train a neural network. The network was trained to recognize four different levels of saturation,
ranging from an early warning indication to total saturation. By recognizing the onset of
saturation, the offending carrier(s) can be identified and the problem corrected before performance
is affected.

In addition to training on the simulated data, the training set was supplemented with hand
constructed counter-examples of cases likely to cause misdiagnosis. The concern was that some
combinations of rainfall (which attenuates all carriers) and permissible carrier power variations
might mimic symptoms of saturation. The examples were easily generated by applying common
sense reasoning. This demonstrated the ease by which a neural network can often be molded and
manipulated to perform as desired. The saturated transponder design used a 4-layer network and a
total of 131 training examples.

Data Format Probleoms. This category of faults pertains to individual carriers and includes wrong
modulation, wrong coding, and wrong SENU (transmit filter). This is a complex diagnostic task
sincee each carrier has a unique spectral shape. The first step in the diagnosis is to normalize each
carrier to a common bandwidth by applying a spline interpolation algorithm Next, theoretical
templates are constructed for each carrier for the nominal case and for all the possible data format
faults. The parameters obtained from the DOSS data base are used to construct these templates.
The nominal template is subtracted from the carrier and the difference is fed into the neural network
which decides if this is a good fit. If not, all the fault templates are subtracted from the carrier and
the differences are fed into the neural network, one at a time. The network determines which, if
any, of these templates provides a good fit. If the neural network does not recognize any of the
conditions, a diagnosis of "misshapen" will be reported. The design for the neural network to
detect data format faults underwent the greatest change during the project. It was originally
thought that it would be possible to use some average of carriers measured at the ITF as the basis
for template formation. Experience demonstrated that this gave inadequate performance, though it
was possible to compensate for some of the distortions by a complex adjustment procedure. In the
end, it was decided that nothing short of a complete theoretical calculation of templates would
suffice, and this was the approaLh finally adopted.

At first glance, finding the degree to which templates fit may appear to be a trivial problem, not
requiring the power of a neural network. However, it turns out that actual carriers have certain
regular types of minor deviations from theoretical. These deviations were easily accommodated by
modeling the deviations in the training examples and also by including simulated and actual carriers
in the training set. The data format design used a 4-layer network and a total of about 500 training
examples.

The sensitivity of the design may be adjusted by the selection of the trainuing examples. For
instance, if one uses a training set with large deviations as opposed to small deviations, there will
be (1) an increased occurrence of declaring faulty carriers as normal, (2) a decrease in false alarms
for normal carriers that have substantial irregularities, and (3) a decrease in the occurrence of the
"misshapen" diagnosis.

Autotrack Failure. A failure of an earth station's autotrack feature will result in failure of the
antenna to track diurnal variation due to orbital incline. This 'will result in significant losses during
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certain times of the day, and produces a very predictable carrier level pattern over a 24 hour period.
Collecting autotrack failure data would have been time consuming and would have disrupted the
normal operation of the system. The design, therefore, was based on purely theoretical training
examples. A mathematical description of the orbital mechanics yielded training examples for the
various types of periodic power variation patterns to be expected. Preprocessing by an FFT
proved successful in isolating the periodic components. The design used a 4-layer network and a
total of 17 training examples.

TEST AND EVALUATION. Four days of testing to a DCEC test plan was performed on the
system at the ITF in November 1988. As a result of this testing, design updates were made and a
final four days of testing was conducted at the lTF in April 1989. All diagnostic features appeared
to work correctly, with a few exceptions where it had not been possible, within the limited time
span of the effort, to adequately model, simulate, or otherwise characterize the fault.

The system was then installed at the satellite operations center (OC) at Fort Detrick. MD. It was
operated for a period and appeared to be performing exactly as it had at the iTF. A plan is
presently being formulated for performing operational testing, following which the system will be
turned over to the operators for their use. The system was designed at the outset as an operational
system and as such includes extensive user friendly features. A complete user's manual has been
produced which describes the theory and operation of the system.

DASA/LARS ENHANCEMENTS. It became obvious during design and development that
the neural network approach could easily deal with a yet richer information source. Richer
information would enhance the quality of the diagnoses and extend the diagnoses to a larger class
of problems. One candidate source is an enhanced spectrum analyzer which would provide phase
information in addition to amplitude information. Vector analyzers of this sort are available off the
shelf. Another candidate source is data from other OC subsystems. Some of these subsystems
have information available directly from the satellite which could greatly strengthen the diagnoses.

Another enhancement would be to utilize an expert system following the neural network diagnoses.
By this means, the operator could be presented with specific recommendations for corrective action
rather than a raw diagnosis. This enhancement is in accord with the goals of increasing the
effectiveness of satellite network control while reducing staffing requirements. Future upgrades
wdl consider these enhancements.

CONCLUSION. The conclusion is that back propagation ANN technology is sufficiently
mature for use in building operational diagnostic systems of a large scale. The approach of
defining the problem by means of training examples has proven to yield rapid designs. Training
examples may be readily used from a variety of sources such as real data, simulated data,
theoretical data, and examples constructed by common sense reasoning. The back propagation
type network provides a memory-efficient means for storing large numbers of training examples
and a computationally-efficient means for applying the examples to perform the diagnoses.
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AB STRACT

Scheduling data path operations into control steps is a crucial step in automatic synthesis of digital systems
from behavioural spe,'ifications. This has been proven to be an NP-complete optimisation problem. This
paper presents a new -cheduling algorithm based on Kohonen's rule for self organisation.The algorithm's
performance or.n well known benchmark examples is on par with the best reported in the field. We present
a few such examrples. The salient points of tie algorithm are an inherent hill climbing mechanism, efficient
implementation on massively parrallel structures and the ability to cope with a comprehensive set of cor.-
straints.

1.0 Introduction

In this section we give an overview of high level synthesis and concentrate on scheduling as its subtask.

High level synthesis of digital systems consists of translating an abstract behavioural specifiction of the
system to a regisLer transfer level structure. This is usually achieved in four steps:

1. Translating the v bst,'act behaviour expressed in algorithmic style to q graph based representation, This
grapl,. structurally represents the control. and data dependencies of tl'. operations in the behaviour. The
graph is usually called control and data flow graph (CDIiG).

2. TLis ste!p is concerned with allocation of hardware res urce. Tiese are fuictional units like adders,
multipliers etc, to realise operations, registers to store intermediate results between control steps and lastly

t~us~said riJaUe LUL -t t - C l -. ' .a only functional units are explicitly allocated and an attempt
is made duing scheduling (Step 3) and later during binding (Step 4) to minimise the use of registers,
busses and .

3. In this step operations are cssigned to contrnl step., or clock cycles. This is called operation scheduling
and is the main -oncern. of this paper. The primary objective of scheduling is to minimise the number of
control steps required to fulfill a behaviour, given a certain amounr of hardware roaource. Alternately,
given a global time constraint the scheduler could be asked to minimiL% the amount of resource required.

Steps 2 and 3 are highly interdependcrrt and are niot necessarily don-2 in the order presented heri. It is
common to iterate between them to improve .he overall peforimancc of the system.

Scheduling is crucial as it directly influunces tb's following cost variables of the synthesised structure:
a. The number and Lype of functional uaitsý. A s-n3rt scheduler can schedule a behaviour in same number
of control steps using fe,,er functional units. Thi' is•illuftrated by one of the example in section 4. By
senmalising data independent anthmetic operations, it can inflceice replacement of many single functional
unit-; like adders, subtractors by one multifunct-n ALU.

b. Timing constraints on functional traiis. By ilicreasing the rnumber of control steps between data de-
pencent operations it can suggest use of slower and thereby cheaper functional unit in terms of area.

c. The rtariige requirements (registers, memory). As the schedule dec~des how many intermediate results
must be held at any instance, It ifILt2erice the storage requirement.

d. Scheduling tog,.thef with binding also influence, the data tran.fer requirements.
The above cost variables are what a scheduler should mininuise in proportin of their hardware area cost.

4. T:ie last step inr aata path syr.hesis i!-; binding allocated furictional units to specific operations, registers
ernd other stoiage elements zo specific interinediate results and architecting riuxes and/or busses to reallise
Hato transfers.

2.0 Rclated work

in this secoo. .-e brielly review the scheduhlng techniques in use arnd their associated proble,;s.

The s ,m,-Ii'-., techr. ue is to !et the user do the sehcduhtir. 1lhs was used in the Silc s,,ytem, oie of the
earliest so cailed silicon compilL non systems. Coin ,ibnroaturia ex.plosion rdles out applicability of this tech-

lqutc tor even mnodo.-st size problems.
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The simplest automatic technique is known as As Soon As Possible (ASAP) scheduling. This approach was
used in CATREE and the Emerald/Facet systems among others. If the amount of hardware is restricted,
the operations are conditionally postponed when there is a resource conflict. This approach was used in
the MIMOLA, CMUDA and Flamel systems. The problem with this technique is that often less critical
operations block more critical ones, resulting in longer than necessary schedules.

This problem is alleviated in list schedulirg algorithms. In list scheduling, operations are sorted according
to their data and control dependencies. These are then scheduled one at a time in the order in which they
are sorted. If there is a resource conflict a priority function is used to decide which operations to defer.
The priority function usually only considers the local effect of assigning operations to control steps, result-
ing in locally minimum solutions. The priority function varies across the systems using this technique,
examples of which are SLICER, EMUCS and CATHEDRAL-Il.

Force directed sched, ling as used in the HAL system tries to overcome the problem of locally minimum
solutions by taking into account more global effect of assigning an operation to a control step. At each
iteration an operation is assigned to a control step which causes the least increase in overall concurrency
of operation, storage and interconnect requirement, weighed in proportion to their hardware area cost.
Though this algorithm is more global at each iteration, it is essentially a steepest decent algorithm. Once
an operation has been assigned to a control step, its assignment is not reconsidered: It lacks a hill climbing
mechanism.

Devadas and Newton incorporates a hill cllimbing mechanism in their system by using an algorithm based
on simulated annealing. They use a complex cost function and model the problem as a placement prob-
lem, an area where simulated annealing has been very successfull. The best that can be said about the
difficulty in parallelising simulated annealing is that it not easy: the tradeoff between accuracy and speed is
tricky.

The algorithm described in this paper is inherently parallel in nature, has a hill climbing mechanism and
has a bui!t in cost wcighin3 mechanism which allows it to do t-adieoffs in functional unit, registwl aild
interconnect requirements based on their hardware area cost. It is similar to HAL in the sense that it
reduces the resource usage by trying to uniformly distribute them over control steps as much as possible. It
differs from HAL and others in: a) treating schedule space as a continuous space. b) all operations
influence assignment of an operation to a position in the suliedule space; HAL considers the effect of the
assignment on concurrency of only successors and predecessors. c) it evalauates several solutions many of
them worse than previous, before settling for a near minimal solution.

3.0 The Self Organising Scheduling Algorithm

The primary input to the algorithm is a control and data flow graph (CDFG). It is a directed graph (V, A).
V is a set of node.- corresponding to the operations to be scheduled. A C V X V, is set of arcs connecting
nodes of V, these are called data arcs.
Besides CDFG, the other input to the algorithm is a set of constraints to be satisfied. These constraints
take the following form:

Type and number of functional units.
F = [(Ti, Ni), (T2, N2),... (T,, Ni).... (Tn, Nm)]
Where T. is the ith functional unit type and Ni is the number of functional units of type Ti. As the user
does not know how many units are needed Ni is kept sufficiently large.

A function g, mapping V to F; g: V --- T.

Global :ime constraint MAXK, cycle time and propogation delay of each functional unit type.

The output from the algorithm is a schedule table S = MAXKXF showing which operation has been
assigned to which control step. The number of units of type T, actually used are generally less than Nt,
lecided by the maximum used in any contol step for each type.

The components and organisation of the network used in the:; algorithm is as follows: The network is made
up of an input node pair I = (1k, it), a set of output nodes V corresponding to the operations to be
scheduled. Every output node v E' V is connected to the input nodes (I, If) by a weight pair W, = (Wk,
Wi). Let A and Ih be continuous ranc'om variables having uniform probablity distribution over the range
1.. MAX K and I..N respectively. Where, MAX K is the maximum number of control steps and N is the
total nu-h"er o functional units of all types. Further, let every output node v c- V occupy a place in the
rectangular ý;pace MA,_(KX N as specilied by :s a-;ociated weight pair (W, Vk, W. Then by applyiig
Kohonen's algorithm for self orgairration to adapt the weight pairs, we would uniformly distribute the
output nodes V uver thlii space MA V'Kx N
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We use the following _oncepts to describe the algorithm:

The data dependency distance between two data dependent operation is defined to be the longest path
between them in the CDFG (V, A).

At any instance t, the neighbourhood NEv(t) of operation v is defined as the set of predecessors and
successors to v whose dependency distance with v is less than cr(t). cT(t) is initially large and slowly de-
creases over time.

We also use a gain term which is a function of dependency distance x and the current neighbourhood
value and the initial neighbourhood INITo*. It also decreases with time and is defined as follows:

I - 2

-q (X, 0 = exp )
-' 2 1T (INIT cr - or (t) + 1) 2 o(t)

With every operation is associated a time frame and type frame. The time frame of an operation is defined
as the range of control steps between ASAP and ALAP values. The ASAP and ALAP values are deter-
mined by performing as soon as possible and as late as possible scheduling. Each functional unit type Ti
occupies a contiguous slot of length Ni in the N dimension of the schedule space S = MAX KxN. This
slot is called the type frame of operations which are mapped to this type by the function S: V --+ F.

The Algorithm:
Step 1. Initialise the positions, i.e. the weight pairs Wv= (Wk, W0) of all operations to small random values.

Set the initial value of or(t) to INIT._Y. We found that setting INIT-a to half the critical path in
CDFG (V, A) was adequate.

Step 2. Present a new input by generating a random vector I(t) = (h(t), h(t) ), such that probablity
distribution of lk and It are uniform over the ranges I..MAX_K and 1..N.

Step 3. Compute the distance div between I(t) and the weight pair Wv(t) of all operations whose time
frame and type frame includes the vector I(t).

d, = q (II(t) - W (t)) 2 + o . (Ik(t) - Wk(t))

Q is a control parameter. It takes values: at > 1.0. When ck is one, the algorithm tries to position
operations such that euclidean distance between them is as uniform as possible. By making it
more than one we make the algorithm more sensitive to the K (control step) dimension of the
schedule space. And by making ae proportional to the area cost of resources, we enable the
algorithm to do tradeoffs based on the area cost of resources.

Step 4. Select the operation v* with the minimum distance div.

Step 5. Update the positions of operation v* and its neighbours by adapting the weights as follows:
Wv(t+i) = Wv(t) + fl(X,t) (i(t) :± min_dist (v, v*) - Wv(t.))
For v E NE,'(t).
Here x is the dependency distance between v and v*

mrin dist (v, v*) is similar to data dependency distance, except that it takes into account
the actual protnogation delays and the effect of alligning operations to control step
boundaries. Plus sign is used if v is successor of v* and minus sign if v is predecessor to

v*. The above equation shows that both Wk and Wi weights of v* and its neighbours are adapted.
But in reality Wi weights are adapted for v* and only those neighbours which are mapped to the
same operation type.

Step 6. Decrease ar(t). Repeat by going to STEP 2 until o-(o) < 1.0.

Step 7. Round the Wk weights of operations to nearest control step or time boundary if the operations are
chained in a control step.

As every output node is connected to the input nodes by an independent weight pair, we can compute the
distance function of STEP 3 simultaneously for all output nodes, if massively parallel structures were
available. Same l,olds for step 5.
Initially, when the gain and the neighbourhood is large (analogous to high temperature in simulated an-
nealing). Operations can move over large distances, influence far off neighbours and ignore the presence
of other operations. As the neighbourhood and gain decrease with number of iferations, operations move
smaller distances, influence close, neighbours and become sensilive to the presence of other opera.
tions.This annealing like behaviour is responsible for the hill climbing mechanism in the algorithm.
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4.0 Results

We ran the algorithm on a number of benchmark and other examples of moderate to large size. The result
in all cases were on par with the best reported in the literature. Here, we present two of these examples:

The fifth order ecIliptic wave filter from KUNG85 was used as a benchmark in 1988 workshop on High
level synthesis and has been used by HAL88 and others. This example has 43 operations subjected to 60
data precedence constraints. We use this example to demonstrate the algorithm's ability to handle multi-
cycle operations and pipelined urnits. Like HAL88, we assume addition and multiplication takes one and
two control steps respectively. A multiplier is a two stage pipelined unit and coefficients are not necessarily
multiples of two, so multiplication is not performed by a shifter.
We set the global time constraint to 19 and 17 control steps and made available more than the necessary
number of functional units. In the first case the algorithm found the cheapest schedule using 2 adders and
1 multiplier. In the second case it found the fastest schedule using 3 adders and 2 multipliers. In terms of
number of functional units this is equivalent to HAL88. The results are summarised in Table 1.

Our next example is borrowed from MAHA86 and used by PAULIN88. This example illustrates the
algorithm's ability to handie mutiple operations per cycle. Briefly the constraints are: four control steps,
more than necessary adders and subtractors, both having a propagation delay of 40 ns and a cycle time of
100 ns. The results are summarised in Table 2.

HAL88 Self organised KUNG85Scheduler
c~0n'tr o

19 17 19 17 17components

adder (+) + + . + + + + + + ++
multiplier () * . ,

time (secs) 6 min 2 mm 3 min 1 3 min N.A

Table 1. Results of the fifth order eccliptic wave filter.
Note for KUNG85 the multipliers are not pipelined

PAULIN88 Self organised MAHA86Scheduler

4 4 4
adder + + ++ + +

Ss u b tr a c to r ( )-
time (secs) N.A 3 rmin N.A

Tabl 2. Results Of te 1ir-AHA codu sequehnce example.

5.0 Conclusion

We have presented a new algorithm for scheduling data path operations using Kohonen's Self Organising
algorithm. We have also presented the alogorithm's performance on well known benchmark example and
other example taken from current literature. We are presently working on extending the algorithm to
handle algorithmic pipelining.
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Abstract

A conceptual neural network has been substantially advanced to deal with a larger class of problems. When the
target outputs are not known in advance and must be generated in real-time, reinforcement learning can be
implemented using an appropriate performance function and/or a human expert. A simulation shows how to use the
conceptual neural network for the preliminary development of an autopilot model for a high performance aircraft.
The essence of this technique is to provide precise control of the aircraft during flight maneuvers utilizing an
appropriately constructed cost function which characterizes the physics of the maneuver. During training, the
network first learns a function to capture the aircraft and then it learns to generalize the function to reliably perform
the flight maneuver. It is significant that when the autopilot represente.d in the neural network is engaged, it
generates functions that provide autopilot command signals to the normal aircraft control system for a wide range of
off-conditions. This indicates that the neural networks may enable the expansion of autopilot functions of use for
aircraft control problems.

Introduction

Previous research investigations dealt with the feasibility of using a conceptual neural network for robotics. The
research work discovered that neural networks are capable of generalizing unknown topological inverse kinematic
transformations. Initial studies involving robots showed that a neural n twork theory can generalize transformations
from cartesian end-point coordinates to joint angle coordinates based e dy on correct input and output examples of
the mapping - supervised learning [1].

This current research work deals with the problem of learning an unknown transformation when there are no output
ewamples of the transformation, but there is a predefined performance criteria or human expert which grades the
performance of the network - reinforcement learning. For instance, in flight control, when controlling the longitudinal
axis of the aircraft, it is not known apriorn what the appropriate control system input should be to perform a
particular flight maneuver.

The purpose of this article is to show the potential neural networks hold for the real-time control of aircraft. As an
example, to assess the capabilities of a neural network for real-time flight control, computer simulations of a high
performance aircraft integrated with a neural network were performed. For these simulations straight-and-level
flight was chosen for the flight maneuver.

Aircraft Model

The aircraft model simulator used in this research was developed at the NASA Ames Dryden Research Center,
Edwards, California by Mr. Eugene L Duke. This model consists of a detailed, full-envelope non-linear at rodynamic
model, a complete non-linear control system model, and a simplified linear thrust model. The vehicle represented by
this model would be that of a modern fighter aircraft such as the F-15, F-16 or F-18. The simulator is written in the
FORTRAN language.

The nonlinear equations of motion used in the prograrm are general six-degree of freedom equations depicting the
flight dynamics of a rigid aircraft flying in a stationary atmosphere over a flat non-rotating earth. The simulation
program contains a 120 variable observation vector of such observables as surface deflections and power settings and
a 30 paramcter control vector corresponding to such parameters as pilot stick and throttle. I-or further details of the
aircraft model see reference [2].
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For the experiment reported in this article, the simulation was limited to a two-degree of freedom model in which
angle of attack and pitch rate were allowed to vary but velocity, angle of sideslip, roll rate, and yaw rate were fixed.
Thus altitude and pitch attitude were controlled indirectly using the longitudinal command signal. Which through the
aircraft control system model, directly controlled longitudinal surfaces that generated pitch rate and ultimately
changed angle of attack. A simplified representation of the model being controlled with the neural autopilot is taken
from [3] and is shown in Figure 1.

Conkgol4 Blyltw Akcrall
------------------------------------------------- -----------

S ' ' , hi

Figure 1. Simplified longitudinal model of the high performance aircraft and its control system

Cost fnunctlon

The performance criteria or cost function J for the flight dynamics of the longitudinal axis of the aircraft during
6traight-and-level flight can be described by the following equation:

J = H + (dH/dt) t + (d2 H/dt2 ) t2  (1)

where H is the height above or below the desired altitudc of flight in units of feet. When the above expression for J is
minimized, the flight path is constant and there is straight-and-level flight.

To use the cost function to control an unknown system, the desired control input Udesired (target for reinforcement
learning) at time (t), is selected in the direction of increased performance of the unknown system by the following
equations:

Udesired() U (t-1) + 'u Reinforcement (2a)desired desired

Udesired(t) = Udesired(t-l) - _aU De-reinforcemnent (2b)

where L\U is a change applied tc increase performance in the next time-step. The value of U desired is then used as a
target to train the neural network.

.R inforcement De-r inforgement Lyarnip!

In order to understand how the conceptual neural network has been advanced to deal with a larger class of problems
we construct a closed-loop model which integrates a neural network with the aircraft system (see Figure 2a). For this
system, input/output examples or more specifically the target outputs are not available. These target outputs must be
determined dynamically during the training cycle for the neural network.

-- L-5 .....
,ab eW 1 - Up1d.tl (c- e tA--A

Figure 2a. Closed loop system of necural network and airci aft nio~del (luring network trairling.
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At the first time-step the elevator setting front the performance function is input into the aircraft model control
system. The parameters H, dH/dt and d H/dt which are observable output signals from the aircraft model enter
the performance function and are used to calculate the current value of the cos, function. Then the parameters of the
cost function and the pitch of the aircraft were input into the network generating a network output.

If the cost function is closer to minimization then at the previous time-step, then at next instant of time the elevator
setting is incremented by a predetermined quantized setting (Equation 2a). This new elevator setting then defines the
desired target for network learning. This desired target with H, dH/dt and d2 H/dt2 as inputs are used to adapt zhe
weights of the neural network.

On the otherhand, if the calculated cost function is not minimized from the elevator setting at the previous time-step,
then the elevator setting is decremented by a predetermined quantized setting (Equation 2b).

After training the neural network is used to control the unknown system in real-time and it does not lag one time-
step behind the operation of the unknown system as it does while training. (See Figure 2b).

r O~ - PU Wf RI.6ý

Figure 2b. System during autopilot operation.

Neural Network Autopilot Application

The neural network used for this application was a layered network of three layers. Each layer of the network
completely connected to the next layer only. Back-propagation of errors was used as the update rule to change the
network weights. When to apply the update rule was determined by reinforcement learning as described. The
network was configured with 4 input processing units, 8 hidden layer units and 1 output unit. The network input and
output representation is as follows:

INPUTS OUTPUTS

H, height above target height Aircraft elevator control (DEX)
dH/dt
d2 H/dt

2

Aircraft pitch rate

The neural network was developed in software and was interfaced to the non-linear high performance aircraft model.
The elevator setting is used to control the flirht of the aircraft for 100 milliseconds. The initial connection strengths
of the network before learning were set to ^. randomly distributed within the range -0.2 to 0.2.

The real-numbers representing obseivable parameters of the aircraft system are encoded as neural signals (firing
rates) within the neural network by entering them inco the first layer of the neural network. The input signals vary
over a wide range and. scaling of the signals was required. The input signals were scaled using a hyperbolic tangent
function (tanh) in order to emphasize the mid range :bout zero of the input signal information.

Results

Figures 3 shows the flight path of the simulated aircraft for target heights abovc and below the training height. Three
different target heights of 15000, 15200 and 14900 fcet are shown.

Figure 4 shows the deviation about the target height. The maximum deviation above target height is 3.13 feet, the
maximum deviation below target height is *.1.9ft.

Figure 5 shows the flight path for the aircraft when the thrust is varied. Notice that t01C neural auto•pilot compensates
for the variation in thrust and controls the aircraft to the target hcight.
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Abstract

A significant problem associated with application of the Back Propagation learning paradigm for pattern
classification is the lack of high accuracy in generalization when the domain is large. In this paper we describe a
multiple neural network system, which uses two self-organizing neural networks that work as teaching data filters
(feature extractors), producing information that is used to train a generalization neural network. We find that the
modular neural network system described in this paper learns fast and generalizes very efficiently. The technique
was successfully applied to the selection of control rules for a Traveling Salesman Problem (TSP) heuristic, thus
making the TSP heuristic adaptive to the input problem instance. In these experiments, the multiple neural networks
system was trained with a collection of 50 problems and achieved 100% accuracy in identifying the best control
rules for the problems in the training set. These networks correctly classified 47 of 50 test problems not contained in
the training set. In parallel experiments with single generalizing neural networks (with differing numbers of layers
and topologies), generalization accuracy rates were in the 10-20% range. The high accuracy in the multiple network
system described in this paper is especially noteworthy because, despite the importance of the problem in
Operations Research, there was only a very limited body of knowledge upon which to base the control rule selection
decision until this study was carried out. In addition, the results shown here should generalize to many applications
employing back propagation for large domain data classification.

1 Introduction

The back propagation (BP) learning paradigm [1] is very popular among neural network researchers due to
its property of capturing high order structure inherent in the data. But, the accuracy of generalization depend upon
many factors. They are i) Network topology selection, ii) Network learning parameters selection, iii) Maintaining
rotation and translation invariant feature extraction of teaching patterns. iv) Completeness of representation of the
puobleun space in the teaching patterns. The key to hig' accuracy in generalization is human identification of the
salient invariant features in the input problem and presentation of these features to the neural network.

The BP networks have a problem of handling input descriptors of high cardinality. One way of reducing the
cardinality of the trahiing data would be to decrease the resolution of the input/output descriptors, but this would
lead to lot of information loss. The other way is to use some kind of data compression. In this paper we describe a
multiple neural network system which uses the BP self-organizing network [2] to eliminate the ambient noise,
created during data encoding and thus produce a concentrated high order form of the ,raining input/output. This
filtered training data is then used to train the BP generalization network. [3] The BP generalization network which is
trained with these high order concentrated features clearly outperformed BP generalization networks that were
exposed to training data without the feature extraction. We illustrate this point by the following Operations
Research application.

The Traveling Salesman Problem (TSP) is one example of a classical NP-complete problem, a problem that
is inherently difficult and the time required to find an exact solution increases exponentially with the number of
stops. Since optimal algorithms are highly unlikely to solve large problems, a heuristic is used by stopping with a
suboptimal solution. We use a selection-insertion type of tour construction heuristic as reported by Golden and
Stewart [4], in which stops not yet in the tour are selected according to some selection criterion (control rulel), and
inserted into the growing tour in a position determined by an insertion criterion (control rule2). The algorithm
repeats until all stops are in the tour. There are 6 selection rules and 6 insertion rules. For example, onc could select
the stop point closest to some stop already in the growing tour and insert in the position that cause the least increase
in the total distance. This would be the nearest neighbor selection rule and cheapest insertion rule. Thus there are 36
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different combinations of selection and insertion rules.
This TSP heuristic is static, meaning, the same predetermined combination of the selection-insertion rule

remains in effect until all stops are in the tour and for all types of problems. The multiple neural network system
described in this paper helps in the selection of the selection-insertion rule best suited to a given instance of the
problem. This makes the TSP heuristic adaptive to the input problem instance. Manual or Automatic selection of
these rules has been impossible as, there is a very limited body of knowledge upon which to base the decision. In the
following sections we describe this multiple neural network system and present the experimental results.

2 System Overview

The architecture of the complete system is shown in Figure 1. It basically consists of three stages which are
described in more detail in following sections. The first stage serves to create and encode the domain specific data.
The raw problem data consists of cartesian coordinates of stop location. This data is pre-processed to make it
invariant to scaling and rotation, producing a 30 unit problem descriptor vector. This encoded data is used as input
to the stop data feature extraction (SDFE) network . The raw performance data consists of 36 values of distances.
These distances represent the total mileage of the tour, generated by the TSP heuristic for a given combination of
the rule. The 36 values are normalized between 0 and 1.0 in the output encoding module which is used ;n the
performance feature extraction (PFE) network. These are the performance descriptors the system has to categorize
during on-line recall. The second stage extracts the features from the problem/performance descriptors and feeds
the resulting feature vector train to the generalizing network. The SDFE vectors and the PFE vectors ale stored in
two separate files. These two files are then used to train the generalizing network. Thus, we have 3 off-line trained
networks which we can now use for on-line recall. The third stage shows the on-line generalization run, resulting in
the rule recommendation vector. The reconstruction network is shown in dotted lines because it is used only during
the on-line recall phase, and no learning occurs here. The trained weights are copied from the PFE network. The
reconstruction network is precisely the bottom half of the PFE network after training.

Stop Data Feature
Problem Descriptors:: Extraction Network

Ip utte n I½ S lop data feature vector

Encodingu(p o i nts ) i e
Generalization

Stop10 
mt Z 

nt 
}i

Data /FO 2eunits

Performance Feature v- - 1

Reontrcio Recmndaio veto

Retwonstruction 
.etPerformnce Desriptor

PaternRlercommendation vector

Figure 1: System Architecture
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In Figure 2, we illustrate an information flow diagram during the on-line recall phase once all of the
networks have been trained. The new testing stop data is presented to the data encoding module, which produces a
30 unit problem descriptor vector. This problem descriptor is exposed to the SDFE network which intern produces
the 4 unit stop data feature vector. This stop data feature vector is then exposed to the trained generalization
network. The generalizing network on recall, produces the 4 unit feature recommendation vector, which is
presented to the reconstruction network. The original dimension of 36 unit performance vector is generalized by the
reconstruction network. This vector is decoded by using a high value close to 1.0 to represent the best selection-
insertion control rule combination for the given instance of the test stop data. Finally, the raw stop data and the best
rule combination is presented to the TSP heuristic, which in turn produces a TSP tour.

3 Data Encoding

Neural networks have the inability to recognize shifted or rotated versions of patterns used in training. Our solution
to this difficulty is to represent the input data in a way that is invariant to shifts and rotation. Therefore pattern
encoding of the input data is carried out before presentation to the neural networks as shown in Fig. 1. The raw
problem data consists of the stop point coordinates, their demands for service, and the number of available vehicles
and their capacities. All of the problems had 100 stop points. To adequately represent the stop data we used a real
valued vector of length 30 and a real valued vector of length 36 to represent the performance of the TSP heuristic.
Problem Descriptor 1. The geographical area is normalized into a 100 X 100 square area, then partitioned into
frequency classes by concentric rings. We used 10 frequency classes and this 10 valued vector represented the
percentage of the stop points observed in each of the 10 areas defined by the rings.
Problem Descriptor 2. To assure that tightly clustered groups of stops were adequately represented, we also
calculated the mean distance of die stops within each area from the ring that forms the inner boundary of the region.
The values were normalized into proportionate distances from the inner ring boundary, defining a corresponding
vector of real values, each between zero and one.

Problem Descriptor 3. Angle bF.ween pairs! o adjacent tops w.ith respect to thc ccntcr of t.e reg-ion were used as

the third input descnptor. The purpose is to capture clustering in radial sense relative to the depot. Frequency
counts within 10 classes were taken and a 10-unit vector of proportions within the classes was used as the
descriptor. Again note that the descriptor is independent of the radial location of a cluster of stops, but does provide
a measure of the relative dispersion of the stop points.
Performance Descriptor. The TSP heuristic were run 36 times with each combination of selection-insertion rule.
Each of the 36 performance values produced by the TSP heuristic, represented in miles are then normalized with
respect to the worst and the best rule cc ,ation during output pattern encoding. The value 0 representing the
worst rule combination and value 1 represemtng the best rule combination. All the values between 0 and 1 represent
the quality of the route length relative to the best combination, this is important information we wish to capture. We
also realized that the relative performance of the rule combination (Rulel/Rule3, Rule2/Rule6 ..) was sensitive to
the presence of the clustering in the location of the stop points.

4 Neural Network Architectures

We have used basically three types of neural networks, BP self-organizing feature extraction neural networks, a BlP
generalization neural network and a feed forward reconstruction network.
BP Self-organizing Neural Networks: As Figure 1 illustrates, the encoded problem data is presented to a SDFE
network. The role of this network is to concentrate the problem oescriptors into high order features that can jater be
used to train the generahization network. Thbe self-organizing paradigni forms an compact internal representation of
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its environment. In the TSP application, we choose to concentrate the data to a feature vector of 4 real numbers.
The number of hidden units required to represent the data was determined empirically. We expect that 4 to 6 units
would be adequate for many applications. The SDFE network has a 5-layer fan-in/fan-out architecture. The
network is trained with back propagation in an unsupervised mode, accomplished by setting the 30 output unit
values equal to the value of the 30 input units. Through this process of learning its own input, the weights are
adjusted in such a way that the activations of the 4 units in the middle layer summarize high order features of the
input problem that can be used in the subsequent classification. The PFE network is similar to the one explained
above, except that the input/output layer has 36 units.
BP Generalization Neural Network: This is a typical feedforward network, trained with the error back propagation
learning algorithm. The - work has 4 unit input layer, two hidden layers of 20 units each and an output layer of 4
units. During off-line tra.Ling, the generalization neural is trained using the 4 unit vector from the SDFE network as
teaching input and the corresponding 4 unit vector from the PFE network as teaching output.
Feed-forward Reconstruction Network: As Figure 2 illustrates, the feature recommendation vector that is
generalized from the trained generalization network is presented to the reconstruction network. No training occurs
in this network, it is used only during the generalizing phase of the system. The reconstruction network has the
same topology of the PFE network, but only the bottom half. Once the PFE network is trained, the weights and
biases are transferred to the reconstruction network. So, when the the feature recommendation vector is presented,
it remaps the reduced dimensional features back to the 36 unit original dimension with minimum average deviation
from all the patterns presented to the system during training. The output layer uses a high value close to 1.0 to
represent the best rule combination for a given instance of a problem.

5 Simulation Results and Conclusions

The purpose of the initial simulations was to determine if the BP generalization network would be capable of
categorizing 36 distinct classes. The encoded stop location data and the encoded 36 relative performances of the
TSP heuristic
were presented to a single BP generalization network. Several experiments were conducted on the single

generalization with differing numbers of layers, topologies and learning parameters. These experiments typically
recommended the best rule combination with only 10-20% accuracy. This led us to more experiments with the
multiple neural network system.

We trained each of the networks with 50 problem patterns. The SDFE network was trained with 50 problem
descriptors and the results of the run were stored in a file. This file contained 50 vectors of 4 units. The PFE
network was trained with 50 performance descriptors and the results of the run were stored in a file. This file
contained 50 vectors of 4 units. These two files were used as teaching input and teaching output for the generalizing
network. All the networks were trained on an IBM 3090 computer. After the network system was trained the
weights were downloaded to a SUN workstation. in testing the on-line recall of the multiple neural netwoik sysiem,
we ran 50 problems that the system was not exposed to. Each problem was run with each of the 36 alternative TSP
heuristic solvers, to provide an accurate measure of the multiple neural network system. Testing on the new 50
problems achieved an accuracy rate of 94%. This is in contrast to 10-20 % accuracy with single generalizing neural
networks.

The results of the simulations indicate that the proposed method of using high order concentrated features to
train BP generalizing networks, yields very high accuracy rates. We expect that the results of this research will
apply to a wide variety of applications, to improve the accuracy of categorization in back propagation networks with
large numbers of pattern choices.
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ABSTRACT
An artificial neural approach to the machine decomposition problem is

presented. Necessary conditions for the network processing capabilities are
established. The algebraic structure inherent to the decomposition problem is
exploited to enable formulation of a cost function with degenerate ground
states. A third-order Boltzmann machine that meets the required conditions is
developed and the results of simulations are discussed.

INTRODUCTION
We as humans seem to have a very natural and astounding capability to

efficiently plan and execute a given task regardless of the complexity or
level of the task description. The human brain has demonstrated, with as yet
no parallel, an outstanding ability to identify existing structures or
dependencies within a given task and formulate an efficient method of
decomposing the task into sub-tasks. If there is a way of emulating the human
brain's ability to decompose tasks, it is becoming increasingly clear that it
must be through a neural approach to the problem.

Decomposition techniques for task planning and scheduling currently rely
on symbolic and heuristic methods such as those employed in artificial
intelligence. Livingston and Serpen have used lattice theory to examine the
decomposibility of task structures modeled by finite state machines and
demonstrated the use of Boltzmann machines to plan decomposed tasks [1][2].
However, they have also stated that a significant part of the effort of
developing task structures consists of the combinatorially explosive problem
of finding the elements of the lattice of substitution property (s. p.)
partitions from which the decompositions are obtained. Since neural networks
have shown great promise in their capabilities to solve problems that are
combinatorially explosive such as the traveling salesman problem [3], we
exnlore their ume in or attemnt to circumvent the intrnet=hilty of the
partition search problem.

NETWORK THEORY
Without detailing the algebraic theory of automata we define s. p.

partitions on the state set of a finite state machine as collections of
nonintersecting congruence classes collectively exhausting the entire state
set [4]. Every s. p. partition defines a unique congruence relation between
every state of the machine. A congruence relation posesses the properties of
reflexivity, symmetry and transitivity and, because of satisfying the
substitution property, also preserves the next-state mapping on every state of
the machine under every input.

In order for a neural solution to the problem to have a direct and
intelligible meaning upon convergence of the network dynamics, the aspect of a
proper representation must be addressed first. To do so, we use an important
concept from relational algebras: the relation matrix [5].

* This research was supported by the National Aeronautics and Space
Administration under grant NAG-I-962.
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A relation matrix describes a binary relation R between any n elements
of a groupoid as follows

mij = 1, if iRj and

= 0, if iRCj,

where i,j E R & mij E n-by-n relation matrix M.

Therefore, the representation must be an NXN neuronal grid such that
=ij 1 "ON", if iRj

= 0 "OFF", if iRcj,

where i,j E R and Vij is the activation of any neuron corresponding to the

element mij E M. However, the number of neurons in the network that actually
take part in the dynamics need only be N(N-I)/2, since the properties of
reflexivity and symmetry are implicitly encoded in such a representation.

Having audressed the aspect of a proper representation, what follows is
the formulation of a cost or energy function that should reflect any violation
of, or compliance to stipulated constraints derived from the substitution and
transitivity properties.

To develop the energy function we must first establish the necessity of
using a third-order network to find s. p. partitions. Thus we state the
following theorem, omitting the proof for the sake of brevity.

Theorem; To determine the smallest transitive relation between the states of
a finite state machine, it is aecessaty for a neural nietwork to extract
third-order correlational information from its input set.

Illustration
Consider a neuron "ON" in the position (0,2) and another "ON" at

position (0,4). This directly reflects a proposed equivalence betveen states
(0,2) and states (0,4). But since equivalence is transitive, the states (2,4)
must also be shown as equivalent by the network. To verify thi5 fact, it is
now clear that the third neuron responsible for displaying the equivalence
between states (2,4) must be "ON" whenever the other two are "ON". Thus the
decision for any one neuron must be based upon the activations of pairs of
other neurons.

Cost function formulation
Based on the theory developed in the preceeding material, the energy

function is derived in parts by considering each factor responsible for
reflecting the state of the network with respect to each constraint
individually and then summing the parts.

The first term represents the transitivity constraint:

E1 = IKtransitivitY(Xi Ij 2k(VuxVjk+V4xVk+VjkxVj, - 3xVxxVsXVh ) )I.
his term equals zero only when the current partition reflected by the present

state of the network does not violate the law of transitivity, but is positive
in all other situations.

Next is a constraint which forces the substitution property:
E2 = Knext state (Y j.•(V4 + ve. I- 2xV.XV ) i ) 1).

This term is zero only when the next state function is preserved intact in the
sense that state equivalence and image equivalence are both preserved in the
current partition generated by the network.
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The final term reduces the chance of finding trivial partitions:

E3 = 1K trivial(Xi X;V -equalsize blocks enforcer) 21.
It equals zero only when the total number of neurons "ON" in the network
e::actly equal the user specifiable parameter "equal size-blocksenforcer" and
becomes positive for all othei cases.

The total energy is therefore
R = El + E + E3. (1)

If the correct values for the parameter "equal size blocks enforcer" are
provided, the network can be influenced to reJax to an s. p. partition that
contains a small number of blocks. This is a particularly useful solution in
the decomposition process, since what it essentially means is that a large
number of states of the original machine mode] are equivalent, resulting in a
highly refined decomposition.

The effective values for the gains, K_transitivity and Knextstate,
may be set to unity because of the equal importance of both these constraints.
The function of Ktrivial is only to make sure the network avoids finding the
two trivial s. p. partitions typically denoted by x(I) and •(o

The ground state of E was kept degenerate meaning that all global minima
in the landscape for E must occur at E = 0 and correspond to solution points
for the problem. This offers the attractive advantage of the elimination of a
search for the gain parameters.

The Hamiltonian function formulation for a third-order constraint
satisfaction network is

E = -(It3)x[X:j ZjX2;~ ~ j
which, on comparison with equation 1 yields an algorithm for computing the

entries to the three-dimensional weight matrix of size [N(N-l)/2]3. Imposing
the following conditions:

Wiii = 0 and Wijk = Wijk = Wkji = Wjik

to ensure symmetry and no self-feedback guarantees that the energy of the
network is nonincreasing [6].

NETWORK SIMULATIONS AND RESULTS
In all our simulations, an attempt by a third-order Hopfield network to

solve the problem failed. This is an inevitable consequence of allowing only
downhill moves since the E function has multiple extrema in it's landscape. A
third-order Boltzmann machine produced very good results. The artificial
temperature was updated using the classical simulated annealing (CSA) schedule
[7]

Ta(t) = Tmax/log(l+t).
When Ktrivial is set to zero and Ktransitivity and K next-state are

each set to unity, the network settles occasionaly to one of the trivial s. p.
partitions zw or rq). If it is necessary to avoid this, setting K trivial to
unity and using appropriate values for the parameter
"equal_size blocksenforcer" will guarantee non-trivial s. p. partitions. It
must be pointed out that this can sometimes lead to a parameter search in
order to arrive at a value for "equalsizeblocksenforcer" that will keep the
ground state of E degenerate. Experience has shown that the number of times
trivial s. p. partitions are generated is small relative to the number of
occurences of non-trivial s. p. partitions. This indicates that such a
parameter search can be eliminated by letting Ktrivial be zero as sueqested
earlier.
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Figures 1 and 2 show the initial and final states of a third-order
network which finds the s. p. partitions. Figure 1.b represents the partition
x= (0,2,4;1,3,51 on the state set of a modulo six counter which was acheieved
in 30 time steps. The partition .r = i on the state set of
another machine with 9 states and 3 inputs as shown in Figure 2.b was obtained
in about 500 time steps.INN

(a) (b) (a) (b)
Figure 1. 6x6 network. Figure 2. 9x9 network.

CONCLUSIONS
This work demonstrates that a neural approach to the decomposition

problem offers a via'ble alternative to existing sequential search methods.
We have shown the necessity for the use of a third-order network for

achieving a neural solution to the problem of task decomposition. A network
with a deterministic update rule for it's neurons such as a Hopfield network
fails to solve the decomposition problem because of its tendency to be trapped
by local minima. A third-order Boltzmann machine which incorporates a
stochastic element in its update rule is successful in addressing the same
problem. An interesting aspect of the network is the absence of any "tuning".
The i.mplemented network scales favorably with the size of the state set of
the finite state machine model.

The performance of the network model as implemented with the present
architecture does, however, degrade with the size of the input set of the
finite state machine. Real world problems in task decomposition can be
expected to have large state sets as well as large input sets. A strategy
based on the intersection of lattices of sub-groaipoids for circumventing the
input scaling problem is currently in progress and preliminary results are
very encouraging.
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Abstract
Artificial neural networks (AINNs) are stated to be inherently fault tolerant by nature of design.

However, little research has been done to substantiate this claim. In this paper, we will invesdgate the
fault tolerant abilities of a forward connected neocognitron, a neural network designed for visual pattern
recognition. Simulation results are presented which show the ability of the network to tolerate faults dur-
ing operation and to overcome the faults via learning.

Introduction
Due to the massively parallel nature of ANNs, conventional evaluation techniques such as combina-

torial or Markov modeling become computationally ii'tractable. Consequently, an approach similar to
that used by Belfore and Johnson [Belfore 88] is taken, in which qualitative analysis based on empirical
data is used to deterrntne the fault tolerance of the network rather than trying to set up a mathematical
model. In conventional fault tolerance, the reliability of a system is in general, a primary design concern
because these systems solve problems whose nature requires absolute solutions. On the other hand,
ANNs solve optimization problems where the solutions required need only be sufficient. As a result, per-
formance then becomes the primary metric of a neural network. In this paper, perforinability is defined
as the probability that the system performance will be at or above some level given some number of faults
injected into that same system. [Johnson 89]

The neocogznitron is a hierarchial multilayered network of processing elements. Its desigrn allows
the network to select simple features from a stimulus pattern and then combine them to reconstruct the
original pattern. The processing elements have inputs and outputs of non-negative analog values in order
to correspond to the instantaneous firing frequencies ot biological neurons. Variable and fixed connection
weights in-between these cells are used to gaide forward signal flow. For brevity, the reader is advised to
consult the Fukushima papers for a more detailed discussion on the mechanics of this network.
[Fukushima 88]

Analyical Methods
To commence with a fault tolerance analysis of a neocognitron model, we chose to use an existing

computer simulation which we later modified for use as a test bed. In the simulation, parameters such as
the number and size of the cell planes, the number of layers, the size of the connectable area and the size
of the input pattern could be altered. The simulation parameters we used modeled a three-layer 7x7 neo-
cognitron consisting of 2,882 elements and 77,835 connections.

Three relatively simple distinct binary geometric patterns were used to train the network. This
minimized the number of identical features between the patterns. The reason for the training set was
twofold. First, it allowed the neocognitron to easily leamn and distinguish between the three patterns.
Second, and more important was that if an injected fault was localized to a cell plane, then the network's
performance should degrade for the one pattern associated with that cell plane. If multiple faults are
introduced with each cell plane having an equally likely chance of being compromised, then an overall
degradation in the performance of the network should be observed. In all, this eases the constraints on
grading the performance of the network when faults occur.

In our study of the neocognitron we have concentrated on the effects of two types of permanent
faults on two basic building blocks of the network: a) the connections, and b) the processing elements.
Should a physical implementation of the neocognitron ever be attempted, it would be inevitable that com-
ponent failures wnuld exist. We can make no assertions as ,o the likelihood of which and how a com--
ponent will fail in a physical implementation since no attempt has been made at -nalyzing the fault
tolerant behavior of a hardware-based neocogrTitron. However, we do believe that the issue of faults
stuck at zero and stuck at random are relevant for discussion. An analysis of connection and element
faults was made but for the sake of brevity we will only discuss element faults in this paper.

In modeling stuck at zero and stuck at random faults in the processing elements, we assume that a
fault occurs in the element's calculation of the activation function. With a stuck at zero fault, the cell is
assumed to be functionally dead, producing zero output regardless of its inputs. A stuck at random fault
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would indicate that tUe cell is producing a random output regardless of its inputs.
With the simulation code, a test 3hell was developed to inject faults into the model. Two phases of

the neocognitron were analyzed: a) the ; erforrnance phase, and b) the learning phase. The performance
phase neocognitron is the "end result" of self-organization. In this phase, the network has completed its
learning. There are no more weight modifications and, consequently, the internal variable weights are
made permanent. The learning phase neocognitron describes the state of the network before the perfor-
mance phase. Of interest from a fauit tolerance viewpoint is the 'winner take all" mechanism. Fukushima
asserts that this mechanism provides fhe network with a sclf-repairing function. Specifically, Fukushima
states, "If a cell that has responded strongly to a stimulus is damaged and ceases to respond, another cell,
which happens ro respond more strongly than others, starts to grow and substitutes for the damaged
cell." [Fukushima 88] The purpose of this work is to test the validity of this hypothesis.

During the performance phase, element faults are introduced in the following manner: a) A type of
element (u,, u., u,) is chosen to be fauny, b) The locations of all the faults are then chosen to be in a single
sublayer, c) Locations for a chosen r,umber of faults within the sublayers are randomly generated, d) The
elements chosen to be faulty then ha ..e all of their outputs set at zero or at random.

Once a chosen number of fauits has been introduced, the network is run to identify a pattern it has
already learned. Of the eight outmun cells, a count is made of those cells whose outputs are greater than
10-. This is a heuristic value chose., with the knowledge that typical output values for cells not firing are
in the range of 0 - 10-4. Fifteen Lrials per chosen number of faults injected were made. Ideally only one
cell will fire per trial. If this is the ase a count value of one is given to that trial. If two cells fire, a count
value of 0.5 is given to that tri:,l. 1,1 three or more or no cells fire, we arbitrarily say that the network has
failed and give it a count valuc of zero.

In the learning phase we co, centrated our analysis on the elements stuck at zero. As before, we set
each trial run such that faults orncvr in only one layer and with only one type of element. After the loca-
tions of the faults have bcý -,. rindornly generated, the elements specified to be faulty have their ouiputs
set to zero during all iterati.mnc of the learming phase. Performance is measured after the learning phase is
completed.

The neocognitron correlates input patterns with a unique uc cell in the recall layer. However, the
selection of the pattern 4-* ur cell correlation is arbitrarily made by the network during the learning phase.
Should an element's output be changed during the learning phase, there is no guarantee that the pattern
4 uc cell correlation will be the same as that for the fault free case. Regardless, our definition of perfor-
inability remains intact, for as long as a correlation is made between an output cell and an input pattern,
the network is said to work. As such, the methods used in determining the ",rformability of the perfor-
mance phase network will still apply to the learning phase. For our analysis, 10 trials per chosen number
of faults injected were made. In addition, a performability analysis of the network with respect to shifted
patterns was made.

Discussion of Results/Conclusions
Multiple runs of fault-injected neocognitron models were taken in an attempt to obtain "statistically"

significant results. However, given the length of the simulation runs, limited CPU time restricted the
amount of ciata that could be gathered. Nevertheless, the values that were used were then normalized to
obtain performance and % damage values. % damage values were determined by dividing the number of
faults injected by the total number of elements categorized to be faulty.

Performance Phase
For the performance phase neocognitron simulation, performance comparisons between layers were

made for both stuck at zero (s-a-0) and stuck at random (s-a-r) fault models. Our results have shown that
there is a distinct correlation between the type of fault injected and response in performance of the net-
work. For the excitatory elements (us, u,) in the first and second layers, s-a-r faults appear to have a much
more damaging impact on network performance than s-a-0 faults. This is evidenced by the simulation
results which for example show that with s-1-0 faults on s cells, the network can absorb as much as 20%
damage to the elements and still maintain at least 80% performance, regardless of the layer attacked. On
the other hand, u, cell performance under s-a-r damage drops to zero with oniy 3% damage, regardless of
the layer attacked. Similar observations can be said for the uc cell response. To explain these results we
offer this hypothesis. When s-a-0 faults are injected dunng the performance phase, most of the elements
attacked are producing an output close to or at zero anyways. Consequently some of the s-a-0 faults
injected will not yield errors. However with s-a-r faults injected, spurious information is added,
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introducing errors which would prevent the network from functioning.

With the inhibitory elements (u) we see that the response of the system due to s-a-0 faults and s-a-r
faults reverse roles, where s-a-0 faults now affect the network more adversely than s-a-r faults. This
observation could be attributed to the fact that without any inhibitory output, there is no inhibition
mechanism. On the other hand random outputs would provide the network a chance to remain func-
tional. For both fault models the order of tolerance with respect to layers is 3v, 2v, lv. From this observa-
tion we see that faults injected into earlier layers of inhibitory cells tend to wreck more havoc on network
performance than in later layers. One possible explanation might be that errors generated at an earlier
stage would propagate into a global effect, whereas errors in a later stage would be localized.

Learning Phase
Plots of performance comparisons between training set (gp) vs. shifted (sp) patterns presented to

the faulty learning performance phase models were made. True to Fukushima's hypothesis, given fault
free inhibitory elements, we have found the network to be exceptionally tolerant of faults injected into the
excitatory elements. In one case we found that we could damage as much as 90% of the u. cells in the
second layer and still maintain full performance. This ability is attributed to the "winner take all"
mechanism, which stipulates that if a maximum output cell is killed off during the learning phase,
another cell with the next greatest output would have its input connections reinforced. However this
feature has a cost which is paid for by the seed cell mechanism. When faults are introduced in the learn-
ing phase, the network diverts cells which would normally form redundant subnetworks in the cell
planes to be "primary recognition" cells, i.e., the cells that get the pattern recognition mechanism to work.
By taking away the redundant subnetworks, the network consequently loses its ability to recognize posi-
tion shifted patterns. For the shifted patterns we observe again the greater decrease in performance from
faults injected in earlier layers than in the later layers. This reconfirms our suspicions that errors gen-
erated at an earlier stage would propagate into a global effect.

The results gathered from the learning phase s-a-0 v cell model show the importance of the inhibi-
tory cell mechanism to the operation of the network. With initial damage to the network, the inhibitory
mechanism is completely shut down, allowing most if not all of the output cells to fire to a single pattern.
However, this effect does not last forever and with more progressive damage the network fails to even
converge to a solution, i.e. be able to make a pattern 4-, u, cell correlation.
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ABSTRACT

This paper is devoted to the problem of controlling a class of dynamic systems via controllers based
on additive neural network models. In particular, the tracking and stabilization problems are considered.
Some concepts from the variable structure control theory are utilized to construct stabiliting controllers.
In order to facilitate the analysis we employ a special state space transformation. This transformation
allows us to reveal connections between the proposed controllers and the additive neural network models.
We also present a procedure for designing neural networks based controllers.

1. INTRODUCTION

There are many neural network models ([4], [5], [7]). In this paper we will be concerned with the
simpler additive model, also known as the Hlopfield model, in the context of a control system tracking a
reference signal. "The additive model has continued to be a cornerstone of neural network research to the
present day... Some physicists unfamiliar with the classical status of the additive model in neural network
theory erroneously called it the Hopfield model after they became acquainted with Hopfield's first applica-
tion of the additive model in Hopfield (1984)" - see Grossberg ([4], p. 23).

The subject of this paper is an application of additive neural network models to the control of
dynamic processes. We formulate the tracking problem and show how the additive neural network model
can be used as a controller. A variable structure systems approach ([1], [2], [8]) is utilited to construct the
proposed controllers. This approach allows us to circumvent analysis problems caused by the discontinu-
ous nonlinearity which describe neurons.

2. FORMULATION OF THE TRACKING PROBLEM

Suppose we have a model of a dynamic process, given by the following equations

i = Ax + Bu (2.1)

y =Cx I

where AER'x' , BEJR~nX , and CGTRm>. We wish to design a controller so that the closed-loop system
can track a reference input w~ith sero steady-state error (see the Fig.). Let the reference nfli be

Raftrncs input AM -,

. nr [CONTROLLER -PULANT y

Fig. Tracking system structure.

described by the following differential equations

rfP)(t) + aprfil(t) + ... + a 2i(t) + ai(t)= 0 , i =

where the initial conditions ri(0) , ii(0) , ... , r!P-')(0) are specified.

The tracking error is defined as e(t) y(t) - r(t). The problem of tracking r(t) = [r1(t),...,r.(t)]T
can be viewed as a designing exercise of a control strategy which provides regulation of the error (Franklin
et al. [3], p. 390), that is, the error e(t) should tend to zero as time gets large. One way to tackle this
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problem is to include the equations which are satisfied by the reference signal as a part of the control, (sta-
bilization), problem in an error state space, thus reducing the tracking problem to the problem of stabiliza-
tion of a class of systems modeled by (2.1). In what follows, we propose two new approaches to designing
stabilizing control strategies for (2.1) involving the Hopfield type neural networks. Prior to presenting
these control laws we will introduce the necessary apparatus for further analysis.

3. BACKGROUND RESULTS

In the following analysis we utilize certain concepts from the theory of variable structure control.
This theory rests on the concept of changing the structure of the controller in response to the changing
states of the system to obtain a desired -esponse. This is accomplished by the use of a high speed switch-
ing control law which forces the trajectories of the system onto a chosen manifold, where they are main-
tained thereafter. The system is insensitive to certain parameter variations and disturbances while the tra-
jectories are on the manifold. An important concept in variable structure control is that of an attractive
manifold on which certain desired dynamical behavior is guaranteed. Trajectories of the system should be
steered towards the manifold and subsequently constrained to remain on it.

Definition 3.1. ([8]). A domain A in the manifold {x I oa(x) = 0} is a sliding mode domain if for each
c > 0 there exists a 6 > 0 such that any trajectory starting in the n-dimensional 6-neighborhood of A may
leave the n-dimensional e-neighborhood of A only through the n-dimensional ý-neighborhood of the boun-
dary of A.

We next describe the manifold which is used in this paper. Suppose

where si C ]RE'x. We assume that S is of full rank.

Let
-(x) -=- [a, 1(X),.., m X ] FI[SX,.,S ]T -- Sx

where x E IR', and let fl = {x I or(x) = 0). Conside, the system modeled by (2.1). We make the following
assumptions:

Assumption 13 The matrix SB is nonsingular.

Assumption 2: The pair (A,B) is completely controllable.

Definition a.2. The solution of the algebraic equation in u of Sx = SAx + SBu = 0 is called the
equivalent control and denoted by ucq, that is, uq = - (SB)-1 SAx .

Definition 8.8. The equivalent system is the system that is obtained when the original control u is
replaced by the eqvivalent control ueq, that is, i = [I - B(SB)-'S]A x.

We will now briefly discuss a method for designing of the switching surface. The method is based on
that of El-Ghezawi et al. [2]. See also [6]. Certain relations which come out during the analysis of this
method are instrumental in the construction of the state transformation discussed in the following Section.

Our goal is to choose S so that the nonzero eigenvalues of Aq are prescribed negative real numbers
and the corresponding eigenvectors {wi,...,wn-.m} are to be chosen. Let W = [w,...wnm]; note that
WEIRDx×(n-m). In sliding mode, the system is described by x = A,,x , a(x) = Sx = 0 . The order of the sys-
tem is n-m and the solution must be in the null space of S, that is, SW = 0.

Denote by R(T) the range of the operator T. Since we requires SB to be nonsingular and SW = 0,
we must have R(B) B R(W) = {0} . It then follows that we should choose the generalized inverses B1, Wr
of B, W so that ([2])

B9W = 0 (3.1)

and
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w1B = 0. (3.2)

We choose {wI,...,Wn.m} so that (3.2) holds. We can now construct S. Let W' ElR"'n be any full rank
annihalator of W, that is W' W = 0. Since a necessary condition for Sx = 0 to be a switching surface is
SW = 0, we see that EW' for any nonsingular PERm"m is a candidate. We also require that SB = 1,.
We let F = (W' B)- and let S = EW' . It is easy to see that SB = Im and hence (W B)-'W' is a gen-
eralized inverse of B. If we let Br = S ia (3.1), the condition is satisfied.

We will utilize the results of this section to construct a state-space transformation which facilitates
the design of neural controllers.

4. DESIGNING OF NEURAL CONTROLLERS

In this Section, we first introduce a transformation which brings the closed-loop system into the new
coordinates in which the neural structure of the controller is revealed.

Let MClRnxn be defined, as in Madani-Esfahani et al [6], by

M--

where W9 is defined by (3.2). Note that M is invertible with M` = [W B]. introduce the new coordinates
S =Mx. Let z = Wgx and g = Sx. Then i [ZT,'T]T. In the new coordinates, the system becomes

S= MAM-'i + MBu. We write

MAlt1 =4_ 11 A121
[A21 A 22 ]

where A, 1en(nm)In-m), A22 E IRnim. Note that

MBM

where Im is an mxm identity matrix. Htence

z = Aliz + A 2ý;

= A21z + A 22 " + u . (1

We analyze th'Ž closed-looped system (4.1) with the controller proposed by Madani-Esfahani et al [6]

w= - [Pgn,....P~sgnaM]' . (4.2)

where

1if 0oj > 0
5gn oi =- if ari = 0

-1 if = 0 < <0,

and pi > 0. For convenience, we let D = diag[il,,..., pm] and sgna [sgno1,,...,sgnoa] T . We can now write

(4.2) as

u = - D sgn = -D sgng . (4.3)

Combining (4.1) and (4.3) yields

. = A llz + A1 2 ý (4.4)

=A21 z + A - D sgnj

Note that the subsystem

=A,, z + A 22q - D sgn ;

which can be interpreted as a dynamic controller driving the dynamic system i = A,,z + AI 2 ý- has a
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structure of an additive neural network model. Although we arrived at (4.4) otarting with the controller
(4.3) whose structure does not correspond to an additive neural network model, we can utilize the above
analysis in the case when we explicitly apply a neural control strategy. We then proceed as follows. Sup-
pose we are given a dynamic system muodel i = Ax 4 Bu . We apply an additive neural network control
law

ii = Fu - D sgn o(x,u) + Gx, (4.5)

where F E IRmXm, G E IRme" are design parameters. The closed-loop system is

[ ý] = I [ ý ]j + [ 0j (-D sgn a(x,u)), (4.6)

where [xT,UTIT E Rpn+m, and a(x,u) is a switching surface to be chosen. Using the approach presented in
Section 3 we design the switching hyperplane a(x,u) and then construct the transformation M. In the new
coordinates (4.6) will have the form (4.4), where now AIIElRnxn, A22ERmxm, zEIRn and ýcIR'. We know
that the above procedure yields a stable closed-loop system. However, we are also interested in the extent
of the stability properties of the closed-loop system. The issue of the estimation of stability regions of
dynamic systems driven by the neural network controllers is discussed in [9].

5. CONCLUDING REMARKS

In this paper we investigated viability of employing controllers based on additive neural network
models to the problem of stabilization (tracking) of a class of dynamic systems. Two approaches to
designing stabilizing controllers were proposed. Elements of the variable structure control theory were
utilized to construct such controllers. The proposed controllers are characterized by robustness property
which is inherent in the variable structure controllers. An important role in the analysis was played by a
special state space transformation. This transformation helped us to utilize additive neural network
models in designing stabilizing controllers. The proposed approach is promising in two ways. First, it
results in robust controllers. Second, it has a potential to be employed in constructing fault tolerant con-
trollers. Also generalizations to the control of a more general class of dynamic systems are feasible.
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Dynamic Digital Satellite Communication Network
Managemn nt by Self- Organization 1

Nirwan Ansari and Yizhong Chen
Center for Communications and Signal Processing
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New Jersey Institute of Technology
Newark, New Jersey 07102, USA

Abstract: Telecommunication network management has several tasks. Among which traffic management
is one of the most important and difficult tasks. New attempts to automate this task such as expert system
based approach are yet to be perfected. In this paper, we propose a neural network model to realize this
task. This model is a derivation of Kohonen's self-organization model. Experimental results support the
feasibility of our approach to automate the, task.

1. Introduction
In a telecommunication network, traffic management is concerned with maximizing netwoik efficiency

when the network is under stress either due to overload or failure. The purpose of traffic management is
to best meet the communication requirement of users under the constraint of a fixed network capacity. In
other words, the probability that users cannot go through should be the lowest. The response and execution
time is a crucial factor to prevent traffic lose and degradation of the network. The communication traffic
operator (human or machine) must analyze and monitor the network status constantly, and react promptly
to configure the network to meet various network requirements.

A typical communication network consists of thousands of channels. Managing such a network is a
very difficult task. In our study, we only consider Time Division Multiple Access (TDMA) digital satellite
communication network [1,2] because such network is more easily configurable as opposed to terrestrial
communication network.

Followed by a brief description of TDMA digital satellite communication network, we wfill discuss our
Neural Network model for traffic management in Section 3. We will present experimental results in Section
4, and finally conclude with a discussion of future work in Section 5.

2. TDMA Digital Satellite Communication Network
Time Division Multiple Access (TDMA) is a multiple access technique used in digital satellite communi-

cation. It enables a number of earth stations to share a satellite's capacity by allocating each earth station a
time slot to communicate. The number of channels assigned to a station defines the capacity of the station.
The TDMA digital satellite communication network has a mesh topology which allows direct station-to-
station communication. The communication established between two stations is known as a communication
link. The capacity of each link is determined by the number of channels assigned to the link. The total
number of channels allocated to each link in the network thus defines the capacity of the network.

We define the load and demand of a network as the state of the network. The state of the network
is quantified by the number of channels allocated to each link of the network. The capacity of the whole
network is a constant, but the capacity of each link should vaiy accor-ding t.u the state of the network. An
assignment of channels to links within a network topology is called a map. Currently, the TDMA digital
satellite communication network ( without Demand Assignment Multiple Access device ) is configured to
different maps either according to a programmed time table or via an experienced human operator monitoring
the state of the network. We will describe a neural network which will adaptively automate the " channel
assignment " of the TDMA digital satellite communication network.

We pose the " channel assignment " problem of the TDMA digital satellite communication network
as a pattern recognition and generation problem. During the network operation, the state of the network
fluctuates constantly. A pattern which reflects the state of the network for a period of time is derived from
the Common Signaling Channel(CSC) of the satellite system. Based on the statistical analysis of the service
requirement of the network, we initially select N maps to which the network .-an configure. An exemplar
pattern is associated with each map. The exemplar pattern of a map represents t'%-. typical state of the
network for a period of time during which the map is used. Using a neural network, each pattern derived
from the CSC at a given time is compared to each of the exemplar patterns. Depending on how close the
pattern is matched to each of the exemplar pattern, one of the following three actions wvill be taken:

1. The original map is used if the input pattemn is close to the exemplar pattern associated with the
original map.

2. A map corresponding to a different exemplar pattern which resembles the input pattern is nsed.

1This work has been partilly suppurted by the New Jersey Dcpartnicit of Higher Ed'catiun through NJIT Sejmral.ely

Budgeted liesearch.
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3. A new map is generated to replace one of the existing maps if the input pattern is remotely different

from any of the existing exemplar patterns.

In this paper, we assume that N is fixed.

3. The Neural Network Model
The Neural Network model (N-N model) consists of three layers as shown in Figure 1. The first layer

performs the pattern recognition task. In this layer, the N-N model determines the exemplar pattern (map)
which resembles most closely to the input data. The second layer analyzes the discrepancy between the
chosen exemplar pattern and the input data, and generates intermediate maps which gradually deviate from
the exemplar pattern and converge closely to the input data pattern. A new map is finally generated by the
third layer.
Denote:

L as the total number of links in a network,

CA as the total number of channels in a network,

R,(t) as the number of channels in link i required by users at time t, and

Cij(t) as the total number of channels assigned to link i of the jth exemplar map at time t. Here, the
parameter t indicates that exemplar map j is time varying.

In this study, we assume that the original N exemplar maps are given. We also assume that the state of
the network is updated constantly from the Common Signaling Channel (CSC) of the satellite system, and
converted to numerical values denoted hy R1(ti. To perform the recognition task, the state of the network,
Ri(t), is updated as input data to the 1st layer of the N-N model. We compute the distance (metric) between
the input data, R,(t), and each of the exemplar maps as follows:

L

ZD t Dj (Lt) I (j 1, 2, ... , 'V),(1
t=1

where D,j(t) 1= !4(t) - Cj(t) (i = 1, 2,.., L and j = 1,2,..., N).
D,j(t) indicates the busyness of link i in the network if exemplar map J is used. Dij(i) > 0 implies that

link i of the network is overload when map j is used; i.e., channels allocated to link i of map j do not meet
those demanded by the users in link i. D,1 (t) < 0 means that link i of map j provides more than enough
channels required by the users in link i. D,(t) thus indicates the resemblance between the input data R4(t)
and exemplar map j. In our N-N model, instead of using Dj(t) which is used in the self-organization model
[3,4], we use the normalized distance, D5(t), as our metric, where

L

S= 1 Ž (- U ,2,...,N). (2)

The normalized distance is used so that the pattern recognition task will select the exemplar map which
distributes the load of network most evenly. The extmplar map that best meets the requirement of the
network is the one that yields the smallest normalized distance, D (t).

The exemplat map selected by the first layer of the N-N model may not satisfy the requirement of the
network. It is the task of the second layer to modify the exemplar map to better meet the requirement cf the
network. Note that only the exemplar map selected by layer 1 is modified. We call the resulting nmodified
map produced by the second layer an intermediate map. This process is governed by the following equation:

C'()t) Cý,(e) +±,(n(j))D, (t) (i = 1,2,..., L), (3)

where C' (t) is the number of channels of link i of the modified map, j, and ,3(n(j)), 0 < 3(n(j)) < 1, is a
gain factor. nm(j) is the numbet of occurrence of exemplar map j being selected. When a new exemplar map
j is generated by the third layer, this number is reset to 0. p3(n(j)) is a decreasing fuinction. We use

k( ) = ("(j)4 k-1)(4)

The gain factor 3(n(j)) has three effects. It affects the drift of map j being muoditid to converge to the
input pattern. It also deternmines whether a new map i will be generated in the third layer, which will be
discussed shortly. Finally, it affects how fast a new map is generated.
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In the third iayer of our N-N model, we compute a convergence factor, E(j), to decide whether a new

lr=.-- shouid be genetated to rep!.ace the exemplar map. We define

E(j) = Max{L6(n(j))D,,(t)j} (i = 1,2 .... L). (5)

From Equation 5, E(j) is getting smaller when the jth map has been selected more often, indicating that
the modified (intermediate) map j is reaching more closely to the network requirement. A new map is thus
generated based on the following conditions:

If E >r,
Ci,(t + 1) = Cij(t) (i -= 1, 2, ... , L). (6)

Else
Cj(t-+ 1) = (t B S CA (i= 1,2 .... L),or

C,1(t+- ) =-AC,, B > CA (i= 1,2 .... L), (7)

where B - (t) C
From Equations 6 and 7, if the jth map has been selected often enough (i.e.,f3(n(j)) small), we generate

a new map j to replace the original chosen exemplar map. If the capacity of the modified map exceeds the
capacity of the network, the modified map is normalized as shown in Equation 7.

4. Experimental Results
We simulate a simple TDMA digital satellite communication network with 10 links and a capacity of

1000 channels. Ten original exemplar maps are given and shown in Table 1. The simulation result is shown
in Table 2. In Table 2, the network requirement fluctuats-s slightly ( random data) , from t = 1 to t = 199,
and changes drastically at transition t = 200, and then varies s)rwly until t = 1000. Note that it takes
approximately 150 iterations to generate a new map which converges closely to the requirement. Starting
from trans;tion t = 200, it takes less iterations to converge closely to the new requirement. This is because
the difference between the requirement and the closest exemplar map in the latter case is small while the
difference in the former case is large. For example, at t=1, the required channels in link 4 and link 5 are
respectiveiy 140 and 100 while those in the chosen exemplar map are 70 and 130, respectively. At t = 200,
however, the number of channels required and the number of channels assigned in the chosen map are close.

Z. Discussion and Future Directions
We have presented a simple example which demonstrates the feasibility of our algorithm for network

management. We will further study the selection of some of the parameters such as k1, k2 and r used in our
algorithm. These parameters affect the rate of convergence of new maps to the actual requirement. Effort
will be made to test and improve our algorithm on real J-tta which reflect actual activity of a network.
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Layer 3: Generation of ne w maps

_T I
Layer 2: Generation of intermediate maps

I
7 Layer 1: Pattern recognition

Figure 1: 'TlIm Neural Nctworl Mode!. The task of Layer 1 is to select an exemplar m ap which re-semibles the
input data most. Layer 2 amodifies the chosen exemplar map. Layer 3 decides whether a map based on the
intermediate iinp is generated.
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Map No. Link
1 2 3 4 5 6 7 8 9 10

Map 1 100 100 100 100 100 100 100 100 100 100

Map 2 120 80 120 80 120 80 120 80 120 , 80
Map 3 130 70 130 70 130 70 130 70 130 70
Map 4 150 50 150 50 150 50 150 50 150 50
Map 5 120 110 100 120 110 100 80 90 100 80
Map 6 80 90 100 80 90 100 120 110 100 130
Map 7 70 85 135 70 85 135 110 100 90 110
Map 8 60 140 100 60] 140 70 110 110 120 100

Map 9 40 60 200 40 60 100 100 100 200 100
Map 10 140 60 140 60 140 60 200 0 200 0

Table 1: 10 Exemplar Maps, each with 10 links and a capacity of 1000 channels.

Nwuik Aetivity Link

andMap Selection 1 2 3 4 5 6 7 8 9 I0o
Required 130 70 130 140 100 70 130 70 130 70

t=1 Chosen (new) Map=3 130 70 130 70 130 70 130 70 130 70
Intermediate Map 130 70 130 105 114 70 130 70 130 70
Required 131 69 132 140 100 69 130 69 131 "tl

t=26 Chosen (new) Map=3 129 70 129 81 123 70 129 70 129 70
__ J Intermediate Map 129 70 129 88 120 70 129 70 129 70

r Required 130 70 130 140 100 70 130 70 130 70
t=150 MChosen (new) Mvlap=3 125 68 125 133 96 68 125 68 125 68

I Intermediate Map 127 69 127 136 98 69 127 69 127 69
Required 120 130 100 120 110 100 80 110 100 60

t=200 Chosen (new) Map=5 120 130 110 100 120 110 80 90 100 60
_ Intermediate Map 120 120 100 120 110 100 80 100 100 60

Required 121 129 100 121 110 100 79 111 100 60
t=213 Chosen (new) Map=5 119 118 99 119 109 99 79 98 99 59

Intermediate Map 119 121 99 119 109 99 79 101 99 59

Required 120 130 100 120 110 100 80 110 100 60

t=250 Chosen (new) Map-5 116 125 98 116 106 98 78 105 98 58
Intermediate Map j 118 127 99 118 108 99 79 107 99 591 Required ] 120 130 100 120 110 100 80 110 100 60

t= 100C Chosen (new) Mapl5 116 125 98 116 106 98 78 105 98 58
_ ntermediat2 Map 1118 127 99 118 108 99 79 107 99 59

Table 2: The results of applying our algorithm to a siniulated network at various titne, At each instarnce, it
shows the activity of the network ( the un,,,ber of channels requested by the users ), an intermediate map
produced by Layer 2 of our model, and the (new) map chosen.
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1 Introduction

The term epilepsy designates a group of neurological disorders characterized by the recurrence
of epileptic seizures. The category is by no means nosographically homogeneous since it in-
cludes pathological situations different as ethiology, natural history, prognosis and associated
neurological signs. The diagnosis of epileptic syndromes via computer-based systems appears
thus a challenging task because of the still many unknown relations among symptoms and their
ethiological factors.

This study summarizes the outcomes of a thesis project [1] carried nut by one of the authors
and investigates the problem of epilepsy classification via Multi-Layer Perceptrons (MLP's)
trained with the backpropagation algorithm [2]. We describe a MLP able to learn the diagnoses
of a set of patients oni the basis of a suitable coding of their case sheets. Since the diagnosis can
be grouped into clusters depending on nheir reciprocal similarities, they have been coded so that
similar diagnosis have similar codings. The trained network provides plausible generalizations
(in a sense to be specified later) on unseen patterns in the 87% of cases. A simple technique for
pruning redundant input units has also been developed. We observed that a pruned network
with only the 10% of its initial input units could achieve the 95% of correct classifications on
diagnosis clusters.

2 Epilepsy and its Classification

The need for a common international terminology and classification for epilepsy was finally
met in 1985 by the Commission on Classification and Terminology of the International League
Against Epilepsy (ILAE) [3].

The classification is aimed to identify clinical entities, i.e. epileptic syndromes, characterized
by clusters of signs and symptoms customarily occurring together. In contradistinction to a
disease, a syndrome does not necessarily have a defined ethiology. Some epileptic syndromes,
however, are thought to be related to a specific ethiological factor (e-g. genetic) altough not yet
defined. A more strict specificity is attributable to the different epileptic syndromes in terms
of both natural history and prognosis: two clinical categories which are particularly relevant to
the medical practice.

The ILAE classification has been acknowledged with interest by physicians and scientists
working in this field who find it useful for evaluating the comparability of results and therapies.
However, several drawbacks have to be pointed out. Syndromes may belong to different orders.
Some represent rather broad concepts, others are much more specific. Overlapped syndromes
and inclusion of one syndrome within another occur frequently.

For these reasons the ILAE classification is not intended as conclusive, but rather as a
proposal to be tested for its usefulness. Along this way, at the Istituto Neurologico C. Besta, a
computerized case sheet form has been developed to collect comprehensively all the clinical and
laboratory informations which the ILAE Classification is based upon.

Data from 158 consecutive patients presenting epileptic syndromes dating back no more than
6 months and not associated with any detectable progressive brain process have been included
in the present study. The aim of the present work is to-compare the syndromic classification
based on clinical criteria with the categorization achieved with a backpropagation trained MLP.
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3 Network Topology and Training

The case sheet form was structured as a list of questions and has been initially coded with
814 bits. We gave a binary coding to the set of possible answers to each question in the form.
Questions judged not relevant for epilepsy (e.g. some anagraphic informations) were excluded.
According to the ILAE classification we considered 31 possible diagnosis. Since the diagnosis
can be clustered into 7 greups by a relation of similarity we have coded each diagnosis so that
the Hamming distance between the coding of two classes belonging to the same cluster is always
lesser than the coding of two classes belonging to different clusters. After further selections on
the questions in the form we inded up with 724 units and 31 units for input and output layer
respectively.

Different activation functions have been experimented following [4] but best results have
been reported when using the classical siginoidal of the form: f(x) = 1/(1 + e-"). The setting
of the parameters for the backpropagation is the result of an experimental tuning, the actual
values are reported in Table 1.

Learning Rate 0.1

Momentum 0.1
Slope 1

Initial Weights Range -0.3 + 0.3

Vý;rror Threshold 0.3

Table 1

The set of 156 case sheets was divided in two subsets: 134 corresponding to reliable diagnoses
and 22 corresponding to uncertain or "fuzzy" diagnoses. In a furzy diagnosis the doctor proposes
a class but he gives also a low "membership degree" to that class. The reliable diagnoses
have been used as training set while the fuzzy ones as test set for checking the generalization
capabilities of the trained network. The training set was normalized in order to present with
the same frequency each diagnosis to the network. Then the network has been trained until
Lie differences between the expected and the current output for each output unit and on each
element of the set were lesser than the error threshold.

In Figure 1 the graphs of the error function and of its gradient's modulo during the learning
process are reported for a MLP with 50 hidden units.

4 Learning and Generalization Results

We considered MLP's with a variable number of bidden units: best performances were obtained
with 50 units. Using a significantly lesser number of units (say 30) or greater (say 100) originated
different problems.

The MLP with 30 hidden units could not learn the whole training set within the limits
mentioned above. The two other MLP's (50 and 100 hidden units) could learn it but gave
different results in the generalization test. In particular, we considered three possible outcomes
for this test.

1. The network answer agrees with the fuzzy diagnosis of the doctor
2. The network gives a different hypothesis which is accepted by the doctor as a plausible

alternative hypothesis
3. The network answer is either not plausible or "confuse".

Membership to a particular class was decreed by measuring the distance, with respect to a
suitable metric, betweer: the real vector (C 1 ), X2,...) ,-n) of output unit values and each binary
vector representing the coding of the classes. The metric we used is the so-called city-block
distance [5] (equivalent to a Minkowsky metric with A = 1). We call "confuse" a configuration
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of output units which does not match, within a small approximation, any coding of a class.
Considering as valid generalizations any outcome of type 1 or 2, we observed that the MLP with
50 hidden units gave 20 valid generalizations (I1 of type 1 and 9 of type 2) versus a total of 11
for the MLP with 100 hidden units.

5 Data Coxnpression

An interesting problem related to the above work is the determination of which parts of the
case sheet are really important for carrying out a correct diagnosis. Namely, we would like to
select a subset of the questions in the case sheet form such that a MLP with a shorter input
layer could obtain satisfying results too.

Figure 2 shows the distributions of weights of the full MLP with 50 hidden units after r,he
learning is terminated. Interpretating the weights with a va!ue close to zero as noise produced
by the learning process, we have pruned the network by eliminating all the input units having
no output weights larger than 0.5 in modulo. This amounted to a reduction of almost the 90%
of input data and gave rise to a network with 74 input units. We remark that among the
corresponding questions eliminated in the case sheet form there was no one judged essential for
the diagnosis of epilepsy.

We have trained thin pruned MLP on the same training set restarting the learning pro-
cess with a new set of rnndom weights. The generalization test gave approximately 80% of
valid results on the siiuglh diagnosis and 95% on the clusters of diagnosis. This clearly shows
the possibility, in this casr, of working with very small networks without loosing too much in
precision.

6' Conl;' lon--

This work can be seen as an attempt to study neural networks as a tool able to validate the
robustness of epilepsy classifications. The hypotheses to ascertain in this case were two. First,
if the case sheet form contained all the relevant information for accomplishing the task. Second,
if the classes of diagnoses proposed by ILAE were characterized strongly enough or some split
and/or merge among classes was in order. The encouraging generalization results seem to
indicate that the information contained in the case sheet and coded with the 724 bits was
enough. On the other hand, the feasibility of data compression (as showed in the previous
Section) may be accounted for by the presence of unimportant questions. An indicator of how
strong a class gets characterized by a given example set could be the generalization test made
on a set of (almost) sure diagnoses. If the network answers on inputs belonging to a particular
class are always very close (in terms of the city-block metric mentioned before) to the coding
of the class, then the characterization of that class is satisfying. A better assessment of this
method could require a larger sample: we are currently gathering new case sheets on a national
scale for improving the results.

Neural-based expert systems [6] [7] seem to overcome some of the drawbacks encountered in
medical applications of rule-based expert systems. Beside these advantages, they are criticized
mainly for their infeasibility with respect to the so-called explanation facility which is c,,mmon
in rule-based systems. We would like to point out how this feature is not essential for the
study of medical diagnoses with neural networks since they involve other forms of knowledge
representations not necessarily aimed to the extraction of rules.

REFERENCES

[1i G. Ronchini, "Classificazione dell'Epilessia tramite Reti Neuronali", Thesis, UniversitA di
Milano, 1989.

[2] D.E. Rumelhart, G.E. Hlinton and R.J. Williams, "Learning Representations by Back-
Propagating Errors", Nature, Vol. 323, 1986.

II - 573



[3] Commission on Classification and Terminology of ILAE, "Proposal for Classification o.
Epilepsies and Epileptic Syndromes", Epilepsia, Vol. 26, pp. 268-278, Raven Press, New
York, 1985.

[41 W.S. Stornetta and B.A Huberman, "An Improved Three-layer Backpropagation Algo-

rithm", ICNN-87, Vol. 2, pp. 637-643, 1987.

[5] T. Kohonen, "Self-Organization and Associative Memory", 2nd edition, Springer Verlag,
Berlin, 1988.

[6] D.G. Bou'nds and P.J. Lloyd, A Multi Layer Perceptron for the Diagnosis of Low Back
Pain, ICNN-88, Vol. 2, pp. 481-489, 1988.

[7] K. Saito and R. Nakano, "Medical Diagnostic Expert System Based on PDP Model",
ICNN-88, Vol. 1, pp. 255-262, 1988.

2000

1000

0 10 20 30

Figure 1.-- Graphs of (1) error function and of (2) sum of absolute value weight changes.

L)put-l'iddcn distribution after training Hidden-Output distribution after training
6000 160-

140- -

5000 120-
120 •

4000 100

3000 80 0

3000 60 -

40-

1000 20

-1.5 - 1 -0.5 0 0. 5 1 1.5 -1 .5 - 1 -0.51 0 0.5 1 1.5

Figure 2.- Distribution or wcighit matrices after training.

"I' - 574



A Connectionist Approach To The Processing Of Time Dependent Medical Parameters

Barry Blumenfeld, MD

Section of Medical Informatics
Department of Mrdicine
University of Pittsburgh

B50A Lothrop Hlall
Pittsburgh. Pennsylvania 15261

Phone: (412) 648-3190

The representation of temporal knowledge, and reasoning with temporal information presents a continuing challenge to
researchers in the field of Medicine. Several connectionist architectures specifically designed to deal with temporal
information have been developed. Some of these paradigms treat time explicitly, representing flow either with an
additional "time" parameter, or in the ordering of input vectors. Examples of networks of this type include Time Delay
Networks (Sejnowski &Rosenburg,1986), Back-propagation in time (Rumelhart, Hinton & Williams), and image
compression in a back propagation network (Cottrell, MunroeZipser, 1987). A different approach has been to represent
time implicitly in the functioning of the network itself rather than as an additional dimension of the input data (Jordan,
1986),(Elman,1988), (Mozer, 1988).

Networks that do not explicitly represent time confer several advantages over explicit representations. There is no
limit to the number of intervals that can be examined sequentially, nor is there a need to explicitly specify the duration
of each interval. Further, since a linear vector is typically used to represent a sequence of events in networks that
model time explicitly, patterns that resemble each other but occur at different times cannot be easily recognized. This
paper examines examine the performance of a particular type of network, called a Simple Recurrent Net (SRN) first
introduced by Elman (Elman, 1988). He demonstrated that such a network was capable of mastering several problems
involving the prediction of elements in a sequence, including the solution to a sequential version of the XOR problem,
and the discovery of syntactic structure in natural language data. A network with the same architecture has since been
trained as a finite state recognizer for a small grammar (Servan-Schreiber, Cleeremans, &McClelland,1988). Despite
the simplicity of the architecture, these networks are capable of interpreting data in a context which can be quite
complex. To make this point more clearly, and to demonstrate the power of this paradigm in a medical domain, the
remainder of this paper will examine the performance of a recurrent net on a simple medical example.

The Domain

Assume that a diabetic patient is receiving an intravenous insulin infusion. The only information available about the
patient is a stremn of serial blood glucose levels taken -t discrete intervals, and the current status of the insulin
infusion. At each point in time, the physician (or network) is faced with the decision of either increasing the infusion,
decreasing the infusion, or keeping it the same. At any poiat in time, the decision is based not only on the current
blood glucose level, but also on the patient's past response to therapy. The absolute glucose level, its recent trends,
and the trend as a function of the insulin dosage are all considered in adjusting the insulin infusion rate. We are given
just two constraints:

1. The blood sugar should fall at a rate oi approximately 50-100 mg/dl/hour.
2. The blood sugar should never be allowed to fall below 100-150rng/dl.

The problem can be formulated geometrically as the task of finding a suitable trajectory through time while staying
within these constraints. There exists an "ideal" trajectory, where, with a steady infusion rate, the blood sugar steadily
declines :-t 50-100 mg/dl/hour starting at time zero.

The task of the network is defined as follows; when the sequence of blood sugars deviates from the ideal trajectory, the
network should at each point propose a change in the insulin infusion dosage rate that will return the trajectory to a
path paralel to the ideal, while staying within the limits of global constraints. Problems of this type have'proved
exccedingly difficult for conventional systems to solve, since they require the ability to recognize trend spanning
variable periods of time. This situation has been modelled in the network detailed below
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Network Description

The network used here, a back-propagation network with recurrent connections is a variation on a class collectively
referred to as Simple Recurrent Networks (SRNs), first proposed by Elman(1988). It is shown in Figure one.

figure 1

o pump dose output layer

'I
00000 hidden layer

0 0 0) input layer

glucose unit infusion unit context units

Thie input layer is supplemented by a group of units called "context" units. Actually, these units are also "hidden" in
a sense, since they send and receive activations from the units in the hidden layer in the absence of external input. The
Input Layer contains 7 units. The. first two units are used to represent values of the glucose level and current pump
dosage on an analog scale. The remaining five units are context units. The Hidden Layer contains five units with
recurrent one to one connections to the context units. The Output Layer consists of a single unit representing a
proposed pump dosage for the next time interval. All links between units in the network are trainable and weighted
with real number values, with the exception of thc recurrent links from the hidden units to the context units which are
always set to 1. These values of the weights are set at the time of training and remain fixed during normal processing.
All units have activations in the range [7,1]. In the input layer the activation of the first two units is set by the input
to the network. The remaining five units, the context units, can either have their activations set directly, or receive
input from the hidder layer.

Network Function

Processing proceeds as followm. The input layer is presented wi.Lh sequences of vectors tha represent a serum glucose
and current pump setting at intervals as determined by an external clock. The output is a pump dosage in scaled
absolute terms, that is proposed to keep the glucose falling at the proper rate over the next time interval. Note that
there is no unit for representing the glucose in the output layer. The information is superfluous, since the "expected"
glucose at the next step in time will always be approximately 100 mg/dl less than the current value. The interval
occurring between each pattern is fixed, and is not specified by the network. All predictions made by the network are
valid in reference to the interval with -which it has been trained. To apply the output of the network to sonic other
interval would require that all output be scaled appropriately.

The Training Set

There are a potentially infinite number of sequetcs that might be presented to the network. However, it is not
necessary to train the network on each of these pos,,,.ble sequences. What is really desired is to be able to respond to
certain types, or classes, of state changes that represent "trends". Five prototypical types of changes were identified.
Each of these prototypes represents a type of change, i.e. a rapid fall from high to low, or a steady high serum glucose.
The network was trained by presenting each of the prototypes sequentially, with a "clear" sequence consisting of all
zeros presented presented between each prototypical sequeince. A total of two hundred epochs was required for adequate
training.
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Results

At any point in time, the network should output a pump dosage that will result in the glucose falling at the proper rate
over the next time interval. The dosage suggested is influenced by both prior glucose levels and pric pump settings.
To test the network, a sequence of 30 time steps during which the glucose was constantly varied was fed to the
network. The network was also modified by adding a recurrent connection from the output node to the input node for
current pump dosage. This simulates the closed loop situation were the network is really controlling the pump; the
insuliU dosage at every point in time is the dosage proposed by the network on the prior interval. The results of the
test sequence are shown in figure two.

figure 2
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The network suggested dosages properly throughout the sequence. It should be noted the the network was never trained
on any part of the test sequence, rather, its performance represents a generalization of the behaviors learned on the
training prototypes. During steps four to six, the glucose rises rapidly, and the network suggests a corresponding rapid
rise in pump dose. When the glucose falls at a desirable rate in steps seven to twelve, the suggested dose is slowly
stepped down, but when it falls too rapidly as in steps 26 to 28, a much sharper fall off in dose is suggested by the
network. When the glucose plateaus at a desirable level of 200, the suggested pump dose plateaus as well. This is in
contrast to a plateau at a high glucose value such as occurs in steps 23 to 27, where markedly higher pump doses are
appropriately suggested. Testing the network on other lengthy sequences different from those it trained on always
produced similar results.

Discussion

Many theoretical and practical obstacles remain before a network of this type can be developed that is clinically useful.
Some of the problems relate to the way time is represented. Ideally, a network used in this setting should interpret all
data as a continuous stream, with allowances made for the interval between the last measurement and the current data.
Because the network architecture used represents time as a series of fixed intervals, all measurements must be taken at
fixed intervals.

Although the performance of this network has been impressive thus far, there are also patterns that a network of this
type simply cannot learn. An example of such a trajectory would be the case in which a patient's response to small
changes in the insulin dose result in large swings in blood sugar. This will result in oscillating behavior by the
network. A human observer would learn to underestimate the required insulin dosage after several cycles. The network
will never learn to make this sort of compensatory behavior unless it is specifically trained on a such a sequence, and
then only with great difficulty if the cycle occurs over a period several intervals.

Lastly, there is a problem that arises as the number of relevant parameters increases. The task of choosIng an adequate
training set can become intractable. Identifying a set of prototypes becomes more difficult with aca, variable that is
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added. Alternatively, the network could be trained on real data, but this requires a huge corpus of cases to adequately
cover the range of behavior that will be encountered. This is potentially the most serious challenge to further use of
networks of this type.

Current Elforts

Several directions are currently being explored:

1. A larger, more robust set of prototypes is being developed in order to elicit more complex behaviors from the
network.

2. A network with additional units that encode the interval between each time step is being tested. This would
allow the network to modify its output based on the interval between each measurement.

3. A network model for a more complex domain is being developed.(controlling a ventilator in an ICU setting.)
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Neural networks are often considered as black boxes, in which knowledge is distributed and
implicit in order to perform an associative memory. The purpose of this paper is to show how
explicit knowledge such as logical rules can be extracted from a neural network. Previous works
on this topic include [4, 9, 10]. After extraction of logical rules, a neural network becomes capable
of explaining its reasoning as a classical expert system.

We consider multilayer neural networks where input and output neurons are booleans. We
first study the semantic interpretation of a single neuron (§3) and then show how to build an"equivalent" network of logical and arithmetical rules (§4). An example concerning the first bid
choice when playing bridge is presented afterwards (§5).

2. Multilaver Neural Networks

We are considering here feed-forward type multilayer networks with complete connections
Uteween adjoining layers [2, 3, 7i. Tine number of hidden layers between the input and output layer
is arbitrary. The input-output relationship of each neuron (except for those belonging to the input
layer) is given by:

n

y = f [ net] where. net= wi xi - 0
1=1

where y represents the output of the neuron, n the number of inputs xi, wi the connection weights

and 0 the threshold. f is chosen to be the sigmoid function for each neuron's output function. We
are given a set of exemples { Xi, Yi ) where Xi takes its values in the hypercube 10,1 )n and Yi the
hypercube (0,1 mI!. The network calculates a continuous mapping F from 10,1 }n to [0,1101 by
using the back propagation algorithm [6, 8] that consists of a gradient descent method to modify
weights and thresholds in order to minimize the error between the desired output and the output
signal of the network.

We now define smooth and strong neurons. A neuron is said to be smooth for the learning
set if the number of input values belonging to the interval [-2,+2] is greater than or equal to the
number of input values in I -,o , -2 [ u ] +2 , +-, [. A neuron is said to be strong if it is not
smooth. An equivalent definition for a smooth neuron would be to consider the number of
activation values in the interval [ f ( -2 ) , f ( 2 ) I ; this allows us to consider the input neurons as
strong neurons and also boolean variables. When applying neural networks with a limited number
of hidden neurons to various problems, we observed that the hidden neurons tended to behave as
very strong or very smooth. This led us to develop a method for designing networks such that the
resulting hidden neurons discriminate in very strong or very smooth. The details of this method are
out of the scope of this paper. One of the advantages of this method is to allow one, after the
learning phase, to force the very strong neurons to beconi.; threshold neurons so that they can be
interpreted as boolean variables. In the following, we will assume that we have threshold neurons
and smooth neurons, which is not restrictive.
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3. Semantic Interpretation of a Neuron

We first consider transformations of a neuron f [ w0 + Zwj wxj I that keep its transfer
function invariant, but allow better semantic properties. We will then explain in §4 transformations
of the overall network.

3.1. Smoothing of the weights

When the number of xjs is large, it is possible to perform a histogram of-the weights wj and
cluster the weights in several classes. When the classes are difficult to distinguish, one can use
statistical methods such as discriminant analysis. By choosing an average coefficient for each
class, we can derive an equivalent neuron f [ wo + Xk wk ( Xjk Xjk ) I where Xjk belongs to class
k. In order to ensure that the error introduced by the averaging operation is negligeable, one can
choose:

Y~k8Ewjk
k 8E

5 wjk

under the conditions that :
Wk E [minj, {wjk },maxjk (wik )]

3.2. Appearance of intermediate numerical variables

If the neurons XjkS of a same class k are strong neurons (this is always the case if they

belong to the input layer), then the summation Ljk Xjk can be interpreted as the number of Xjk equal
to 1. We thus can introduce an intermediate numerical variable that will ease the further
interpretation. An other case consists of performing a linear transformation on neurons belonging
to the same class if we compensate by similarly introducing an intermediate numerical variable.

4. Extraction of Logical Rules Distributed on the Network

When considering an output neuron or a hidden neuron, one can extract an equivalent logical
rule. If wc assume that the neuron is activated at level s, we can write:

wo+, Ykwk( ljkxjk) -f- [s] k k [s] - w0  (1)

If we assume that most of the Xjk are strong neurons and thus boolean (this is always the
case when considering the first hidden layer), we can easily, by enumeration, extract a disjonctive
normal form, by superposing all the cases with the OR connector: the derived logical formula is
equivalent (at level s) to (1). We can afford to use an explicit enumeration algorithm because the
number of variables has been greatly reduced as explained in §3.2. In any case, it is always
possible to improve the implicit enumeration by using heuristic methods such as
propagation/extraction techniques [1],

The validity domain of the methods presented above is limited to networks whose hidden
layers consist of less than 10 neurons. The limitation on the number of input neurons is related to
the existence of regularities in the coefficients (we considered networks with input layers
containing until 52 neurons).
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5. Applicalion

We are considering the problem of the first bid choice when playing bridge. A method called"tie new fith major" has been widely used [5] in order to determine the right first bid out of I 1
candidates (from "pass" to "2 without trump"). This method consists of a large number of logical
rules that are applied on several decision elements such as the number of honor points or the
number of cards of the same suit. An expert system based on this method has been implemented
and has provided us with 50 hands per bid. We considered a neural network with three layers: the
first layer consisted of 52 neurons corresponding to a deck of cards ; the second layer was chosen
to have 5 hidden neurons since there are five predominant features when estimating the value of an
hand, i.e. the number of honor points and the number of cards in each of the four suits ; finally,
the third and last layer contained 11 neurons corresponding to the possible bids.

After the learning phase, we observed that only one hidden neuron (N1) was performing as
a smooth neuron whereas the four other neurons were strong neurons. Table 1 shows the results
of the semantic interpretation of the five hidden neurons. The smoothing of the coefficients as
presented in §3.1 allows one to cluster the input neurons in several classes. By considering the
rank and the suit of each card, we can easily give a name to each of these classes : PH = number of

honor points ; NT = number of clubs ; NK = number of diamonds ; NC = number of hearts ; Np

= number of spades. It is very interesting to notice that the network has been able to retrieve by
itself the concg-ept of points as well as the concept of suits - even though the neurons N2, N3 et N4
are superposing a concept of suit with the concept of points.

Neuron Type Input interpretation Activation condition at level 0.5

0 Ac ti con, D io 1
N2 Strong -2 PH + 5. 4 NK NK > 0 .37 PH

N3 Strong PH + 9Nc- 3 9  Nc > 4.3 - 0.11PH

N4 Strong 2 PH + 5.4 Np Np > 0.37 PH

N5 Strong 7.5 NT- 34 NT > 4.8

Table I : Activation conditions of the five hidden neurons at level 0.5

By a sidmilr smoothing operation, we can %derve the formulas gi-ving the activation of the
neurons "bid" with respect to the activation of the hidden neurons:

Pass = f[3.5N1 + 0.5(N2+N3+N4+N5)-4]
I Club=f[2N1 + 1.5N5 - 0.5(N2+N3+N4)-2]
1Diamond=f[N2 - N4 -0.5(N3+N5)- 1]
I Heart = f[3N1 + N3 -0.5(N2+N4+N5)-3]
1Spade=f[N1 + N4- N2 -0.5(N3+N5)- 1.51
1WithoutTrump= f[8N1 - 2(N2+N3+N4+N5)-4]
2Clubs=f[-7N1 + 1.5(N2+N3+N4+N5)+1.5]
2Diamonds--f[-2N1 + N2 -0.5( N3+N4+N5)]
2Hearts=f[O.5N1 + N3 --1.5]
2Spades=f[-2.5N1 +1.5N4 ]
2WithoutTrump= f[-3N1 - (N2+N3+N4+N5)+1.5]

At this point, it is possible to interpret the overall network and extract logical rules. Let us
take the exemple of the "2 Spades" bid. By using the result given above, we can write that the
activation condition at level 0.5 is•
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- 2.5 N1 + 1.5 N4 Ž 0 (2)

Since NI is a smooth neuron and N4 is a threshold neuron, we know that NI > 0 and thus

N4 must be equal to 1. Thus (2) becomes NI < 0.6 <-* PH Ž- 15. This condition can be combined

with the result N4 = I to extract from the condition given in table 1 the logical formula: "PH > 15

and Np > 6". It is important to notice that the logical rule is a function of the desired level of
gacivation (here 0.5). We, thus, can derive rules as functions of s. This allows us to extract the
exact frontiers between bids by considering coajftijons between them at a given activation level.
A systematical way of retrieving the rules consists of simulating the equivalent network by varying
all the numerical variables and extract the frontiers fr-om the results.

6. Summary

We have shown that some types of neural networks can be represented by "equivalent"
logical and arithmetical formulas. Derived from an analogic machine working as a black box, a
logical machine can sometimes be built that is able to explain its reasoning. The neural network
answers as an expert and the equivalent network can be used to provide explanations as an expert
system would do.

Moreover, logical and arithmetical formulas extraction provides one with an extra advantage:
the formulas are'not very sensitive to slight variations of the numerical coefficients; the calculation
allows a better reproductibility. Thus, two similar neural networks learning from the same
examples set will reach different numerical coefficients; however, the extracted formulas will be
similar.
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Abstract The traditional artificial intelligence approach to problem-solving
is to design programs that will work out a step-by-step method, then carry out
the steps. Withou,: programming, neural networks are able to solve problems by
learning. In this paper, we discuss a neural network approach to
problem-solvira and an apprcpriate neural network architecture. Ue chose the
Tower-of-Hanoi puzzle as an example to demonstrate the problem-solving ability
of reinforcement learning neural networks. We also propose a search approach
which combines stochastic search with simulated annealing to significantly
reduce the instability in the learning curve.

THE STATE REPRESENTATION

There are three important features common to problem-solving : states,
operations, and goals. We chose the Tower-of-Hanoi puzzle as our example to
illustrate our neural network problem-solving scheme. In the Tower-of-Hanoi
puzzle as shown in Fig 1, there are three pegs, numbered i,2,and 3. Initially,
on peg 1 there are N di2ks, each one smaller than the one below it. The
problem is to move all the disks from peg 1 to peg 3 by mo- .ng disks one at a
time. Only the top disk on a peg can be moved, but it can never be placed on
top of a smaller disk.

1 2 3 1 2 3

(Start) (Goal)

i j k ) Example:

L M S3 L I 'I I- - -3

Fig. 1 The Tower-of-Hanoi Puzzle

Fig.l also illustrates the three-disk problem. Let S be the small disk, M
the medium disk, and L the large disk; then we can describe the state of the
Tower-of-Hanoi by specifying which peg disk S is on, which peg disk M is on,
and which peg disk L is on. We can then describe any state uksing three
numbers: for example, (132). The first number tells which peg L is on; the
second tells which peg M is on; and the third tells which peg S is on. The
opeiration changes one of the numbers in the state description to reflect the
moving. However, the operations cannot change the numbers arbi.trarily. There
are constraints: (1) Only the top-most disk can be moved from one peg to
another, (2) A larger disk may never be placed on the top of a smaller disk,
(3) Only one disk can be moved at a time.
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SEA1?2HING FOR A SOLUTION

Heuristic search is a technique for searching the state space
efficiently. It usually requires information about the properties of the
specific problem domain. In heuristic search, decisions must be made as to
which state is the most promising to expand next what operation to apply next
to a given state.

The cost of a solution path in the state space is defined as the number
of operations required to transform from the initial state into the goal
state. Unfortunately, when a state is encountered during a search, we do not
know if the lowest-cost solution path goes through the state. Usually an
evaluation function is needed in order to estimate the promise of a state.

Strategy learning conducted under the influence of the evaluation is
called reinforcement learning. This type of learning assigns credit to the
system performance so as to increase the probability of receiving high
evaluations. The learning procedure must : (1) generate operations, (2) assign
credit to operations, and (3) modify the operation-selection process.

Operations can bq generated by a searching procedure, such as stochastic
search, to observe relationships among states, operations, and degree of
success in achieving a goal. According to the evaluation at each operation
step and using the heuristic rule, credit can be assigned to the searching
process to indicate degrees of success. Guided by the assigned credit or
blame, the operation-selection process will be modified. Langley [1985]
discussed some heuristics for the assignment of credit to operations.

THE SYSTEM MODEL FOR PROBLEM-SOLVING

The general model of the problem-solving system consists of two parts
the evaluation part and the performance part. The evaluation part outputs an
evaluation signal which criticizes the operation taken according to the search
heuristics. The performance part consists of three elements : learning, the
knowledge base, and the searching operation or action. The learning element
has two inputs : the states of the environment, including the current state as
well as previous states, and the evaluation value. According to the inputs,
the learning element adjusts the knowledge base, and based on the adjusted
knowledge, the searching operation element executes the next operation on the
environment.

IMPLEMENT"ATION OF THE PROBLEM-SOLVING SYSTEM WITH NEURAL NETS

Both the performance part and the evaluation part can be implemented with
neural networks. Following Barto et al. [1983] and Anderson [1987], one is
called the action network and the other is called the evaluation network. The
evaluation network will learn an evaluation function. According to the
heuristics, credit or blame can be assigned to operations through an external
critic signal, r(t). In order to get a contir,uous evaluation function value,
the adaptive heuristic critic (AHC) algorithm [ Sutton, 1984 ] can be
employed. The evaluation net will perform the AUIC algorithm to find the

A
evaluation function, r(t). The most significant external critic signal,
r(t)-l.0 (reward), is assigned whenever the goal state is reached. A large
negative primary critic signal, r(t)--l.0 (penalty) is assigned whenever a
loop occurs. For all other non-goal scates, the primary critic signal is
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assigned to a small negative value, r(t)--0.05 - -0.1 (a little penalty), to
ensure the shortest path heuristic. The action network performs searching, and
learning will be based on the estimated, time-varying, and delayed evaluation
value from the evaluation network. Random noise, n., is added to each output

Yk(t) in order to perform stochastic search. As learning progresses, the

action probabilities will be updated and become biased in favor of more
successful actions. The difference between the actual action, act(t), and the
expected action value, E(act(t)), can be used as an error signal. Fig.2 shows
the neural network architecture for problem-solving. In order to avoid
re-visiting a previously visited state, the previous two actions should also
be input to the action net in addition to the current environment
state-vector.

V

k Critic

> A?- ^ >_
jk kEvaluation

Ac ti Enviroent

4 State vector

Fig.2 Neural Network Architecture for Problem-solving.

SIMULATION RESULTS

Fig.3(a) shows the learning curve of the system. Generally speaking,
after 3,000 trials the system will learn the optimal solution path and the
learning curve will converge to 7 steps.

Because random noise is added to the outputs of the action network, it is
still possible that the system will bias from the optimal solution path even
after it learns the path. Fig.3(b) illustrates learning curves for solving a
simple two-disk Tower-of-Hanoi problem. The dashed line indicates the learning
curve using conventional stochastic searching. From the dashed line we can see
that peaks can still take place even after the `earning curve converges to the
shortest step. However, when we combine the stochastic search with simulated
annealing ( i.e., gradually reducing temperature, therefore, the noise
intensity ), the learning curve will converge to the shortest steps constantly
as indicated by the solid line in Fig.3(b).
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ABSTRACT

At present, the majority of manufacturing of aerospace composite laminates and the resulting cutting process
is done manually often resulting in high scrap percentages. Automation of this process using artificial
intelligence technology can reduce production lead time and manufacturing costs due to the high costs of
composite materials. In this paper the use of a neocognitron system as a pattern classifier for a composite
stock cutting process that integrates neural networks with the more traditional expert systems technology is
discussed. The neocognitron architecture is extended to cover translation, rotation and scale invariant pattern
recognition without additional processing to meet the requirements imposed by the composite stock cutting
process.

INTRODUCTION

Currently, a large majority of firms have or are in the process of transferring their composite product design
process into an electronic environment. In this area where computer graphics is extensive, there is a need for a
system that can retrieve part drawings from the electronic environment and generate the best allocation of
patterns to be cut from a specific plate of composite material. Once the cutting configuration is found it car
be transferred to a computer integrated manufacturing environment in which cutting operations can be
performed. Automating the pattern generation process is essential in reducing manufacturing lead time to
provide the ability to meet frequent product design changes and short product life cycles. This necessitates an
integrated approach to stock cutting problems. There is a need for an advanced decision support system that
has the capability to process patterns in an electronic environment, se!ect appropriate optimization algorithms
and determine applicable allocation heuristics based on pattern configurations and stock sheets. Composite
stock cutting is not an exception of this trend. The need for an automated composite stock cutting system
becomes more important as the use of composite. materials has increased dramatically over the past decade
and will continue to increase in the military research and development areas. The drive to higher performance
specifications and better efficiency in airframe structures will have a significant impact on the grouth of
composite materials research and its acceptance in the manufacturing domain..

Dimensionality, shape of patterns, and number of plates are the basic attributes generally used to classify
stock cutting problems. Even the two dimensional single plate rectangular pattern problem is NP-complete
as shown by Garey (1979). The problem becomes more complicated for other combinations of attributes.
Thus, instead of trying to reach an optimal layout pattern most researchers have turned to heuristic solutions
that generated the above classification. Optimization is a critcal elements in the solution of these problems.
'The methods proposed are summarized in survey articles by Hinxman (1980) and Golden (1976). Current
techniques have restrictions in application due to the NP-complete nature of the problem. To overcome this
difficulty various heuristic techniques and integrated artificial intelligence optimization approaches are
proposed in Dagli (1990). Cutting pattern generation is an essential issue in developing a solution to this
problem. Neural networks could contribute greatly to the design of such a system through their ability to
identify various pattern configurations in the process of cutting pattern generation.

Most of the well known neural networks paradigms including backpropagation, counter-propagation, Ham-
ming, etc. are based on , pattern matching criteria. These networks, when trained, form a number of decision
regions. Each decision corresponds to one specific class. In the recall process, input patterns are classfied
based on their distance from these decision regions. These pattern matching neural networks are to some ex-
tent tolerant of noise but if the input pattern is slightly shifted, scaled or rotated, they are unable to proper-
ly identify the reformed patterns. This is an important issue to be considered in cutting pattern generation for
composites as patterns need to be shaped, scaled and rotated in the process of generating nests on the stock
sheet. The neocognitron developed by Fukushima ( 1982 ) is a pattern recognizer based on feature extraction
and feature matching. This network ircitatcs the human visual system.
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A neocognitron system consists of a number of modular stages. At the first stage, local features of the input
pattern are extracted and at each succeeding stage they are gradually converted to the more global features.
Finally at the last stage each cell represents a feature pattern which has global characteristics and is invariant
to shift, scale and deformation, Fukushima (1988). A distinguishing characteristic of neocognitron system
over the backpropagation and similar networks is the fast learning ability. It can learn a pattern in a few
iterations and therefore is capable of real time learning. In this study the neocognitron is selected as a
network paradigm and extended to meet the requirements imposed by composite stock cutting. The extended
neocognitron architecture is demonstrated on example patterns incorperating essential stock cutting problem
features.

NEOCOGNITRON

The basic structure of the neocognitron system is shown in Figure 1. This multistage network consists of
many stages. Each stage contains a layer of S-cells followed by a layer of C-cells. The input pattern Uo is
applied to the first stage.

U•. U., U, _.., U

Figure 1. Structure of the neocognitron

S-cells are feature extracting cells. In other words, an S-cell is activated only when a particular feature is
piesented at a certain position in the input layer. The feature which the S-cells extract is determined during
the learning process. In lower stages, local features such as a line at a particular orientation are extracted. In
higher stages, more global features, such as a part of a training pattern are extracted. Figure 2 shows a S-cell
input t9 puttlt characteristic employed in the neocogniti on.

U f 1 -4-00

V 4. -1W , - ,--- 1 + hW .,... '7

Figure 2. Structure of a S-cell

An S-cell has an inhibitory input which causes a shunting effect. Let u(1), u(2), . , u(N) be the excitory
inputs and v be inhibitory input. Let c be the weighted sum of all excitory inputs and h the weighted sum of
i;"iibitory input. e = Y a(v) * u(v) (1)

h = b * v (2)

where a(v) are the excitory and b is the inhibitory weights. e and h are inputs of the S-cell and w is the output
o( the S-cell.

1]+ h 1[ +(
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The t-onlinear function y is defined by the following equation.

X (X>O)

X [X = 0 X (4)

The a(v) weights are variable and are reinforced during the learning process. The inhibi'ory input b is obtained
from the output of a subsidiary inhibitory cell, which is called a V-cell. The input of the S-cell and V-celi
are the same but V-cell weights are fixed. The output of the V-cell satisfies equation 5.

v = XS/ E c(v)*u(v) (5)

The C-cells are employed in the network for positional shift and feature deformation. Connections from S-
cells to C-cells are fixed and do not change during the learning process. These weights are called the d
weights. The input-to-output characteristic of a C-cell is similar to that of the S-cell except the function (p
is replaced by function V which is a saturation function defined by

F + (x>0)> 1 (6)
(X)= 0 (x < 0

The neocognitron is capable of training with both unsupervised learning ( or learning without a teacher ) and
su;ýervised learning ( or learning with a teacher ). In unsupervised learning Fukushima (1982), the repeated
presentation of a set of training patterns is employed for the self-organization of the network and it is not
necessary to give any information about the categories in which these patterns should be classified. The unsu-
pew-vised learning of the neocognitron is similar to Kohonen's learning rule with the difference that S-cells of
a S-plane compete for learning a feature rather than the whole pattern. Among the S-cells of a certain S-
plane, only the one which is responding the strongest to a feature has its interconnection reinforced. The
amount of reinforcement of each interconnection to this maximum output cell is proportional to the intensity
of the response of the cell. The reinforcement is only applied to variable weights a(v) which aic excitory and
b(v) A•hich is inhibitory. This reinforcement of the variable connection a(v) and b(v) is based on the follow-
ing eq.:litions

Aa(v) = g * c(v) * V(v), Ab(v) = g * V(v) (7)

where g is a positive constant which determines the speed of increment.

The neocognitron may also be trained by a supervised learning rile. This learning method is advantageous for
recognitý3n of patterns which are similar in shape but belong to the two different classes. An example of
this is !he degree of similarity between 0 and 0 which belong to the same category and that of 0 and Q which
are similar but belong to two different categories. The main difference between the supervised and the unsu-
pervised learning is that in supervised learning each layer is trained at one iteration with a teacher. ihe fea-
tures taught to the first layer are primitive features of the pattern like horizontal, vertical and oriented
lines. T!he next stage is trained by more sophisticated features obtained from the combination of the features
of the first layer. Each cell of the last stage corresponds to the complete global feature of a trained pattern.
Supervised learning is a useful technique when the application is limited to a certain type of pattern. The ex-
tended neocognitron, proposed here, has the ability of recognizing patterns in different orintations. This new
feature of the neocognitron is obtained by a generalization of the position invariant characteristic of this net-
work, In the neocognitron, cells of a S-plane are responsible for extraction of the same feature at different lo-
cations. The cells of each row look for a specific feature along the X axis while cells of each column look for
the same feature along the Y axis. This is the reason for having two dimensional S and C planes. The idea of
position invariance of the neocognitron is generalized to augment the rotation invariance property. Thus the
extended neocognitron is capable of recognizing patterns in different positions, orientations and scale with no
preprocessing stage. It is also sufficient to train the network with patterns in one position, orientation and
scale and the Uained network can recall the same patterns from a different position, orientation and scale.
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CUTTING PATTERN RECOGNITION USING EXTENDED NEOCOGNITRON

Stock patterns to be cut from composite piles contain features that can be classified. It is not difficult to come
up with feature names as; rectangular multiple bosses, convex multiple groves, symmetric bosses. Some of the
features are the terms used in the shop floor for identifying various components of the composite structure. A
simple composite structure is shown in Figure 3 is differentiated from the other patterns as rectangular convex
single boss ( the second feature in the stage three ). Sample composite structure recognition of this shape using
the extended neocognitron is demonstrated in the figure based on three stage network.

U U U U U U
si- C1 52 - C2 s3 - 03

cell features cell features cell features

_ 111

Figure 3 Sequence of feature extraction

Once the features of the patterns are identified it becomes possible to select an appropriate pattern sequence
for creating a pattern nest using an expert system. This extended neocognitron architecture can then work as a
pattern classifier for composite stock cutting.

CONCLUDING REMARKS

In this study a neocognitron architecture is extracted for composite stock cutting classification. Based on ini-
tial tests, the new paradigm looks promising. It can identify scrap patterns generated from the combination of
various composite stock patterns. The adopted architecture of neocognitron is coded for a sequential machine
and efforts are underway to implement the network on a parallel machine.
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Abstract
An application of the Hopfield-type neural network is

presented in the switch pattern planning problem of electric
power distribution systems. This problem requires consideration
of non-equality constraints, To represent these constraints in
the energy function of the neural network, a new technique was
developed which introduces special neurons into the network.
These neurons are expected to converge to intermediate values
between 0 and 1. Simulation results show that this method is
quite encouraging.

1. Introduction
Since Hopfield showed the neural network technique could

solve combinational problems such as the Traveling Salesman
Problem[l], many researchers have attempted to apply the neural
network to various optimization problems. The constraints of
almost all of those problems are combinational constraints.
However, in most actual applications, non-equality equations
have to be taken into consideration. This paper deals with the
switch pattern planning problem which contains the the non-
equality equation constraints.

2. Switch Pattern Planning Problem

The switch pattern planning problem involves determination
of the on/off states of switches in electric power distribution
systems. Changing their on/off states allows control of the
energy flow from energy sources to consuming points such as
factories and houses. A distribution system can be represented
by a graph such as Fig. 1. In this figure, branches correspond to
switches, and nodes correspond to consuming points and energy
sources. Usually an energy source is called a "Feeder" and an
energy consuming point is called a "Load". Switch pattern
planning sometimes proceeds as restoration steps after an
emergency situation such as a black out. If the power supply
through Feeder-O is interrupted, Load-I to Load-1O are blacked
out. The restoration finds available back-up feeders and
emergency supplying routes from back-up feeders to blacked out
loads. Rerouting is realized by changing the on/off states of
switches located in the distribution systems. Then rerouting can
be considered as an allocation problem among back-up feeders and
blacked out loads.

The aim of the switch pattern planning is to find the best
allocation under some constraints and objective functions.

The constraints and the optimization targets shown in Fig. 2
are as follows.

II - 591



(1) The total energy value from a feeder must be smaller than
its capacity.

(2) Any blacked out load should not receive energy from two
or more feeders.

(3) The optimizing target is to minimize the amount of black
out power. Backup Feeder

Feeder-I Feeder-3

Original Feeder
Load-6 Load-

feeder-0Switch

F e d e -OL 
o d -6o o

Load- Load- Load- Load- LoadAFe r-

Load-7 oad-10

Lo"41-9 6 o

Load

Fig. 1 Graph representation of a distribution system

Rack-up Feeder In Partitioned Sub-graph

Rgoot Hust be Feeder

Loa Of Feeder Capacity ý Sui of Load Value

Sd/

I --- .... Partitioned Sub-graph
Objectioe Function Y1 X1. X!---------

FauY 2 X2.1 X2.2-----
_________-_ [To iiniiize the Blacked-out Load l

Yili L.3 Y3.1  X3.2----------- X3. 10
Graph of Distribution Syste Blacked-out Load Y4 X4.1  1 . ......------ -

Fig. 2 Constraints of the problem Fig. 3 Neuron matrix

3. Formulation of the problem
With the constraints mentioned above, the switch pattern

planning problem can be mapped onto the graph partitioning
problem. As Fig. 2 shows, a partitioned sub-graph should be a
tree which has a feeder as a root, and the sum of the required
energy value in the sub-graph should be smaller than the
capacity of the feeder.

The state variables Xij (raeurons) shown in F-ig. 3 are defined
to represent the allocation state between feeders and loads.
Xij=1 means that Feeder-i supplies power to Load-,] and Xij=O
means otherwise. Constraint (2) does not allow O<Xij<l.
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In this case, the capacity constraint is represented by the
following non-equality equation.

Nn
E Lj'Xij 6 F1 (1)
j

where, Nn is the number of loads, Lj is the energy value which
Load-j requires, and F1 is the capacity of the Feeder-i.

A new method is proposed to represent these constraints in
the energy function for the Hopfield-type neural network. The
fundamental concept of this method is to introduce the neurons
which converge to intermediate values between 0 and 1. This
special neurons Yi are multiplied to the upper limits F1 as
shown in Eq. 2. The final equation for energy function El is
described in Eq. 3..

Nn
E Lj.Xij = Fi'Yi (2)

Nn
El = E 1 Lj.Xij - Fi.Yi ) 2 (3)j

3. Energy functions

The other terms of the energy function are described here.
(1) Path constraint E2

From a Feeder-i to Load-j, there must be a path to transmit
the energy. To represent this constraint, the following term is
defined.

Nf Nn
£2 = E E Xij( 1 - Xik ) (4)

i j~g(i)
Jc=k (i, j)

where, Nf is the number of feeders, g(i) is the load to which
Feeder-i is directly connected, k(i,j) is the load that is in
the path from Feeder-i to Load-j and directly connected to Load-
i.
(2) Tree constraint E3

The partitioned sub-graph should be a tree. This constraint
means that the number of neurons whose values are 1 in each
column of matrix (Xij) should be 1 or 0, and defined in Eq. 5.

Nn Nf Nf
E3 = 1 E E XijPXkj (5)

j i k#i

(3) Objective function E4
The optimization target is to minimize the number of the

blacked out loads. This is defined in the objective functions E4
in Eq. 6.

Nn Nf Nn
E4 = I E Lj.( I - E Xij) I / 2 E Lj (6)

i I i
The total energy function is defined in Eq. 7.
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E = l.E1 #+ w2.E2 + w3oE3 + •4.E4 (7)

where, w/,w2,w3, and w4 are weights.

4. Simulation Results

All the neurons including Xij and Yi are calculated using
the following equations.

dUij/dt = -aE/aXij (8)
dUi/dt = -aElaYi (9)
Xij 1 /I 1 + exp(-Uij) / (10)
Yi = 1 If 1 + exp(-Ui) / (11)

We investigated 100 cases with various values of Fi and Lj
on'a model distribution system with 4 feeders and 10 loads.
Figure 4 shows an example. The values of Lj, Fi, wl, w2, j3, and u4
are shown in the figure.

We got valid solutions in almost all of the cases. However,
in the cases under the condition of ELj > EFi, some Xij
converged to the intermediate values between 0 and 1.

5. Conclusion

A new method for describing the non-equality equation in the
energy function of the neural network was investigated. The
simulation results are quite encouraging although it does not
always give valid solutions as the original Hopfield-type model.
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ABSTRACT
A target recognition system using an artificial neural network was developed and
trained by the Learning Vector Quantization (LVQ) method. The system distinguished
among three targets regardless of their spatial orientation. It was demonstrated that
recognition was invariant under the affine transformations of rotation, scaling, and
translation.

Invariance is built into the network by the extraction of unique features from
the various targets. This method overcame the two shortcomings of long training times
and combinatorial explosion of terms often present in other networks. Two important
elements of this work are the feature vectors used to represent the targets, and
the recognition technique for identifying the observed targets.

INTRODUCTION
Target recognition can be defined as choosing the proper model structure to
characterize a given target, or identifying the target as belonging to a certain
parameterization. Some criteria used for target identification are explained by
Larimore (1977), Chellapa and Kashyap (1982). Researchers have attempted the
identification of unknown objects, using their 2-D silhouettes, by comparing them
with models in a library. Edges composed of straight line segments have been used
as features by many researchers in this context (Faugeras and Toscani 1986, Lowe
1986), and satisfactory results have been obtained.

Artificial neural networks have been trained to distinguish among digitized images of
several targets presented in fixed positions with a high degree of success (Farsaie
1989). The success rate is much lower, however, when the targets are rotated,
translated, or scaled in size. Previous techniques have included training the network
on the images presented at different angles as well as designing networks so that the
synaptic weights have affine invariance incorporated into their calculation (Giles,
Griffin, and Maxwell 1987, and Reid.Spirkovska, and Ochoa 1989). This paper presents a
new approach to affine invariant target recognition using artificial neural networks.

APPROACH
For the purpose of recognizing larger images of targets (100xl00), an attempt was made
to include the idea of irnformation being derived from correlations between and among
pixels as described by Giles et.al., but also to avoid the combinatorial explosion
of terms and connections that occur as the image sizes increase. Furthermore, a neural
network model was developed which accounts for aliasing and "jaggies".

Testing and training were performed on three targets shown in Figure 1. Images were
100 x 100 pixels in size. Three sets of images of these targets were generated:
silhouette, thin edge (with boundary line drawn one pixel thick), and thick edge (with
boundary line drawn two pixels thick). Each data set was presented to the neural
network separately during training and testing.

FEATURE EXTRACTION: A procedure for selection and extraction of features was
developed. This provided a set of feature vectors for use with the neural network
model. Components of vector X represent the features extracted from an image, where
X is defined as follows:

X [1) = the total number of pixels in the image with value 1.
X [2] = the sum of all of the products of pixels with the pixels which are the

same distance from a designated origin but 90 degrees apart.
X [3] = the same as x[2] except for pixels 180 degrees apart.
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At first glance, the above features appeared to be invariant - at least under
translation and rotation - if the proper origin is selected. However, close
inspection of these features revealed that aliasing may cause any or all of the
features to fail to be invariant.

To remedy the problems described above, an average number of pixels representing a
target was chosen rather than an absolute number of pixels. Deviation from this
assumed ave-age is a function of the rotation angle as well as the inherent problem of
aliasing. Using this approach, a learning paradigm was selected which accounted for
"average behavior" in a system. It appeared that although the features described
above are not "truly" rotationally invariant when a transformation is applied to a
digitized target, they are "nearly" rotationally invariant and a paradigm which
accounted for fluctuations about an assumed mean would work well. This led to
the choice of the Improved LVQ method described by Kohonen (1987).

After several training sessions were attempted to implement rotational invariance, it
became apparent that aliasing and "jaggies" caused the features extracted at the
mid angles (25 degrees to 65 degrees) to differ substantially from those from the
same target extracted at angles near zero degree and 90 degrees. Therefore it was
decided to use two feature vectors to represent each target. The first vector was
composed of features initialized with the target at standard position (at 90 degree
angle), as shown in Figure 1, end the second vector used the same features initialized
at mid angles.

Translation invariance was easily incorporated into the network by computing
features with respect to the center of gravity of the target. Thus the "designated
origin" referred to in the definitions of features X[2] and X[31 is the center of
gravity of the target. Features were adjusted for scale invariance by a simple ratio
and proportion scheme. The radius (R) of the smallest circle which encloses all
of the pixels in the target was found. The center of the circle was at the center of
gravity of the target. Each of the features was then multiplied by 144 '/R**2 ,where
144 is siwply a base value indicating the square of the radius of the circle which
encloses the training targets.

TARGET RECOGNITION: After the features have been extracted for the targets of
interest, feature vectors were used for training and testing. Kohonen's LVQ2
technique was used to perform recognition. LVQ2 refers to the Improved
Learning Vector Quantization technique described by Kohonen (1987). In this paradigm,
codebook vectors representing known classes are initialized - either randomly or
by a mentor - and training proceeds with all of the codebook vectors competing
for the input vectors. If the winning codebook vector correctly classifies the
input, the codebook vector is rotated toward the input vector. If the winning
codebook vector incorrectly classifies the input vector, the winning codebook
vector is rotated away from the input vector and the codebook vector which should
have won is rotated toward the input vector.

A methodology has been formulated and algorithms were developed for training
process (Figure 2). A target was randomly selected and then rotated at a random angle
between zero and 180 degrees. Targets were kept fixed at one location (no translation)
with their standard size (i.e., scale factor of 1:1). Features were extracted and used
to generate two feature vectors as described before. Then these feature vectors were
introduced to the neural network model where codebook vectors are computed and
updated. During training the network assigned two codebook vectors to each target.
This process was repeated for 1000 iterations, which would result in rotating the two
codebook vectors toward the center of the cluster that represents the target.
Iterations of 200, 400, and 600 were also used.

During testing, one of the three targets was randomly selected and rotated at a random
angle. Then for any selected scale factor the target was translated by x,y. Feature
vectors were extracted and then presented to the network for recognition. Training and
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testing procedures were repeated for all of three sets of images (i.e., silhouette,
thin edge, thick edge).

RESULTS
The recognition network was tested for all combinations of orientation angles and
scale factors. Angles were varied from zero to 90 degrees, and scale factors ranged
from 0.49 to 1.7. Translations ranged from -15 to 15 in both the x and y directions.

Performance of the network did not vary substantially as a function of' orientation
angle when thick edge images were used (Figure 3). For the case of silhouette images,
the percentage of correctly recognized targets was reduced by 10 at mid angles (i.e.,
30 and 60 degrees). The network performed poorly at angles near 45 degrees in the case
of thin edge images.

Figure 4 shows the percent correctly classified as a function of scale factor. It
appeared that in the case of thin edge images the network did well for scale factors
from 0.81 to 1.2, but the performance fell off sharply as the scale factor increased
or decreased beyond this range. When thick edge images were used the network performed
very well for scale factors from 0.81 to 1.44 with a correct recognition rate of 97
percent. In the case of silhouette images recognition rates ab high as 100 percent
were achieved. When the target size was reduced the accuracy dropped by three percent.

As expected, the network trained on silhouette images exhibited the best overall
performance, achieving an accuracy of 99 percent when trained for 1000 iter-ations
(Table 1). In general thick edge images were superior to thin edge images for
identifying targets (90.0 vs 70.0 percent). As 'Fable I also shows, no appreciable
improvement was obtained by increasing the number of iterations for either the thick
edge or thin edge images.

CONCLUSIONS AND SUGGESTION FOR FURTHER STUDY
The test results clearly indicated that the feature extraction technique described
here, along with LVQ2 training process represented an efficient and effective method
for target recognition which is invariant under any of the affine transformations of
scaling, translating, and rotating. Using only two codebook vectors for each target
and only three features per vector, a high rate of success was achieved in
distinguishing among three targets presented at varying spatial orientations. In
addition to the rapid training process and efficient identification, a new set of
features was introduced which may be easily generalized to account for more complex
structured targets.

Work is underway in researching the problem of identifying targets by feature
extraction with Kohonen style network. Emphasis will be placed on establishing
criteria on what is the adequate training time, and incorporation of statistical
measures to present probabilities of detection, as well as assigning measures of
confidence to che response of the network. Other problem areas such as more efficient
scale invariant algorithms, and perhaps most significantly, designing the networks to
work in the presence of high signal to noise ratio are to be studied.
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ABSTRACT

The use of the certainty factor forrnalism in connectionists' expert systems has three disadvantages:

1. The certainty factors of the "AND" and "OR" operations are taken to be the maximum and minimum of the
certainty factors of the premises respectively. This means that some information are completely ignored in
the process.

2. The uncertainties in the facts, rules and logical operations are not treated in a unified way

In this paper, we define a new logic that weighs all available information and implemented it using an emulated
neuronet.

1. INTRODUCTION

One way of handling uncertainties in an expert system is to introduce Fuzzy logic [1]. The idea of Fuzzy logic
originated from the concept of Fuzzy set and inherited certain limitations. The most serious one is that not all the
strengths of the conditions are taken into consideration in determining the strength needed for the corresponding
action. Consider the following rule:

If A (a) and B (b) and C (c) then D (d)
where the upper case letters represent conditions and action and the corresponding lower case letters represent the
strengths of the conditions and the strength of the action. Fuzzy logic would take d to be the minimum of a, b and c.
If we replace the "and" in the above rule by "or", the maximum of a, b and c would be used as the value for d. There
are many situations where this is not a good model of the real world.

Suppose we are building an expert system for buying of properties. The expert may say that
If

the location is good (a)
and

the price is reasonable (b)
and

the property tax is not too high (c)
Then

buy the house (d)
Surely the case where the values of (a, b, c) are (0.8, 0.8, 0.5) and the case where the values are (0.5, 0.5, 0.5) merit
different consideration. In most decision making process, it is more realistic to take an weighted average of tie
strengths of the conditions rather then just the maximum or the minimum.

The following sections described a method of combining the strengths of the conditions and pointed out how it
can be naturally implemented in a neural network.

2. NETWORK STRUCTURE

The neural network used to implement the decision making expcrt system consists of n input nodes I, ir output
nodes 0, and p hidden nodes H. A simple case in which n=4, [n=2 and p=5 is shown in the following diagram:
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Each of the I nodes corresponds to a primitive condition in the system. The strength of a node is denoted by an
ordcred pair of real, non-negative numbers (a, b). These numbers are normalized in such a way that a+b <= 1. The [
numbers are assigned by the user and they have the following meaning:

1. The quantity "a" denotes the amount of evidence that is for the condition represented by the node,

2. The quantity "b' denotes the amount of evidence against the condition, and

3. rhe expression "1-a-b" express the lack of evidence rcgarding the condition.

For example, if we ask the opinion of 100 experts, 70 of them think that the condition is true, 20 of them consider it •
untrue, 10 of them do not know thae answer, then (a, b) -= (0.7, 0.2).

Each hidden node H represent a logical operation. It has a strength that is denoted by an ordered paired of real,
non-negative numbers (c,d). These numbers are computed from methods to be described in the. next section, and
they satisfy the normalizing condition c+d <= 1. There is also a threshold value 9 attached to each hidden node.
When 9is less than 1, the system performs a threshold operation after the strength is calculate~d. If its value is 1, no
threshold operation is needed, and the calculated strength is stored at the nodle right away.

Each output node 0 represents a possible recommended action. The strength of each node is given by an ordered
pair of real, non-negative numbers (e,f). The values are computed from the weights of the internode connections as
well as the strengLths of the input and hidden nodes. The rule of computation make sure that the normalization lr
condition e4f <= i is satisfied. The values o[ e and f represents the eagerness with which the system recommend the
action to be or not to be taken. A large 1-c-f shows that the system does not know whether to recommend for orHi

against the action.

The three types of nodes described above are connected by a set of arrows to form a directed graph. A weight is
assigned to each connecting arrow. Each weight is an ordered pair of real numbers (cx, 13). Unlike the strengths, the
weights are not normalized, and negative value is allowed. The actual values depend on the number of conditions
used in the rule and the type of logical operations involved.

3. PROPAGATION OF STRENGTPS

To show the propagation of strengths, we shall focus our attention on one of the nodes R. Let there be n
incoming arrows connecting it to , other nodes P( whose strengths are (al, bie). This portion of the network is
shown in the following diagram:
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The strength of the node R is calculated by the following steps:

1. Compute the total uncertainty of the incoming nodes: uncert= Y 1-ai-b,

2. Compute the products ai oC. and bi Pi, for all i.

3. Let pos be the sum all the positive terms and neg be the absolute value of the sum of all the negative terms.

4. The strength of the node R is given by (a,.,b,), where a,.-pos/(pos+neg+uncer1) and
br=neg I(pos+neg +uncert). Note that ar+br<-I just as it should be.

5. Perform threshold calculation. If ar-b_20 r then we set a,=l and br=O. For nodes that does not reach the
threshold, the values of ar and b, are not changed.

4. DETERMINATION OF WEIGHTS

The computation described in the last paragraph made use of strengths of incoming nodes as well as weights of
the connecting lines. The weights depends on two factors: the number of incoming nodes and the type of logical
operation. We shall describe the determination of weights for a few logical operations.

The criteria used is very simple. From the definition of the logical operation, we know whether R is true or false
for a given set of inputs. We choose a set of weights so that R agrees with this result. For this purpose, we note that
R is true if ar -b, >= 1. It is false if ar - br <= "1.

4.1 The 'AND' operation

Let
R = P I "AND" P2 "AND". ...... "AND" P,-

then we set
ai 1/n

and
Pi = n The following table from Kleene's strong three-valued logic [2] gives a definition of the

binary "AND" operation.

"AND" .de false unknown

true true false unknown
false false false false
unknown unknowiwn false unknown

It can be easily verilied that the above assignment of weights does produce the desired result when we note that
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1. For the input nodes, the strengths are (1,0) for true, (0,1) for false and (0,0) for unknown.

2. Let (a, b) be the strength of node R. R is true if a-b>= 1. R is false if a-b <= -1. R is unknown otherwise.

Inductive argument shows that the assignment is valid for the case with n incoming nodes.

To model different worlds, other types of three-valued logic may be defined. This results in a different table of
definition and consequently a different set of weights for the lines connecting nodes to an "AND" node. We have
developed a program which produces the weights by reading in a table of definition.

4.2 The 'OR' operation

Similarly, it can be verified that for the "OR" operation, whose definition is given in the following table:

"OR" true false unknown
true true true true
false true false unknown
unknown true unknown unknown

the weight assignment is:
aj = n

and
P3i = l/n

4.3 The negation operation

The negation operation is a unary operation. The table of definition is very simple:

P "NOT" P

S-true falseLfalse true
unknown unknown

and the weight is:

Crj = -11
and

5. Conclusion

The neural Petwork suggestea above is useful in developing expert systems that helps in decision making. It
allows for fuzziness in the fac.s as well -as rules in a natwial way. It is more realistic then the classical fuzzy logic
because for both "and" and "or" operations, all evidences are weighed and taken into account.

The expert system can operate in two modes. In the normal mode, rules are given by experts and weights are
•,s.igned values given iq the last section. In the learning mode, weights are allowed to vary while the system is fed
with examples.
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ABSTRACt: It is the purpose of our research to determine whether or not linking serial and neural architectures
functionally would map to a model of a corpus collosumwhich would provide insight to optimal matching in a
hardware hybrid system. Given the current static neural network models, it is difficult to determine isomorphisms
between computer based functions and their biological counterparts. As we progress more toward dynamic net-
works, we anticipate using systemic approaches that more closely map to the physiology of the network rather than
make the division of processes at a procedural level. We have created a road map for a particular application which
commences with a proc.edural level division of processing, using conventional static neural network technology, and
will evolve to a powerful workstation based on systemic models.

1. INTRODUCTION

Our goal in this experiment has been to evaluate certain aspects of optimization in the interfaces
between co-ventior al comaputing architectureb and architectures based on Neural Networks which are,
functionally more biologically authentic. We wished to create a practical, operational program to help
locate functional areas for optimal interconnection. We also wished to provide research on the practical
use of these combined systems in areas where artificial neural networks could supplant or duplicate
human functions.

We have sought our modeling examples from the related fields of neurophysiology and computer
science with a bent to the practical application in a working computer program. This meant defining a
systemic' architecture that would provide stepped functionality culminating in a future system based on
alternate neural networks which more closely parallel the biological in nature and function. The first
step, i, a simple application available to any interested users at no cost. The application is based on the
Liischer Color Psychology Tests.

From the field of biology, the macro structure that provides iiispiration for our model is the left and
right cerebral cortex with specialization to "left hemisphere" rules and algorithms cooperating with
"right hemisphere" heuristics and "fuzzy" matches. The outcome of our research would be insight into
the functional equivalent of the corpus collosum, providing an optimized bridging of left-right functional-
ity. We expected to be able to find areas for the optimal distribution of system functionality from exam-
ples in neuropsychology.

From computer science, we find combined artificial intelligence (Al) and neural network (NN)
techniques 2 that use rule based Al analysis where expedient and otherwise allow the NN to provide the
subjective/objective information handling. A synthesis of these examples has led us to investigate expert
system technology which uses NN to provide the inference mechanism.

For an initial application, psychological/behavioral modeling seemed an interesting direction to pur-
sue for several reasons. On one hand, starting with an interactive counseling advisor would be feasible.
Self-evaluation conditions and the need to provide subjectivity for self-analysis fit well within our pro-
posed technology. Furthermore, this kind oi computer application could evolve as a future tool for psy-

1. See [Olson 1989].

2. See [Rumelhart 1986].
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choanalysis, taking advantage, in its simplest form, of its: data collection capabilities, comparison of
analysis against objective system, and the flexibility to alter the application based on personal experience
of the professional.

We decided to base our application on the Ldischer Color Test3 , expanded to include a more modern
paradigm for interpretation. Why choose LUischer? Consider that the Color Test presents a well docu-.
mented and popularly accepted self-analysis methodology that is constrained to a reasonable number of
possible diagnosis/prognosis. Also it maps well to our duality requirement, i.e. using a rule based
approach based on LUischer's specific criterion and examples, cooperatively with "fuzzy" analysis
providing a graded prognosis using NN.

I1. IMPLEMENTATION

A computer program for implementing the LUischer Color Test can be neatly structured into three
phases: Test, Analysis, and Prognosis. The first phase, Test, essentially concerns the human interface for
administering the Color Test. The metaphor of selecting from a small number of cards in a specific order,
suggests a simple user interface based on direct manipulation. For instance: randomly arrange all the
cards on the screen and instruct the user to "pick" cards using a mouse, starting with the most favorite
color on through to the least favorite color.

The second phase, Analysis, addresses the data structures and algorithms used for scoring test results.
Since the Color Test consists of two iterations of an eight color test, the data structures are simply a set of
2 x 8 arrays representing: selected order, color pairings, analytical marks, anxiety/compensation, and
stress. This data is determined after the second tLst according to the LUischer rules.4

The final phase, Prognosis, uses the derived data to condition the NN inpnt, then activates the Mq to
infer possible behavioral patterns from a set of learned archetypical test scores. The inferred resultE could
be either presented as the most likely match, i.e. found by using some "clustering" function, or the)
could be a set of partial matches along with associated "certainty" values.

1. CRITERIA FOR THE APPLICATION

The architecture of the application must allow for the use of alternative NN types as the research
progresses. It was determined that the first generation of the application would have a standard three-.
layer perceptron with back propagation learning.5 This was a "public domain" architecture which would
allow us to distribute the program freely.

"The ap-lication required an.intuitiv. human inter..cc targetd to tchinically urtsophist-•catted users.
We have targeted for individual desktop computer users in two categories: users interested in the appli-
cation as it pertains to practical NN technology or interested in the self-analysis and self-improvement
aspect, and professional researchers engaged in personality analysis. The design principles of flexibility for
researchers and ease of use for target users would drive architectural and implementation considerations.

Flexibility in working with the data required the ability to modify previously collected diagnostic in-
formation, and the text of the prognosis as well. These features would be important for researchers
although perhaps of little benefit to individual users. So a "user mode" was defined to distinguish be-
tween operating the program and modifying its means of diagnosis.

Data collection/entry capabilities were required in two methods: ease of use by providing mouse.
support for "point and click" operations, and efficiency by using an editor to allow clerical input of data.
This also provided flexibility to alter the application as much as possible, depending on the personal
experience of the professional user. It was intended that statistics could be gathered at a central point or
group statistics could be distributed to desktop systems for incorporation into their individual databases,

3. See [Scott 19691 which is an English translation of the original work in [Lascher 1948].

4. The Laischer rules are dcscribed in the appendix.
5. See [King 19891 for an example of this NN type, including C source listings.
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in order to allow cross correlation of Lischer test outcomes to other tests or to cross correlate major
environmental factors. As an example, we would use this facility to update the Luscher prognosis to in-
clude more modem philosophical approaches.

Finally, the specific equipment needed would be a Macintosh6 with a color display. Additionally a
black and white option would be provided to allow demonstration of the application on monochrome
computers.

2. FEATURES OF THE FINISHED LUSCHER APPLICATION

The Macintosh software development has resulted in a reasonably small application, under 75K bytes
in size. The Macintosh operating systems allows the prognosis and associated data patterns to be stored
and manipulated as data resources. This provides a convenient database mechanism for both the set of
standard behavioral patterns as well as for collected data. Output Layer:

When the program starts, it searches for available a feeback neuron
prognosis resources and then dynamically allocates a NN
large enough for the known set of patterns. This means that
the program is essentially bounded by the memory require- Hidden Layer:
ment of one neuron in the hidden layer per learned prognosis one neuron per
(see Figure 1). The program then learns each data pattern as a learned prognosis
data input vector associated with a resource index for the
corresponding output value.

The human interface for the typical user consists of a win- Input Layer:
dow with eight color tiles, which the user clicks in succession one neuron per

dow withbinary encoded
using the mouse. After two passes, the program runs the rule data -vector bit U L U L .U
based analysis and then infers a match from the known prog-
nosis, which is presented to the user on another window.
Using our current set o; 23 prognoses, this entire transaction requires an amount of processing time on a
Macintosh Ix that is negligible to the user. Overall, the user interface is reminiscent of many card based
video games.

A major tradeoff of the entire approach is that a true biological model is not available. Thus the inter-
face work done on this application was only good from a functional standpoint, since we were not able to
create a more architecturally realistic corpus collosurn model.

HLI FuTURs: TOIN ARV AA TRUE BEt' IA V71R TflVCT WOAISTA-10N

It is our intenton that by using a neural network that more closely models the biological we can pro-
vide the kind of functionali ty that could create a Behaviorist's Workstation, or Psychological Workstation.
Current research leads us to believe that this is possible. We also believe there is at least another step that
is possible using more conventional, biologically inspired networks.

One option would be to have the computer act as the analyst and/or the subject. This operating
mode bears semblance to the proverbial Turing Test for computer intelligence.7 Building on this analogy,
we are pursuing the implementation of a natural language interface where the computer uses prognosis
from the user's test scores as a basi 3 for dialogue and further questioning, reminiscent of the Eliza pro-
gram.

8

From our current perspectives in using this application, we can see yet anther possibility. That is of
actually allowing the NN to synthesize the behavioral input to the program. For instance, from the
knowledge base of diagnostic data provided, the NN could make the Color Test selections. Thus the

6. Macintosh® is a registered trademark of Apple Computer, Inc.
7. As described in [I Iufstadter 19801.

8. As described in [Weizenbaum 1965).
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workstation could Le used to teach the evaluation skills in pinpointing particular neuroses.

Of course, a neural network closely modeling the biological could be artificially given certain neuro-
ses or psychoses and when used in such a workstation could help the behaviorist or psychologist devise
still more refined tests, possible cures, and evaluate the outcome of the application of these hypotheses.
All this is quite impossible to do on humans at this time, but it would make the Behaviorist's Workstation
a powerful instrument for the benefit of anyone involved in human behavioral studies such as the afore-
mentioned behaviorists or psychologists, or even marketers and politicians. In those cases aberrant be-
havior might be considered as stress conditioning caused by environmental influences such as impact on
local communities of individuals.

IV. CONCLUSIONS

Up to the point of this writing, we have investigated various possibilities for the architecture of this
program in light of an overriding set of requirements that it potentially evolve into a Behaviorist's
Workstation. We have come up with a plan and timetable for our activities, and we have developed a
computer program which we are offering to all interested parties.

We are pleased with the application as it applies to the concept of a workstation for behaviorists or
psychologists and we are pleased to offer this first application to those generally interested in practical
application of NN or people who are interested in self-help systems.

In a hardware system, we would have been more cognizant of specific data paths and how they per-
tained to overall performance as well as finding optimal placement of data handling interfaces as in this
simple application. From a standpoint of function splitting and sheduling parallelisrn, this simple• . em-
ple did not provide the breadth of a platform we would need.

Liischer claims that his colors were carefully selected with just the right tinting within each to elicit
the appropriate responses. We carefully matched his colors using an 8-bit color table on the Macintosh,
ordy to find unit to unit variations that distorted our original palettes. We were forced to compromise
Luischer's colors in favor of more distinct hues, however we intend to provide a color name facility to
allow individual users adjustment the application's palette to suite their particular desktop system.

Note that the simple perceptron model requires binary input to its neurons, so the derived Color Test
data in our application must be binary encoded. At one point we accidentally left a zero input vector in
the database, i.e. all zero bits, and found that the otherwise functional NN produced extreme outputs re-
gardless of the NN input. T1his led us to revise our binary encoding with attention paid to Hamming dis-
tance analysis 9, which led to more consistent output. The question of data encoding appears to be a prob-
lem for almost any digital neuron model, so we consider research into analog models of neural networks
a potentially more profitable pursuit.

We are convinced that neural networks can find great applications in the Behavioral/Psychological
Workstation areas, working in concert with conventional architectures. We are looking forward to our
future research wo-k in this direction.

9. See [Hamming 1980).
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Abstract

A flopfield-style network model was first developed in [2] and studied in detail in [3]. This model has
the advantage of higher storage capacity and less interference between stored memories than the classical
discrete Hopfield network [1]. In this paper, we consider one application of this model, namely, a Neural
lexicon. We also describe a new learning rule that further improves the capacity of the model.

Introduction

A Lexicon can be formulated as a content-addressible memory with words in the lexicon being memories to
be stored and the primary task being to retrieve the best stored word given an input (mis-spelt, incomplete
or noisy word). Such a lexicon can be used as a component in cursive script (or other hand-written/machine
written text) recognition systems because it can tolerate noisy or incomplete input. It can also be used for
spelling correction of electronic text.

A detailed description of our Hopfield-style model and its computational properties can be found in [3].
In this paper, we will focus only on those aspects relevant to the lexicon application. Compared to the
classical discrete Hopfield network [1] the learning rule described in [2, 3] considerably mitigates the problem
of interference, resulting in high network capacity. However, experiments (described in this paper), show
that spurious minima become a serious factor when the number of stored memories is between n and n 2 , n
being the number of units. This number of memories would be required for the Lexicon application. A new
learning rule is developed to attempt to unlearrn spurious minima in such a case. Our experiments show that
the new rule performs moderately better (and much faster) in unlearning spurious minima words.

Our activation rule is also different than that of the classical discrete Hopfield network in that it performs
steepest descent in the energy landscape [2, 3].

Model for Spatial Memories

Let the environment be modelled as a domain D of symbols. A unit is associated with each symbol. The
network is fully connected. The number of symbols in D is not fixed. New symbols can be added any
time, which means the network can grow new units and new connections. Here, however, we assume a
fixed size domain D on n symbols, sj, S2, ... , s,. Let k be the maximum size of any stored set, that is
k = rnaz (jSj{) for all stored sets Sj. Then k more symbols are made available by this model, named
1 through k. These symbols represent sizes of stored sets and are essential for storing subsets of other
stored memories [3]. A unit is associated with each size symbol and such units are called size units. pi
denotes the ith unit. wjj denotes the symmetric constraint between units pi and pj. In a stable state
(local energy minimum), each unit, pi, has the value 0 or 1. Initially, units may have values in the interval
[0, 1]. For the time being, however, let initial pi also be {0,1}. A spatial memory is represented by the set

Sm = { si,, i2 ... , si, , S.. C D
The network implicitly includes the symbol representing JSin in this case, j, during training. Each spatial
memory is represented by a particular set, Si. Symbols in that set may either be clamped or unclaniped.
s denotes a symbol clamped to 1. s!' denotes a symbol clamped to 0.

The network has the following initial state.

wij(O) = p, p< -(n+k) Vi, j i~j (1)
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Learning and Energy Descent Rules

The precise formulation of this learning rule (LR-I) can be found in [2, 3]. Very briefly, pair-wise constraints
are learnt between all symbols in the test input Sj and the symbol representing ISI. Let pi,pj E Sj and
both be clamped. w1j(1 + 1) = A if wij(t) = p. wij T if pi and pj are clamped to 1. uij I if one of them is
clamped to 0. The non-linear learning rate (A) bounds wij between [-1, 1] unless it has the value p. This
learning rule allows the development of local minima separated from each other via strong lateral inhibitions
(p) thus increasing capacity and minimizing interference.

As an alternative, the following non-incremental Learning Rule (LR-Il) was formulated specifically for
unlearning spurious memories without forgetting real ones. It was expected to perform better than LR-I for
the number of stored memories, M, >> n. Let m, be the maximum size of any set (memory) to be stored.

The network has the same initial state as in 1) except that p << -(n + k). Pair-wise constraints are learnt
between all symbols in the test input Sj and the symbol representing Isjl according to the following rule..

wjj(t + 1) = -wij(t)/m. if (p~l and pj; and wij(t) < 0) or

(pi and pj are clamped and pi • Pj and w1j(t) > 0) (2)

wij is unchanged otherwise.
Our energy descent rule switches the unit that reduces the energy the most, thus performing steepest

descent in energy space [2]. The local energy each unit can lower by switching is calculated as follows
AE. = -Vi*Ewij*pj+r

where Vi is the direction of switch (1 or -1) unless no switch is possible in which case Vi is 0. r is a global
resistance parameter. For the time being, we'll assume r is 0. Clamped units cannot switch. Let pi,,, be
the unit with minimum AE. If AEi,,, < 0 then pi,,,, is switched in the direction of Vi_,,. The advantages
of steepest descent are discussed in [2].

Lexicon application mapped onto this model

We wish to store words. The symbols that make up words are letters at particular positions. Hence our
domain D has symbols s .... sn where si = (li,pi), li is the letter at position pi. For notational convenience,
(li,pi) is replaced by li.pi, the "." denoting concatenation. Particular words are then stored as sets on D.

Example: Store three words: cat, car, dim. Then D = {cl, a2, t3, dl, i2, m3}. The inputs to the model
during training are the sets: { el a2 r3 ), { cl a2 t3 J, {dl i2 m3 ). For notational convenience, during
training, all symbols are assumed clamped to 1 unless followed by the suffix "*0" indicating that they are
clamped to 0. The network that results after training is shown in Fig 1.1. A test input can be any set on D,
for e6, { cl a2 r3 t3 m3 ). Observe that it represents three hypotheses at position 3. The network trained
with only three words would then settle into one of { cl a2 r3 e { cl a2 t3 }, representing cat and car
respectively.

This model has a fair number of advantages. It's a good content-addressible memory. It is easy to show that it
can fill in missing information and clean up noise. Also, if we employ LR-I and make the assumption that the only
negative weights are of size p, it has the following property. Let s, be a test input set. Then if 3s,, si C s. and s3 is a
stored memory, no unit in si can switch off. If sj is the only stored superset of se, then the network will terminate at
si, regardless of Is,j. It is possible that 3sk,,si is not a subset of Sk but jIsi - Is.1 < IsI - Ishl. A Hamming distance
minimizer would reach qk, our network will reach s.. An example illustrating this effect is as follows. Consider two
stored words (among others), plug and plagiarize. Consider the following input: { pl 12 g4 z9 ). A IHamming
distance minimizer would retrieve plig. Our network will retrieve plagiarize. A proof of this effect can be found in
[3].

An architectural advantage of this model is that it is single-layer. To store M words, we need n units and 0(n 2 )
connections, n << M for large M (see Table 1.1). Retrieval time in our network is guaranteed to be within n network
steps [3]. In fact, it is typically within w network steps, u' being the maximum word length. The network architecture
(single layer), learning rule (I) and energy-descent rule seem feasible to implement in analog vlsi. Implementing the
wide range of values for weights could be a problem. Steepest descent could be approximated by decaying an initially
high global threshold signal sent to each unit.

One other advantage is that the !earning rule automatically guarantees that units representing different letters at
the same position are mutually inhibitory (since the network will only be trained with sets representing words).

The main problem with this model is that spurions memories can develop. Consider using the model to store the
following wotd,. cat,con,rot,carjor From Fig 1.2, it is clear that two spurious words get stored, cot and cor.
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It is hard to imagine how the development of spurious memories could be avoided within a single-layer network
architecture. In order to stick with a single-layer architecture, such memories must be unlearnt. Very roughly, the
idea is to train the network, detect spurious memories (not words in the training set) and decrease the strengths of
the connections responsible for reaching the spurious memory from a test input. One approach is to decrease their
strengths incrementally in order to keep them low +ve numbers (to avoid forgetting any real memories) and assume
that steepest descent will usually avoid these spurious memories. Another approach is to make these connections -ye
in one step removing a spurious memory in one shot, but it has the danger of suppressing realstored memories. The
problem with incremental decrements, on the other hand, is that spurious memories are never fully unlearnt, only
suppressed (hopefully) usually. LR-II is an attempt to remove spurious memories without also removing (forgetting)
some real memories. The principle underlying it can be stated as follows. A configuration of weights (parameters) is
desired such that

1. If s, is a real memory then for every pi E sj, ,-wk,}, > 0. Moreover, for every pk/Gs, • , w'k < 0.

2. If s. was a spurious memory then, 3pi E sj, F'hE, - (,) wik < 0 OR 3p, E D - s, WPk•,j w,k > 0.

Strong lateral inhibition (p) ensures the second condition of item 1. LR-II comes close to satisfying the first condition

in item 1 and the condition in item 2 by appropriately choosing n,, the weight division factor.

Table 1.1 shows how the number of units and the number of Words Units Spurious
spurious memories (before unlearning and reached after first letter 150 110 30

in each word is removed) scale with the number of stored words. 353 248 84

It suggests that network complexity scales well for this application 968 280 157
since complexity is a function of n (O(n 2 ) and 0(n) for space and 5873 489 4774
time respectively), not the number of words. The number of spu- 23500 525 21601
rious memories increases more than linearly with the number of 25622 533 19802
stored words making the training process difficult. Table 1.1

Experiments

The experiments using LR-I were based on the following algorithm. In practice, it is sufficient to choose p < -w,
where w is the maximum word length. p = -62, #size units between 10 and 15. ) = 0.1. The network was trained
on all words 10 times to make the minima deep. The network was tested on the trained words for errors (the only
errors will be subsets of others (car, carpenter) [3]). The network was re-trained with the erroneous words. This
process was repeated until there were no errors. In all experiments, this process converged within 3 steps showing
that all words were reachable. The Unlearning Phase was then begun. The following sequence of steps was repeated
for P = 1 to 6. All the words were tested with the Pth letter removed and the spurious memories noted. The spurious
words were unlearned and the correct words were reinforced as follows. Let cor be the spurious word (P = 3). The
network and expected results are.. { cl o2 ) -> { cl o2 r3 ) (Actual) { cl o2 } -> { cl o2 t3 I (Expected). r3 should
be unlearnt and t3 reinforced as follows:- { cl r3*0 ) { o2 r3*0 ) { cl t3 ) { o2 t3 ).

The experiments using LR-11 were based on the following algorithm. p was between -1562 and -3125. rn, was
between 10 and 15. There was ro reachability phase, word size information (size unit) was included with each test
word to make every word reachable without re-training. The network was trained on all the words. The Unlearning
Phase wa&- then begun. The following sequence of steps was repeated for P = 1 to 6. All the words were tested with
the PAh letter removed and the spurious memories were noted. The spurious words were then unlearned as before
(same unlearning input as showu in the LR-I example works with LR-II). Unlike for L11-I, the correct words were
not reinfoiced. Unlearning was expected to cause forgeLting of real words. Hence the network was then tested with
all the trained words and a list of forgotten words was compiled. The network was re-trained with all the forgotten
words by presenting each forgotten word again. The above steps were repeated (for same P) until the errors started
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d roppi VEr-r % Error

100. 1W0

50 50

3M573 313

*_ _ _ _ : Cycles:Cycles
5 10 15 20 25 30 5 10 15 20

Words Before After
1 Vwl I Crs All VwIs All Cnss Multi-!typ 1 Vwl 1 Cns All Vwls All Cnss Multi-Ilyp

150 19 19 23 25 18 7 6 8 27 8
353 55 80 99 175 106 40 33 78 171 95

5873* 908 1104 1157 1097 1108 792 552 1156 1092 -

150 33 26 39 42 25 0 0 6 18
353 72 101I- 461251851126 58

25622** - 4821410 851 746 772

Table 1.3 & 1.4 (* tested with 1200 words, ** 1024 words)

Analysis and Conclusions

The results are only ar. indication of the errors in retrieveing one of the stored words. It was shown earlier (Section
on Ad-,antages and [3]) that if the network retrieved a stored word, it would reach the appropriate stored word. This
was also verified experimently. The graphs above the tables plot the error % in the Unlearning Phase. The left graph
is for LR-I and the right one for LR-II. Each curve shows the error % after repeated unlearning for a fixed value of
P (2). In the tables, Table 1.3 (first 3 rows) are for LR-I, Table 1.4 (the next 3) for LR-II The columns (except
Multi-Ilyp) indicate items removed. Thus 1 Vwl means that the first vowel was removed from each word for testing,
eg cat - > { cl t3 3 }. Crs stands for Consonants. The column labelled Multi-Hyp means multiple hypotheses
were generated for letters at particular positions (based on lower case visual similarity), eg that - > { tl 11 h2 a3
e3 c3 o3 t4 14 4 ). The network's ability to reach a single correct word was tested. The tabulated results are based
on including word size information in the testing set (see above examples). Tests without such information showed
slightly inferior results.

For a small training set (150 to 350 words), both the Learning Rules performed well with LR-I performing slightly
Letter (95 - 100% correct). For a large training set (25622 words), the number of additional spurious memories was
extremely high and .R-I seemed unable to unlearn them. But by focusing on only 1024 words of the 25622 trained,
LR-I was able to unlearn from 914 spurious memories to about 540. On the same set ( 25622, 1024), LR-II was able
to unlearn from 940 down to 387.

In conclusion, we have described a Hopfield-style network model with large capacity (> n) and demonstrated this
capacity on a real-world application. We have also shown that this application maps well on to the model. On the
negative side, we have shown that spurious memories interfere with the network performance as the number of stored
memories is >> n.
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Abstract

This paper describes a neural-network based diagnostic system that directs or assists a technician
in diagnosing faults in a piece of electronic equipment. First, a neural-network model is described
that finds a fault when there is a one-to-one association between the faults and the symptom state
they produce. The overall diagnostic system concept is described, This model ha-s been extended to
take care of the condition wherein each symptom state could have been produced by one of several
faults.

1 Introduction

The recent advancement in integrated circuit technology has created a demand for precise testing and
diagnostic tools. The testing of digital systems requires rapid detection, isolation and rectification of
faults and malfunctions as they occur. This is done by analyzing symptoms that are recorded through
the application of special test sequences. The conventional approach is to employ an expert technician
to test and retest the system from the point of occu"rence of fault to the module responsible for the
fault, by backtracking, thereby isolating the fault. These coaiventional methods are known to have
exponential worst case perfor[miance and are not adequate in the rapidly changing world of VLSI test
systems [3, 4]. More sophisticated and powerful tools can be built using the state-of-the-art concepts
from computer science, artificial intelligence and neural networks.

This paper proposes a neural-network based diagnostic system for digital circuits that directs or
assists a technician in diagnosing faults in a piece of electronic equipment. Its goal is to develop a
general diagnostic system tha.t captures the knowledge of test engineers and technicians ,o perform
system fault diagnosis. Section 2 gives a detailed description of the system architecture and section 3
contains an example of applying our method to a 4-bit binary full-adder. Section 4 is the conclusion
and briefly discusses the advantages of this approach.

2 System Architecture

The diagnostic system is a three-layer network consisdiiu of an input layer, a hidden layer and an
output layer(Figure 1). The number of inourons within eac'h layer can be set at run time delpending
upon tlhe circuit under test at that instant. All neurons wiihin each layer are fully connected with all
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formed. The neighborhood or the window size defines the set of nodes to be considered when updating
the weights during clustering. The neighborhood starts large and slowly (lecreases over time. The
weights are updated for node j and all nodes in the neighborhood defined by windowj(t) using the

following equation:
w2,(t + 1) :w= 3 t) + 77(t) * (X•(t) - w1j(t))

For j E windowj(t) (0 < i < no.ofinputs)

The term 77(t) is a gain term (0 < i7(t) < 1) that decreases in time. The feature maps are formed
by the product of the inputs and the corresponding weights. These feature maps are propagated to

the second layer of the network where the system uses the structural descriptions of the circuit to
learn the subset of components which might be responsible for the observed symptom-state due to the
fault, at the next lower hierarchical level of the circuit. The delta learning rule is used at the second

layer to learn the associations between the generalized symptom-states in the Kohonen's topological
representation and the possible candidate modules at the lower level which might be responsible for
the fault or which might lead to a test that can provide useful information leading to the fault. The
training scheme is a little different here: For each pattern, the input units are turned on, and the effect

they have on the output unit. is observed. Its activation reflects the effects of the current connections

in the network. The difference between the obtained output and the teaching input is measured. The
weights in this layer are adjusted until the output converges to the teaching input using the following
equation:

wij(t + 1) = wtj(t) + 7j(t)(tcaching..input, - outputi) * Xi

We have thus far considered information about fault symptoms that look only one measurement
ahead in the neural network model. This model is able to take care of the condition where each
symptom-state could have been produced by one of several faults, by incorporating feedback into the

network. With feedback, the neural network mimics sequential conditional diagnostic searches which
are taught to it and proposes tests that lead to identify the correct fault. This includes some basic
search procedures such as binary search and searches based on probabilities of -Omn)onent failure. If
we keep highly activated output cells and set the others to zero, we can then ob.,erve, and kieen track

of movement of activity over time or sequences. This then require a propagation rule of the following
form which retains about 50 % of the previous output state activity:

activity(t + 1) = F(weights * activity(t) + 0.5 * activity(t))

where F is a nonlinearization function such as sigmoid. This rule has been tested on sets of sequences

and has produced for us excellent generalization and recognition performance. c-

3 Sample Application of the Method:

Consider the example circuit ihown in Figure 2. The block diagrani represents the structure and
function model of a ,I-bit binary-full adder.

The symptom-states observed at the primary outpt.ts((•,, S4.,S1) and the carry outputs of the
interme(liate sLage;(GC3..Cl) are fed into the neural network. The symptom-state-0, sym ptoru-state-!

and the flag inputs of the network are used in this example while others are sot to zero. There are

17 input nodes to the network; eight for symptoin-state-0, eight for symn ptoInu-state-I and one for flag.
The input to the I, ddhn layer consists of 100 nevrons (corres)imr(ding to the 10 x 10 Koihonen's fieature
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Figure 2: A 4-bit binary full-adder.

inap produced by unsupervised learning. The output layer consists of 32 nodes containing information
regarding where to test next. In one run we trained 55 input patterns which represent 55 decisions
or branches made at 15 nodes of a search tree for diagnostic hypothesizing and the system was able
to recognize them correctly. In other runs sequencing for hypothesizing the test nodes were reliably
reproduced.

4 Conclusion:

The model and example presented here show that the neural network approach looks promising and
efficient for guiding the search and forming fault and test hypotheses in diagnostic trouble-shooting
of electronic circuits. Their parallelism, speed and trainability make them fault-tolerant, as well as
fast and efficient for hlandling large amounts of (lata. A training from example paradigm such as the
one presented here could help alleviate the knowledge acquisition bottleneck present in expert system
based diagnostic systems.
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ABSTRACI

This paper presents feasibility studies of using a neural network
for detecting the presence of bad data in a power system. The neural network
model chosen is a three-layer perceptron using the back propagation training
algorithm.Details of the implementation are given and the performance assessed.

1. INTRODUCTION

Bad data points are grossly erroneous rather than just slightly in-
accurate. These could occur due to several reasons : a momentary failure
of a communication link, an intermittent fault in a meter or an error in
pseudo-measurements (a priori knowledge of certain variables). These errors
need to be supressed before the data is used for state estimation. There
are several methods available for the detection of bad data [1,2,31.

2. NEURAL NETWORKS

Neural network models are broadly based on our present understanding
of the functioning of the human brain. Neural networks process information
in a dynamic, self organising way and exhibit properties such as preferential
learning, optimization and fault-tolerance which are usually associated with
living systems [4,5].

The massively parallel structure of a neural network makes it inhere-
ntly superior to a von Neumann computer in certain respects. These networks
can generalise a cormmon pattern from the presentation of a large number of
examples. This is accomplished by virtue of their structure rather than
through elaborate programming. Neural network.- can abstract the 'ideal'
from a non-ideal training set. They are high speed because of the massive
parallelism.

There are several models of neural networks, each differing in the
algorithm used for training. In this paper, the multi-layer perceptron is
used. A multi-layer perceptron can be used as a classifier, classifying
the input vector into one of the two classes. The propogation algorithm
is outlined below [6].

1. Initialize weights w 40) and thresholds 0 (0) to small random values.
2 Present inputs xi(tt) 0 <i< N-1, anh the desired output d(t).
3. Calculate the actual outpur y(t).
4. Adapt weights starting at the output nodes and working back through

the hidden layers.

Aw j(t+l) 6 n X. + a Aoj .(t)
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Sis a gain factor, r is a momentum factor. 6 j is an error term

for for node j.

If node j is an output, then 6 j= yj(l-yj)(dj -yj)

For an internal hidden node, j = xj(I-X.) i 6k wjk

5. Repeat by going to step 2.

3. IMPLEYEN1TATION

Neural netwoks have certain advantages over the conventional computers
when it comes to the problem of detecting bad data.

a) No elaborate algorithms are required for the detection of bad data.
The neural network learns to do this from a large number of examples.

b) Processing of bad data has to be done in real time. Therefore
parallel processing is highly desirable since the time required
is independent of the number of inputs. On the other hand, in
sequential machines, the processing time increases enormously with
the increase in the number of inputs.

c) Here, the inputs are generated bynon-linear processes and are stro-
ngly non-Gaussian in the presence of bad data. In Ouch cases,
neural networks are more robust than conventional statistical cla-
ssifiers.

d) Plenty of training data is available and hence training of the
neural network is not difficult.

In particular, the perceptron model was chosen since it can handle
continuous value data. Also since training data is available, supervised
training is preferred. Besides the training procedure is simple and its
implemntation is easy.

A three layer perceptron was developed using the backpropagation algo-
rithm. The training data was used to adapt weights until the perceptron
could correctly detect the presence of bad data in the training set. Then,
a test set was used and the perceptron was expected to detect the presence
of bad data based on its training.

4. RESULTS

The neural network program was run several times on the Cyber machine.
The parameters studies were the gain factor, the momentum factor and the
network architecture i.e. the number of nodes in the hidden layers. The
performance criteria were the number of iterations required before the weights
were adapted the classify the training sets correctly and the error in classi-
fying test sets not used in training.

20 sets of input data, each set: consisting of 20 inputs and the desired
output for the set were used for training.., The trained perceptron was fed
with 20 sets of fresh input data.
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Here,

n = gain factor
a = momentum factor

Ni = number of nodes in the first hidden layer
N2 == number of nodes in the second hidden layer

The following decision rule was used

If 0.09 < x1 < 1.20 for all xj, then the data is good. If one or more
of the xi's are outside this range, then bad data is said to be present.

EFFECT OF GAIN FACTOR a = 0.9, Ni = 15, N2 = 10

no. of iterations for no. of errors
convergence with test data

0.10 363 1
0.12 364 0
0.15 324 0
0.17 315 0
0.20 309 0
0.23 595 0

EFFECT OF MOMENTUM FACTOR n = 0.2, N1= 5, N2 = 10

a no. of iterations for no. of errors
convergence with test data

0.88 687 0
0.90 309 0
0.92 799 0

EFFECT OF N2 and N3 n = 0.2, a = 0.9

Ni N2 no. of iterations for no. of errors
convergence with test data

18 10 245 0
15 10 309 0
12 10 145 0
10 10 352 0
8 10 340 0

12 12 145 1
12 8 .157 0

For the above observations, we see that there exist optimum values
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of T , a,Nl and N2 for which the convergence time is minimum. However, since
training is a once and for all task, the convergence time is not so critical.
We see that the three-layer perceptron performs extremely well for the test
data not used for training.

5. CONCLUSIONS

in this paper, neural networks, and in particular, the perceptron
model, have been discussed in brief. The massively parallel structure of
neural networks makes them robust, high speed and fault tolerant. Processing
is done in parallel and the time required is independent of the number of
inputs. The perceptron model is used to detect the presence of bad data
in power systems.

While elaborate algorithms are required to detect bad data using conventional
methods, the neural networks approach is simple and straightforward. The
simulated perceptron was able to classify the good and the bad data in test
sets with 95-100% accuracy. From the results obtained, we can see that the
convergence time depends on the gain factor, the momentum factor and the
system architecture.

The studies carried out for the implementation of neural networks
for bad data processing are in the prelimi.nary stage. However, the results
are very encouraging and indicate exciting possibilities. The spurt in resea-
rch in neural networks and the rapid progress made in the hardware for these,
lead us to envisage a neural network processor being used to tackle the prob-
lem of bad data in power system.
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Abstract

Historic pole-balancing problem is simulated using a neural network which imitate the control
intent of human and its machanisms, and we implement it by a computer interfacing. In order
to solve this problem, the neural network gets basic control objective and operation as
preknowledgement and uses the reinforcement learning algorithm for better performance. This
method can be related to the man-machine operation via control machanism which human
performs.

Introduction

Control application of neural network is represented by an automatic motor cotrol using
artificial perception. It is an intelligent , pattern recognized control which are made by a process
and experience of an animate creature. Thus to accomplish such a control ability, neural network
must implement the control intent and the process of human. In this paper, we intend to
solve the representative pole-balancing problem of control application by such method. Pole-
balancing problem defined in thifs paper is an action for a pole having one dimensional degree
of freedom not to fall down, thus exhibiting a control process of human being. This problem
has been a subject of many neural network researchers.

Recently, Widrow[2] studied "trainable expert system" or a new kind of adaptive computer
using a method in which the computer learns to associate visual inputs and the correspanding
control data of a skillful human. Guez[3] suggests that it is possible to outperform human
ability by the filtering of teacher training data dependent on the dynamic model of the teacher
and by compensating for a biophysical special feature of a human, using Trainable Adaptive
Controllers (TACs). These two studies use the control behaivor of human as important training
data. Barto[4] proposed the associative search element (ASE) and adaptive critic element
(ACE) using indirect performance evaluation in the state of no pre-knowledgement about the
problem and solved this problem by developing a more informative evaluation function.
Anderson[5] adds a secondary adaptive layer learning the tranformation of the state variables
on the Barto's original layer in which an evaluation function is formed. They focused on
the formation of an evaiuation function necessary to solve the problem and used reinforcement
learning mechanism. Ritter[6] solved the problem by making a mapping of a state space into
a total control space using topology conserving mapping appearing in the biological procession
of sensual inputs. All the proceeding studies were made via simulation.

In this study, we propose the algorithm in order to mimic the process of solving the pole-
balancing problem by human. That is the method which makes a better pertormance by
reinforcement learning rule given the aim of balancing and basic operation as prekoiowlcdgeinent.
We demonstrate it by an experiment that this algorithm is suitable to a real time computer
interface.
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The model

For information coding of a sensor, angle of the pole is divided into 21, ±3. +6,
9, -±12 degrees from a balancing point, and each region takes charge of the place. codc[7]
as 10 neurons. Also, the position of the cart is divided into ±0.8m, ±1.6m, --' 'm from
zero position, and they are assigned to 6 neurons. In ether cases, an equal number of neurons
are assigned to the right and left positions. At an instant of time, a neuron from the pole
and another neuron from the cart are participating to produce an output to make an action.
Because the control objective is to balance the pole and to position the cart to the zero position,
it is a reasonable assumption that the cart must move to the right if the pole is located
at the right. We don't take the velocity of the pole as the code information and only use
it in the calculation of the motor action. It is the same process for the motor as a human
in which the sensual coordination is transformed directly to the space coordination. The initial
command of this action is made by the spatial transformation. But, at the result of this action,
the position of the cart is biased to one direction, and, in the process, an unbalanced action
and movement of the pole is brought. 'Ilhus, we have the 6 neurons of the cart taken part
in the calculation of the force with weight at the intcntion of overcoming this iTbalatncing
state. It is the combined sensual stimulus or interpretation of the action intent that makes
the motor error decreased on the basis of information between the spacial objective and current
position. T'h.is step combines two sensual data and formn the pattern code[7]. Ncuros of the
pole and cart learn by the reinforcement learning rule independently. That is, at t.hze degree
of improvement of performance between the current state and earlier state, a credit or a blame
is taken. Thus the operation is made by temporal position and angle difference. Due to the
right and left division of pole and cart, the weight of each neuron can not have a minus
value. The weight begins with a high offset value because it reduces to the direction of
inhibition in a learning process[8]. Given the objective of balancing and the control intent
of the basic action as pre-knowledge, a fine control is accomplished via learning. In the
following, the course of learning algorithm appears

angle w(t+l) = w(t) + 0.9 * rein * abs[thcta(t)]
rein hati - hat2
hatl 0.20944 - abs[theta(t+ 1)]
hat2 0.20944 - abs[theta(t)]

where the angle is mearsured in radian, w is weight and theta is an angle. 0.20944 is
the radian value of 12 deg. Abs stands for absolute value.

position : hw(t+l) -hw(t) + 0.09 * reini * abs[dis(t)]
reini = abs[dis(t)] - abs[dis(t+ 1)]

where dis is a position and mearsured in meter, and rate 0.09 is scaled in ord-C to get
the same scale as angle.
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Experiment and Result

Simulation starts from a random initial pole state and fails if pole exceeds ±-12 deg or
cart exceeds ±2.4 m. New trials are restarted from a different initial pole state. Learning
is accomplished in the total pole state space. Output function is the threshold logic, which
is similliar to a human action. Figure 1 depicts the angle of the pole (a) and the position
of the cart (b) starting from the -8.4 deg of initial pole state. The figure (a) shows that
the angle of the pole is kept within ±1 deg and (b) shows that the cart moves around the
zero position. Simulation rate is 50 Hz.
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Figure 1 Results of simulation

Actual cart-pole system is composed of stepping Mot•)r encoder for mearsuring the angle
of pole, the cart mechanics and motor driving circuit, whiich are connected to an IBM PC
computer via an interfacing board. The motor rotates 1.8 deg per pulse. The encoder can
measure up to 0.12 deg per pulse. The interfacing board senses the angle of pole from the
encoder signal and sends the control signal to the motor. An angular velocity of pole is
calculated by in the average velocity over one step and position of cart is calculated by counting
the number of clocks and the direction of the stepping motor.

After learning is completed, only output function is enough to control this problem. weight
updating is not necessary, and any initial pole state goes rapidly stable region by this control
mechanism. TIhle clock of motor is calculated from the cart speed and the simulated force.
Real time une cycle take about 30 msec.
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Conculusion

It is shown in this paper that, given a basic control objective and action as a control
intent, a neural network learning to obtain a skillful control process can produce an appropriate
control law for the pole-balancing problem. In this problem, the control intent of a human
is less delicate, but this keeps learning velocity fast by coding right information. The process
of learning proceeds mainly in the direction of inhibition. It is similliar to the dexterity appearing
in the experiment of a human action which is formed via this inhibition. In biophysics, the
climbing fiber representing the control error of performance and the parallel fiber inhibit the
transmission of the purkinje cell of the cellibelum during the long time[9,10]. It is demonstrated
that a suitable control law representing a human undistorted, right control intent can be designed
in real situation by neural networks. The present work is aimed at investigating an
implementation of a control law of human using various adaptive networks, applying various
learning rules for a fine control.
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Application of Neural Network to Information Retrieval

K.L. Kwok, Dept. of Maths. & Computer Science
Western Connecticut State University, Danbury, CT 06810

1. Introduction

Given two items, a document and a query both In natural Language, an information retrieval (IR) system tries
to decide if they are dealing about the same concepts. If so it concludes that they are relevant, else not.
This strict decision is difficult because of the ambiguities of texts. The usual practice is to order documents
based on a similarity measure to the query, and a stopping strategy is applied on this ranked List, dividing
the collection into a relevant and a non-relevant set. Many models are possible (see [1] for review). We focus
on the probabilistic model [2,3], which in practice is based on ranking, relative to a query q =(qaI.. q.ak"
qam), via the tog odds tn(P(dIm+R)/(1-P(diI-R))] that within a relevant (+R) and non-relevant ?-R) sample of
documents that one would find the feature representation of a document di=(dil., dik.. dim). Features are
content-bearing terms derived automatically from the collection, numbering m. Assumptions are then usually
taken, e.g. items are represented by the presence/absence of terms (dik, qak = 1/0) and that they are
statistically independent. Optimal retrieval means optimal ranking in this sense based on the available
samples. Extensions to the theory (4,5] by considering each item to be constituted of conceptual components
leads one [6] to overcome some shortcomings such as: allow the theory to self-bootstrap, account for the
within-item frequencies dik, qak' and include the effects of the analogous situation of probabilistic indexing.
The end result is that we can provide optimal ranking of dncuments based on the following:

wa i =Sk (dik/Li)*gak, where

ga= grak + gSa = In Erak/(l-rak)] + In [(1-sak)/sak] (1)

WD =Ek (qak/L a)*gik, where

S= grik + gsik = In [rik/(i-rik)) + In [((-Sik)/sik] (2)

Wi = Woi + WD i (3)

OQi ranks documents based on the perspective that given a query, what documents are probably relevant (2].
WD- correponds to probabilistic indexing [71 with the perspective that given a docrnent, what queries are
proabty relevant. Ui accounts for both, similar to [8]. L., L are the Lengths of each item, and rake s k
are the probabilities that given relevance or non-relevance that ?erm k will be present: P(term k presentI+R).
They are estimated depending on how much feedback (i.e. the relevant sample (d 1 ) or (%•)) is available. The
non-relevant sample can be estimated by the rest of the universe. For example, the generak formulae for query
qa with na-1 feedback documents are:

rak = 1/na*[qak/La+Zjdjk/Lj, Sak = 2idik/Nw (w)

Mw counts the total number of index terms used, andE idik is the collection term frequency of term k. qa is
self-relevant and the formutae provides continuity starting with no feedback.

2. A Neural Network for Probabilistic Information Retrieval

A 3-layer neural network for the previous theory is shown in Fig.l. Layers 0 and D contain neurons to be
identified with each query and document. They also serve for external input and output. Hidden layer T neurons
are identified with each unique term and are connected to both Q and D bi-directionally with asyvrmmtic
strengths. Intra-Layer connections are disabled in this report. Operation is feed-forward (OtD) or feed-
backward (DtQ) only.

Connection strengths are initially assigned as follows. From an item to a term neuron tk. it is given by
W ki z d ik/Li (wka = q )k/L,), and can be obtained from the text. During retrieval neuron k receives signal from

an input neuron and leac(s to an activity ak z F(netk). It is known [9] that the power of Linear nets are
Limited. Based on experiments, we also founrd that a non-linear activation function is crucial for effective
retrieval. This function is taken as a family of raups: F(dik/Li)= •I/HIGH + dik/L), where L=LOW if L. c LOW,
else L= L1 . HIGH and LOW are constants justified from document text Length normalization. From a term neuron
k to an item the connection strengths w 1 (w k) are taken exactly as the g's of Eqn. 1,2. The s ik (s k) factor
is a constant approximately, while thetrk A rak) factor can Learn based on available feedback.IniiaLly, it
is assigned a small constant p. The activation function at the output neurons is also given by a linear ramp
with upper and lower bounds. The output signal and the activation of a neuron is taken to be identical.
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Ranking for retrieval goes as follows. Corresponding to W0. of Eqn.1, we focus attention on q , clamp each

di with activity 1 in turn, spreading it and observe the activity received at q (OtQ feed-backward). By

focussing attention on each d- in turn, with qa clamped to 1, we recover WD., Eqn.2 (OtO feed-forward). Adding

the activities received at the pair qa and di from the above recovers Wi ýsym) of Eqn.3.

3. Learning Algorithms

Feedback (which documents are relevant to which query) forms the clues to be learnt for the riak (r.k) factor

of the connection weights w (w ik) A Learning phase goes as follows. Fig.1 also shows a set of Jocuments
1d,) given relevant to q0 ara4has activity clamped to 1. qa being self-relevant is also clamped to 1, forming

a etevant set of size n a. After one time step, a term neuron k connected to them will receive an activity ak
zwka+r.wkJ. a/ In is now the best estimate of the probability P(term k present]+R) based on knowledge

currentlV available. A teaching signal of ta=1, and t =0 elsewhere, is applied on q because this is the

relevant item of the set. A Hebbian type correlational learning algorithm operates thus:

A: Awak - h(taa k,w ak) t a*rak/r ak*(1rak )], (5)

where rak = exp(wakw wk) /(l+exp(wak--w S is the probability just brfore tearning. Learning iterates

gradually with a rate o eta, and at the Cv+l)-th iteration it is:

rak (
1
-eta)*rak Veta*ak/na, aO<et<l, rak = p. (5a)

As v -> infinity, we see that r kv -> ak/n . For each iteration step the change in riak is therefore: A r k
= eta*(ak/na-r ad. Simultaneously, the otter link wka also learns according to

B: A wka = h'(ta,ak,wka) = ta*eta*(ak/na-wka). (6)

Rule B dynamically affects the result of rule A. It adjusts the term k proportion of query qa towards that of
the relevant set during a learning episode (v,eta).The same learning algorithm also applies to WLk, wkc-
Currviily, this takes place separately from the previous Learning process.

4. Experimental Results

Such a network has been buitt and applied to the 4 collections popular with JR research and which have
relevance judgment: MED(30q,1033d) (Medical, 30 queries 1033 documents),CACM(52q,3024d) (Computer),

CISI(76q,1460d) (Information science) and CRAN(525q,3400d) (aerodynamics). Three different stages of learning
were done. Stage 1 has no Learning, with r ek =rik =p=1/

4
0; this we call Inverse Collection Term Frequency

(ICTF) formula and is analogous to the Inverse Document Frequency (IDF) formula of (10] and popular among IR
work. Stage 2 involves item self-learning using a learning episode of (2(C,0.5). Stage 3 involves full feedback

learning and assumes knowing all relevant documents to every query, with a Learning episode of (30,0.5).
Retrieval is done after each learning stage and evaluated using the average precision at ten standard recall

points. Table 1 displays a summary of our experiments. At Stage 1 with no learning, ICTF performed

substantially better than IDF across aLL 4 collections. Thus, within-item term frequencies are important, while

IDF counts only presence/absence of terms. After Stage 2 self-learning, we obtained typically a few percent
better effectiveness than before. Our results are much more stable and better than Croft's [11], and

substantially similar to that of Salton's [12). After Stage 3 full feedback, an interesting phenomenon was
observed. Feed-backward (DtQ) and feed-forward (QtD) learning independently gave results fairly similar to each
other, arid to Croft's. However when both are accounted in one syinietric formula, it produces cooperatively

substantially better effectiveness. So far, IR research has been using DtQ feedback only. When both types of
information are simultaneously used, results outpreform Croft's formula from 13% (MED) to over 50% (CISI).

5. Conclusion

Probabilistic indexing and retrieval theory in IR may be implemented using a neural network. More
sophisticated techniques for optimization such as the Hopfietd net (13), the Boltzmann machcine [14) or the

Harmony theory [15] may be used if we switch on the interations in layer T, or that of layer D. By building
a bridge from the traditional IR model to this new formalism, we further achieve the advantages that the network
can always default to known results and that sophisticated evaluation methods popular in |R work can still be

available.
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DtQ QtD sym DtQ QtD sym DtQ QtD sym DtQ QtD sym

Stage 1 -- no Learning

ICTF ; .484 .420 .472 .276 .247 .297 .161 .165 .174 .399 .292 .374

IDF : .455 .210 .128 .319

Stage 2 -- seLf-tearning

NN : .489 .476 .487 .277 .320 .309 .181 .201 .194 .400 .394 .404

Crofts: .493 .255 .147 .390

SaLton: .505 .265 .203 .389

Stage 3 -- fuLL feedback Learning

NM : .630 .689 .734 .477 .445 .575 .395 .437 .602 .503 .603 .666

Crofts: .649 .446 .392 .497

Tabte 1: Average Precision over 10 Standard RevaLt Points

11 - 626



C.ombinatorial Optimization Using Competitive-flopfield Neural

Network

Bang W. Lee and Bing J. Sheu
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and Center for Neural Engineering
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Abstract
Combinatorial optimization required in many engineering problems can be performed using mas-

sively connected neural networks. In the Hopfield network approach, the constraint functions and
objective function of a combinatorial optimization are combined in the energy function and coded into
synapse weightings. Due to the complexity of the network, there is a severe limitation on the scalabil-
ity of this approach to large-size problems. In this paper, a novel competitive-Hopficld neural network
which utilizes a separate competitive network to realize the constraint functions is proposed. The com-
bined competitive-Hopfield network always converges a valid solution in a reduced computational time.
The adaptive time-step control technique has also been developed to avoid invalid solutions due to
accumulated error of the fixed-time step technique at the network evaluation. Several numerical
schemes to solve differential equations using the competitive-Hopfield network have been explored.
Experimental results on the Traveling Salesman Problem show that the competitive-Hopfield network
always gives valid solutions which are not sensitive to the selection of weighting factors in the energy
function.

I. Introduction
Electronic neural networks are quite popular for solving heuristic problems which include pattern

recognition, signal processing, and optimization. The immense computational power is derived from
the massively parallel architecture and the adapting capability through a learning process. Hopfield
network [1], which consists of one layer neuron and fully connected synapses, is one of widely used
network due to simple network architecture and well-defined network dynamics. Hopfield network
always converges along the direction of decreasing the energy function. The stable outputs are logical
values, while the inputs can be analog signals. Given this property, Hopfield network is very suitable
to solve combinatorial optimization problems [2]. Many of these problems are often NP-complete,
indicating that only an acceptable solution can be obtained within a reasonable computational time.

For a n-city traveling salesman problem (TSP) which finds a minimum round trip distance visit-
ing all cities once, n2 neurons are required to represent a tour sequence. The energy function for the
Hopfield network can be constructed as

E Vxi Vj +'YI E Vxi-VyXi
2• X=1 =1 jiij =J 2l X=i YtX.Y=i

S-Vxi n Y+ I dxyVxi(Vy.i+l + Vy,) .(1)
2 i=1 2 X=i yx y =,YI

Hlere, X and Y denotes cities, i and j ate part of the tour-proccdurc, and dxy is the distance between
cities X aid Y. The first three terms in (1) are the constraint functions for a valid tour, while the last
teum is the total tour distance which is to be minimized. Heuristic weighting factors A, B, C, and D
should be carefully chosen to find a valid and optimal tour. It has been reported that the choice of the

Ilbis research was partially supimiricd by D)ARI'A under Crant No. 1-296A)1-87-C-Ot)9,. iry AT&T Comipally, anid by

USC-lhomedicaJ Research Support Grant from Ni1 I.
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Table 1. Average 1'U time of TSP on SUN 3160 -

Number of city CIIU tu•m V V

5 1.5 minutes Hopfield Net

10 26 minutes .. .... " ----- "---------"-.-

21) 490 minutes ---- 4

Competitive Net:

Fig. 1 The competitive-Hloplield neural network.

weighting factors for a valid solution becomes very difficult as the number of city increases 13,41.

This is caused by the mixture of the constraint functions and the objective function in the energy func-

tion. During the searching process of decreasing the energy function, there is no distinction between

the constraint functions and the objective function so that the final converged solution is usually invalid

when the number of cities is large. Some previous results for the TSI's have bccn reportcd 15,6).

Hlowever, more elforts need to be devoted to this subject.

11. The Competitive-Hopfield Network Approach

A new solution consists of the utilization of a Hlopfield network and a competitive network has

been developed. The constraint functions arc implemented in the competitive network, while the

energy function with reduced constraint functions is implemented in the original Hopfield network as

shown in Fig. 1. The competitive network monitors the outputs of Hloplield network. Once the out-

puts are larger than a threshold! voltage of neurons in the competitive network, the network starts to

search for the highest output through the competing process with the 'winner-take-all' strategy. Here,

signal delay in the competitive network is much smaller than that in the lloplicld network. Since the

constraint functions of a combinatorial optimization problem are realized by the competitive nctwork,

the objective function in the energy function of lloplield network can be maximized. IHence, solution

searching process in the l loplield network can be maminly determined by the objectivC fu1nction0.

For a n -city TSP, the synapses ( T`ýy. ) and input currents ( 'xi J for the llopfield network arc

given as
SI!

T,,yJ =-A oxr(l .- bij) - BRoi(l 5xy) - C - Ddxy(6j,il+ +i-i- ) (2)

and

IX, = Cn 4 (A + B + C + D )•V•, (3)
whilc Ole synapses { I1{;; } for te com)ctitivc network arc given ats

"X1 ,yJ = 6x(l 6,j) + 6,J(l - 8x)y (4)

lcrc, V)ý. is the output of the competitive network and b,) is I it i= i anid is 0 otherwise. Notice that

the weighting factors A, B , C, anid D arc the same as in (i).

The dynamics of the I loplicld network can be des:cribed in die following difemcntial c(luationl.

I _" -- Tx - xi + Ixi (5)

lt Y , 'X , Y ýI j IiJ -1
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wliere TxL, uxi, and CXi are the equivalent conductance, input voltage, and input capacitance at the i-th
amplifier input node, respectively. The Hopfield network is always guaranteed to decrease the energy
function [1]. A simple Euler integration technique is often used to evaluate the differential equations
[3]. But, the accumulated numerical error is the cause of a wrong solution. We have used a adaptive
time-step control technique which adjusts the integration time-step by monitoring the local error [7].

MI. Experimental Results
In our experiments, the traveling salesman problem were simulated in a SUN 3/60 and the city

locations was generated randomly. For simplicity, capacitances { Cxi I in (5) are set to be I and
amplifier input voltages ( uxi ) are initially reset. Two versions of the forward-Euler integration
methods were examined: the fixed time-step version and the adaptive time-step version. Figure 2
shows energy function change as the function of time in a 10-city TSP. With the fixed time steps of
1.0e-3 and 1.0e-4, the energy function is no longer continuously decreasing due to the numerical
errors. The convergence time using fixed time-step is also adversely longer. Here, the CPU time for
the fixed time-step being 1.0e-4 is about 5 hours while that for the adaptive time-step with 1.0e-3 error
tolerance is only 0.5 hour. Table 1 shows the averaged CPU time for different size of TSPs. Figure 3
shows the solutions with different weighting values of the constraint terms. As the weighting factors
for the constraint functions dccrease, the tour distance tends to decrease. This is caused by the fact
that the searching process in the Hopfield network is mainly determined by the objective function. Our
experimental results show that the competitive-Hopficld network always gives valid solutions when the
weighting factors for constraint functions are greater than 1.0

'Jo!. D,,unce * 2.9

II k . -

,, .. . . . .. . ----....... . ----.-..... .. ....-.-.-.-...-... T oIr

S1 : }

00) QQ - 0 4 0 L

'02 (b)

. .

"I01 D t. 4i 8

(12 o,

. 2 N d mi f

(a) Iramsienit behavior. (b) Solution with adaptive turne-step and with fixed( tuinlc-3tcp of' I Qe-
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Fig. 4 TSP solution with different weighting factor . .

(a) 10-city TSP. (b) 20-city TSP.
As the weighting factors of the constraint functions decrease, tour distance decreases.

IV. Conclusion

We have successfully developed and demonstrated a novel competitive-Hopfield neural network
for the combinatorial optimization. The network is very effective and efficient in finding consistently
valid, near-optimal solutions for a high-city TSP. This competitive-Hopfield network can be extended
other combinatorial optimization in signal processing with complicated constraint functions.
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A New Model for Concept Classification Based on
Linear Threshold Unit and Decision Tree
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1. Introduction
Classification is an important intelligent behavior. It has been an active research issue in the

knowledge-based reasoning, pattern recognition, and connectionist paradigms[l]. One would like
to observe positive and negative instances of a concept and then to propose a representation that are
both suitable for the observed instances and useful to predict the classification of unobserved
instances. This is one important kind of concept learning.

A new neural network model called quasi-LTU-decision model is presented here, which
performs very well to the concept classification described above. This model is based on the
concept of decision tree and the operation of a simple neural network unit - linear threshold unit
(LTU) which is the basic unit of Rosenblatt's perceptron[6]. They are chosen because the decision
tree and the LTU are natural choices in terms of handling a large amount of instances. Unlike other
models in which the network topology must be specified before training, in this model the network
structure is generated during training by non-incremental or incremental learning. The training
instances are not restricted to be linearly separable which means there exists a hyperplane to
discriminate the positive and negative training instances. The nonlinearly separable instances set
can also work well in this model. Moreover, the learning algorithms associated to this model can
handle a large volume of training instances efficiently and incrementally, and the resulting concept
represented by the network model can also efficiently classify the unobserved instances.

2. Quasi-LTU-Decision Model
This section describes a method in construction a hybrid representation and the associatedlearning algor-ithms. 'L:-- repetatio iot only ca geneiated by a set of existing t-aiciing

instances, but also can be created by incremental learning, i.e. multistage learning which
information learned at one stage is modified to accommodate new facts provided in subsequent
stages. Besides, the space of instances to be trained is not restricted to be linearly separable.

Throughout this paper, an instance is described in terms of a set of attributes, which are
binary values. Given a set of such instances and their classifications, the task is to distinguish
these instances which belong to some class from those which do not. Without loss of generality,
we assume the output is a binary value that represents acceptance or rejection of the input instance.

2.1 Quasi-LTU-decision Representation
The quasi-LTU-decision model consists of one multi-branch decision node and many

qtasi-LTOI node., The. network structure in the model is, generated during training. There ir a
connection from the decision node to each of the quasi-LTU nodes. Attached to each connection is
an attribute set belonging to its corresponding quasi-LTU node. An attribute set consists of a set of
positive or negative attributes used to test for branching. These attribute sets are mutual-exclusion
and the union of these attribute sets covers all the instances space, i.e. during the presentation of -n
input vector I, one and only one attribute set will pass the attribute test to the input vector I. The
con ,plete model structure is illustrated in figure 1.

Iigu/4tr,• I 1 "lh¢ quasi-I 1tI I -¢lct. iohrt tro~c

The quasi-LTU node, described in figure 2, is a modified linear threshold unit. Each node
has a set I of n input lines and an output Fi. The weight vector Wi and threshold 'i represent some
hyperplane P=---{ I I c Rn and Wit-I = Ti} that linearly separates the node's training instances. The
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vector Ni is used to indicate whether the values of the corresponding elements of weight vector Wi
are "don't care" or not.

1L if W.~ . 1ý r,, . F~i -- { 1 if W t-I=-1i

The operation of the quasi-LTU-decision model is illustrated as follows. When an input
vector I is presented to the decision node, all the quasi-LTU nodes simultaneously test their
corresponding attribute sets. The node which passes the attribute test is the only one to activate.
Since these attributes are mutual-exclusion and the union of these attribute sets covers all the
instances space, the node which activates is unique. If the node which passes the attribute test is
qi, then the following operation occurs in qi.

if Wi.I > Ti --- > the output is 1 ( means the input I belongs to Class- ),
if Wi -I Ti ---> the output is 0 ( means the input I belongs to Class-0).

2.2 The Training Process
Here, we first describe the non-incremental learning and leave the incremental learning in

section 2.2.4. During the training phase, a collection of classified instances indicating a desired
class is presented. The set of instances, called training instances, consists of typical examples of
in-class instances as well as out-of-class instances. It is not necessary for the training instances to
be linearly separable. The task of the training process is to generate the quasi-LTU-decision model
which can be used to separate the in-class examples from those out-of-class examples and to
predict the classification of the unobserved instances.

The strategy used in the generation of the quasi-LTU-decision model is desciibed as follows.
Split the training instances first to many subsets, each of the subsets belongs to one quasi-LTU
node. It is guaranteed that each of the subsets can be linearly separated after the splitting. We then
use the quasi-LTU learning algorithm described later to compute each component of the quasi.LTU
nodes, based on the training instances subsets owned by their corresponding quasi-LTU nodes.
Finally, apply some guidances to merge these quasi-LTU nodes as much as possible.

2.2.1 The Split Operation
The initial quasi-LTU-decision model consists of a ,decision node and a quasi-LTU node with

the whole set of training instances. These two nodes are connected by a "true" attribute. If the
number of the training 'i...antdn owned by theu .asi -. T. nodeis greaterth the attribute numbner
(the dimensionality) of the training instance vectov + 1, then it's time to split the quasi-LTU node,
i.e. to split the instances set of the quasi-LTU node into two subsets. While the split occurs, we
divide the original quasi-LTU node into two quasi-LTU nodes, each node consists of one subset of
the original training instances set. This splitting process then repeatedly applies to the two
quasi-LTU nodes independently until the instances number owned by every quasi-LTU node is
less than or equal to the attribute number of the instance vector + 1. Here, we use the attribute
number of the instance vector + 1 as the guidance for the split of the quasi-LTU nodes. This is
because if the number of the training instances is less than or equal to the attribute nun ber of the
instance vector + 1, then we can guarantee this training instances set is linearly separable 2].

The r,-Ir,n To split every quasi-LTU node to be linearly separable is as follow_. Due to
training the linearly separable instances set, it is not necessary to use those complex learning
methods , e.g. back propagation learning algorithm, that are time consuming. we can just use the
algorithm sinilar to the LTU learning algorithm to distinguish the linearly separable instances set.
Besides, the splitting can be seen as the modularization of the original instances set since the whole
instances set is modularized to many instances subsets. Furthermore, the less instances number in
the iistances set is, the more quickly the LTU learning algorithm will converge.

At this point, it seems important to illustrate how to split the cIuasi-LTU node. Since we use
the instances number as the guidance in the split, it is not necessary to use the complex entropy
functions[4,7,8,91 to split the quasi-LTU node. In our approach, what important is to split the
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instances set of one quasi-LTU node into two subsets with the same instances number as much as
possible. This is because the criterion can reduce the number of the splitting process. Therefore,
the attribute to be chosen to split the instances set of the quasi-LTU node qi is that which minimizes
INFik - 1/2 instancenoil. Where instance-noi is the instances number belonging to the quasi-LTU
node qi and NFik indicates the instances number in the quasi-LTU node qi that the kth attribute of
these instances equals one.

2.2.2 The Learning Algorithm of the Quasi-LTU Nodes
After splitting the quasi-LTU nodes to be linearly separated, it's time to build a hyperplane

for every quasi-LTU node to discriminate different classes. The learning algorithm of the
quasi-LTU node qi is to generate the weight vector Wi and threshold Ti representing some
hyperplane P= I I I I Rn and Wit. I = Ti} that can linearly separate the instances belonging to the
node qi. Besides, this learning algorithm also generates a "don't care" vector Ni for node qi to
indicate whether the corresponding elements of weight vector Wi are "don't care", which means
the weights can be any value, or not. Initially, the whole vector Ni is given to be one vector, i.e.
every weight can be any value. The value will be kept if there is no change in the weight and the
corresponding feature of instance I is zero. Since the spirit of this algorithm is the same as
Perceptron Learning Algorithm[3,5], we can guarantee that if the instances trained are linearly
separable, then this algorithm will converge and define a hyperplane to the trained instances set.

2.2.3 Merge
The last step in our approach to build the quasi-LTU-decision model is to merge these split

quasi-LTU nodes as much as possible. To merge two quasi-LTU nodes means to combine the two
instances sets of two quasi-LTU nodes into one instances set that can be discriminated by one
weight vector and a threshold. The restrict in merging is we must still keep these quasi-LTU nodes
formed after merging quasi-LTU nodes being linearly separable.

To clarify what follows, we first define some variables and terms:
Definition 1: qi means the quasi-LTU node qi, Ni is the "don't care" vector of qi, Wi is the
weight vector of qi, Wik indicates the kth element of Wi, and Nik is the kth element of Ni.
Definition 2: The term Wik "equals" Wjk means Wik = Wjk or at least one of Nik and Njk is
one ("don't care").
Definition 3: Wi "equals" Wj means all elements of Wi "equals" the corresponding elements of
Wi.
Definition 4: Ii indicates the instances set in qi and Iik is an instance numbered k in Ii.
Definition 5: Ii+ is defined as these instances in qi and belonging to Class-i, and Ii is defined
as these instances in qi and belonging to Class-0.
Definition 6: The modified weight vector Wij' of Wi and Wj is defined as: Wijk'= Wik if Nik
-0; Wijk' = Wik if Nik = 1, where Wiik' is the kth element of W
Definition 7: The modified "don't care" vector Nij' of Ni and Nj is defined as: Nijk' = 1 if Nik
- Iandi = 1;Nik' 0 otrer-ise, wkhere Nijk' vi Ret element oi Nij'.
Theoremil: If Wi 'equals" W- and Ti = Tj, then the combination of the instances sets in qi and qj
is still linearly separable and there exists a modified weight vector Wij' and threshold Ti forming a
hyperplane to separate the combined instances set.
Theorem 2: If Wi "equals" W;,Ti>T PandV IjkE I; WiP Ijk>Ti, then theWi andTi
can be used to separate the com6ined instances set of Ii- and_ I. k > T t W
Corollary 1: If Wi "equals" Wi,Ti > T i, and V 1ik l Ii, Vi' -Iik_ T, then the Wji' andTi
can be used to separate the combined instances set of Ii and Ij.
Corollary 2: If W i "equals" W, Ti <T, and V Iik E 1i Wji' Ilk > Tj, then the Wji' andTi
can be used to separate the combined instances set of 1i and I-
Corollary 3: If W- "equals" Wi, Ti < Ti, and V Ik e I--Ai-W Ijk < Ti, then the Wij' and Ti
can be used to separate the combined instances set o 11 and I J,
Theorem 3: If Wi [I+ Itk > [ + I Ti, V Ijk G I, then Wi and Ti can be used to separate the
combined instances set of 1i and I. Where "+" is used in front of Ijk and Ti when ljk ( I'+1
otherwise, put "-" in front of Ijk ana Ti. i

Corollary 4: If Wj. ] lik > T + ] T, V Ilk E Ii, then Wj and Tj can be used to separate the
combined instancds set of Ii and I- \Where "+" is used in front of lik and Ti when Ilk G Ii+;
otherwise, put "-" in front of lik anST.

The three theorems and four corollaries can be easily proved and are used as criteria to mergc
these split quasi-l.TU nodes. That is, if the conditions in these theorems and corollaries are
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satisfied, then we can merge two quasi-LTU nodes into one that owns all the instances in the two
merged quasi-LTU nodes. As the mergence occurs, the "don't care" vector of the new formed
quasi-LTU node merged from qi and qi is Nij' while the weight vector and threshold are indicated
in these theorems and corollaries. The mergence continues as long as the conditions of these
theorems and corollaries are satisfied. From these theorems and corollaries, we can make sure that
the new formed quasi-LTU nodes from merging are still linearly separable by the given weights
and thresholds. It is obvious that the criteria used here can not guarantee to merge any two
quasi-LTU nodes that are still linearly separable after merging. It is not harmful, however, since
the ability to find a consistent concept representation is not lost. Moreover, the number of the
quasi-LTU nodes of the quasi-LTU-decision model is still far less than the nodes number in the
decision tree and the training time of the model is much less than the time needed by other neural
network learning algorithms.

2.2.4 Incremental Learning
It is not necessary to collect a large set of instances before building the quasi-LTU-decision

model. We can also build the model incrementally, i.e. we can accommodate the structure of the
model every time when we receive a new instance. The incremental learning algorithm used here is
similar to the processing of classifying an unknown instance in the built quasi-LTU-decision
model. When a new instance is presented to the built quasi-LTU-decision model, the appropriate
quasi-LTU node will activate to classify this input instance. If the classification is correct, then just
put this instance to the activating quasi-LTU node and then stop. Otherwise, repeatedly split this
activating quasi-LTU node into several linearly separable quasi-LTtU nodes and then merge these
split nodes themselves as much as possible. After these, merge these new created and modified
quasi-LTU nodes into the other quasi-LTU nodes in the quasi-LTU-decision model. The
operations of the split and mergence discussed here are the same as described above.

3. Conclusion
There are a :iumber of issues which nced to bC furthcr invcstigated. Some of thea ae.-

(1) Handle the training instances with noises. Since it is inevitable that some of the trained
examples are not correct, the learning algorithms which can handle the noisy training
instances are necessary and useful.

(2) To find fast and efficient ways to merge the quasi-LTU nodes which are still separable after
merging.

(3) Build a connectionist expert system based on the representation.
(4) To extend the output to multiple values. That is, to extend the binary classes classification to

multiple classes classification.
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ABSTRACT
Coulomb energy network originally developed by Scofield is applied to the recogni-

tion of the korean characters. In his paper, Scofield demonstrated that his learning algo-
rithm was applied to a system which learns the binary mapping for XOR. The present
work describes the result of implementing multi-layer coulomb energy network for the
korean character recognition. This neural network system was experimented on VAX 8800
mini computer. korcan characters can be classified i--to G ovpcs. Wt. .-j.d to make a svs-
tern to recognize characters in a sub' et of one type. We trained the system with patterns
varying in size, rotation, and with distortion. Multi-layer coulomb network was able to
classfy the korean characters and identify them. With korean characters, it is difficult to
achieve proper classification using 1 stage training only, because two different korean char-
acters can be very similar in shape. When confusion occured, 2-stage learning is necessary.
Learning patterns which would not make a confusion were shown at first, and other learn-
ing patterns which might make a confusion were shown next in training sequence. In this
manner, the multi-layer coulomb energy network was trained to recognize the korean char-
acters quickly with only quite a few learning patterns(20 patterns/consonant or vowel).

INTRODUCTION

Recently, Bachmann et al. proposed a relaxation modell1 l based on an N-dimensional
coulomb potential. Their system is similar to the Hopfield model[21131 in some respects,
but has arbitrary large capacity. Scofield presented a learning algorithm[41 for N-
dimensional coulomb energy network which is applicable to a single as well as a milti-
layer networks. While many learning algorithms to recognize characters already exist,
Scofield's learning algorithm is worthwhile to note, be-cause it is applicable independently
to each laver of a multi-layer network and does not depend on the propagation of errors
through many layers. This property makes the system modular. We have tried to make
a neural network for the korean character recognition using this multi-layer coulomb net-
work. The korean characters can be classified into six types. They are 'katype, 'kakftype,
kotype, 'k ok'type, 'kwatype and 1kwaktype. The problem is that there are many similar
chars in shape although they are different charaters. For example, ' I', ' I ', '1' are very
similar to each other. We have used Icak' type koreans to train the networks. We also
present an idea to save time and space in training the multi-layer coulomb network(2-stage
learning) for Korean recognition. And we show the result of the experiment to classify
the korean chars using the svstem.
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MODEL DESCRIPTION

The network model proposed here was composed of three types of layers: the input
layer, the internal layers and the output layer. The input layer receives the binary values of
an input pattern. The internal and the output layers consist of coulomb potential function
units. The output values of the internal layer units are summed by the connection
between the internal layer and the output laver to produce the output. The schematic
diagram of a multi-layer coulomb energy network for the korean characters is shown in
fig.1

Output layer

Intarniailayers

Xi .......

Inutayr1000 10 0 00000 !1000!

Input layer 0 s0 0 o $0 1 01oo0oo 0 01 00
Fig 1 : Multi-layer coulomb energy network model for the koreani characters

The korean characters can be classified into six different types, -nd eanch of them are
composed of consonant(s) and a vowel. In this paper we used the 'kakitype korean charac-
ters composed of a first consonant, a vowel and a second consonant. To recognize this
type, we constructed 3 neural network modules, one for vowel and two for the first and
the second consonants. The korean characters stored in a matrix 8x8 pixel were used as
input patterns. Each consonant and vowel is composed of 4x4 matrix. The number of
neurons in input layer, internal lavets and output layer for each module are 16, 8, 4, and 1
respectively. Each consonant and vowel area where each network module is looking at in
the korean character input pattern along with some exanmples are shown in fig 2.

f-;n: -111
I secund ILMM I:iii

L1NLi
Fig 2 : Consonant and vowel area in the korean character

LEARNING

Learning[4) in a coulomb energy network is to adjust the matrix w shch that the
electrostatic energy, I', of the collection of charges is minimized. Electrostatic potential
edergy of the M memory sites x1 ,..., XM in RN used in coulomb energy network is

M a4,p = I / (2L.) I :E Qi Qj IX'__Xj -1 (1)

i =lj • • _

Where Qi is the charge at memory site i, Xi the representation of the i-th memory site.
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Qi(c), the charge at memory site i and of class c is defined as follows:

sign(Qi(c)) • sign(Qi(c)) for c= c

sign (Q, (c)) sign(Qi(c)) for c # c (2)

And to minimize the electrostatic potential energy, gradient of potential energy was
computed with respected to weight w,,(m-th synapse of the n-th cell).

1-- /2 X Q j I RRi&(Lt+ 2)R*/a,,,m R i (3)
i~lj=1

Where

Rij =Xl- Xj

But, equation (3) may be approximated through the successive computation of these
terms over time as follows:

bcn,, =(+I--) q I X(t)-X(t +1)1 -(L +2)A", (f(t), f(t +1))

Where eta is the learning rate, negative sign is for subsequent patterns of the same class
and positive sign for patterns of different class.

The 'kakf'tpe out of 6 types was used in this experiment. Each consonant and vowel
module was trained with 20 parterns(1O patterns were of same class while the rest were of
different class). Learning patterns in pairs were selected randomly 38000 times out of 20
patterns and were shown to train each consonant(vowel) module. The learning rate was
chosen carefully and in our experiment, it was <0.0005. Here L was 2, and the tempera-
ture was set as 0.8 and values between -0.3 and 0.3 were assigned randomly as initial
weights.

EXPERIMENTAL RESULTS

We made a network to classify '' 1', 'U..', 'C ', ' 1"'. ' P-', ' I ', '-$ ', as our target
consonants and vowels. At first, since there were only 10 learning patterns for each
consonant(vowel), and also there were a few internal neurons, the network was not able to
classify ' - ',' ',' -I completely. To overcome this, input patterns for learning were made
up of 2 classes. Patterns that should be recognized as a same character were put into
class 1 and others recognized as different patterns into class 2. There may be some con-
fusion if patterns of class 1 are similar to those of class 2. When confusion occured 2-
stage learning was applied. Learning patterns which would not make a confusion were
shown as input at first, and other learning patterns which might make a confusion were
shown next, By doing that, the module could extract the major features of each
consonant(vowel) in the first phase, and minute differences in the second phase. This
makes it possible to learn quickiy and clearly with a few input patterns in a little learning
time. Some example patterns used here is shown in fig 3. As is shown, patterns belonging
to the same class may have quite different bit vector representations in the input space as
they have different shape, size, and distortion.
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The summary of experimental result for the recognition of 100 random 'kak' type
korean characters are shown in table 1. The test characters were with random noise,

varying size, shape, and shift in position. As we can see, after first stage learning, only H
65 percents of the test characters are recognized correctly while fte. the second phase, it

increased substancially to 97 pcrccnts.
item \ stage no. ( state 1 stage 2

learninm count 38,.000 19,000

recognition ratio 65% _ 97%

confusion ratio 32 2

error ratio 3 1
Table 1 Smmmary of experimental result f

CONCLUSION •
Coulomb ...erg naretwhorw has ble adopted ch "a•ae korsan wer it.. random per

mance was evaluated. This study found that 2-stage learning is effecti've in training the
module. Clustering occurs naturally in this model. Without much learning ine and comn-

puting, we have achieved a good result only with 20 patterns in training each
consonant(vowel) and about 90 minutes CPU time for learning per consonant(vowel).
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The radar clustering problem

A region of the microwave spectrum can contain many
radar signals from different emitters. It is assumed that
the microwave receivers used can measure azimuth,
elev&tion, frequency, pulse width, a.d time of arrival of
individual radar pulses, with some degree of noise. For
defense applications, it is important to be able to tell
quickly (1) hcw many emitters are present: (2) what are the
properties of these emitters; and (3) do they match any
classes of emitL~es that have previously been seen and are
known to have certain properties in common? We have
designed a nieural netwcrk that can perform all three of
these tasks on simulated radar pulse inputs which are
perturbations of characteristic pulses from 10 simulated
emitters. The main part of our article concerns figuring
out how many categories (emitters) the pulses fall into.
This is ar unsupervised lWarning task: categorizations are
initialiy unknown. Previously (Anderson et a!, 1988), this
problem had been studied with the brain-state--in-a-box
(BSB) algorithm. We applied to it a different unsi pervined
learning algorithm, the adaptive resonance theory (ART).

The two main types of ART network are ART I for
processing binary patterns (Carpenter and Cronsbcrg, 1587a)
and ART 2 foz process analog patterns (Carpenter and.
Grossberg, 1987b). Figure 1 sho'ws generic ART architecture
covering both subcases. Since ART 1 is, in general,
simpler than ART 2, we first tried to represent the radar
data in a binary format. But since each variable has a
range of possiole values, reasonably accurate binary
representations were found to requive 40 or more feature
nodes. ART is based on a system of differential equations
including feature node activities, category node activities
(Qt least 10, since there were 10 emitters), feature-to-
category-node (bottom-up) connection weights, and category-
to-feature-node (top-down) connection weights. Hence, 40
feature nodes would mean at least 850 equations.

We thus decided to use a simplified version of ART 2
for radar categorization. Five rcaar variables were used
-- azimuth, elevation, signal-to-noise ratio, frequency,
and pulse wiuth (Time of arrival was added later, at the
stage when derived categories were compared with known
emitters.) The problem thus became one of clustering five-
dimensional vectors. Each variable was normalized to be
bptween 0 and i. For example, the minimum observed pulse
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frequency was 8640 while the maximum frequency was lol00.
Hence, a frequency of 9339 was converted to a normalized
value of (9339 - 8640)/(10100 - 8640)=.476.

I1GHAIILE 
Tj

9ý,_ Zr, 0I F2 (CATEGORIES)

0 ~F 1 (FETATUEs.)

Az EL ,ip. nF•, Pw INPUT VECT01U
(normauIJod)

FiGUPE I

For such low-dimensional data, in fact, much of the m
complexity originally built into ART 2 was unnecessary.
The analog data classified by Carpenter and Grossberg
(1987b) were curves described by 20 or more points. Hence,
classifying these curves required several preprocessing
stages at the feature (F ) level of the network, for
suppressing noise in the datA. Such preprocessing was not
needed for our task. Moreover, ART 2 actually uses simpler
learning laws than ART 1. In ART 1, top-down and bottom-up
connection weights obey different equations, whereas in ART
2 (and ART 1.5), both sets of weights obey the same
equations. (Top-down and bottom-up weights do have
different initial values, for reasons to be given below.)

Single versus dual vigilance measures

Our categorization algorithm is as follows. Each
normalized radar vector is presented as an input to the
five F' nodes. The the F node activities are multiplied
by the ýorresponding F -to-p; bottom-up connection weights,
and each F ncde thereby 'eceives a linearly weighted
signal fr~m the F field. The input is first tentatively
placed in the categt3ry corresponding to the node receiving
the largest sig'nal. (This "winner-take-all" mechanism is
assumed to arise, in biological neural networks, from
recurrent competitive interactions among F, nodes. In our
simulations, such competition is not explicitly included.)

When an F) node is tentatively chosen, the input
vector is comparb'ld with the vector of top-down connection
weiJhts from that node to F1 nodes (the category
prototype). As in both Carpenter-Grossbei-q articles, a
parameter called vigilance measures whether the match is
close enough to accept the input into that category. ART 1
and ART 2 use different macching criteria; ours, which is
similar to che AR• 2 criterion, is an angle-cosine measure.
Specifically, if x - (x ,x ,x,x ,xr) is the vector of' F
activities, in responsA t8 tie Aorýialized inputs, and -Z
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(z Z.,z. ) is the vector of top-down weights
fr6; tA jJ, h •hoAn) node, match is said to occur when

where r (the vigilanceI is some number between 0 and 1.
If (1) fails, the algorithm finds a new F node

receiving the next highest F 1 signal and tests (1) again on
the corresponding j. In the Carpenter-Grossberg networks,
if at least one F node is uncommitted (that is, has all
z. .0 because no inputs have yet been placed in that
ciegory), an input which fails (1) for all committed nodes
is placed in the category determined by some uncommitted
node. If (1) is true for some j ("resonance"), the input
is placed in that category, and synaptic weights (both top-
down and bottom-up) are changed to reflect that input. The
top-down weight changes, in our version, obey the equation

dz../dt = af(j) (- (1-a) z. + x.) (2)
where a is a c;Astant between 0 and l,Jlnd fij) is 1 if the
input resonates with node j and 0 otherwise. The bottom-up
weights z.. obey an analogous equation.

To Pocess our noisy data, we varied Carpenter and
Grossberg's procedure to include two vigilance values --
r for "certain match" and r n for "possible match".
TRx reason for dual vigilance p that the clustering of
emitter parameter vectors in five-dimensional space is not
uniform, so no single vigilance would yield accurate
cluster sizes. Too high a vigilance, it was found, led to
mismatch of some pulses to their correct categories,
whereas too low a vigilance led to other pulses being
incorrectly placed together. Moreover, since connection
weights were updated with each categorization, these
miscategorizations tended to perseverate to later pulses.

To solve this dilemma, we imposed a rule whereby if
(1) holds with r~rm , a pulse is placed in a category and
weights updated, • before. If (1) with r=r . fails for
all committed categories, the pulse is pTAed in an
uncommitted category and weights updated, as before. In
the intermediate cas where the pilse matches no cate•,ry
to within r but at least one category to within r
the best matc afs chosen but weights are not changed. TUs
category boundaries will not be shifted by inputs that are
close to those boundaries. (Levine, 1989 outlines another
use for dual vigilance, the detection of ambiguity).

Initial values of all top-down weights z.. are 0,
i. e. no nodes are committed. The bottom-up weights z..
could not be started at 0, else F. would receive no 1
signals. Hence z.. are initialized aý low uniform values.

Results and comparison to known emitters

The ART 1.5 network was simulated on a sequence of 294
pulses, called the IOTA buffer, with vigilances r =.995
and r m =.985. This network had 5 F nodes aP3Xl 2 F.
nodes. mhe category placement of pulses k~own to be froA
given emitters is shown in the matrix of Figure 2. The
diagonal entries correspond to correct categorizations.
Hence, 290 out of 294, or 98..7% of the pulses, were
categorized correctly. The 4 pulses that were
miscategorized all had anomalously large pulse widths, far
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larger than the expected widths of pulses from any of the

10 known emitters. This occurred because the radar

receiver adds widths of pulses from two different emitters

if they arrive nearly simultaneously. In hardware, it is

easy to add a mechanism for flagging unusually wide pulses.

CATBGORY if
12 11 10 2 8 7 0 5 4 3 2 1 0 noite

E 2 140 0 0 0 0 0 0 0 0 0 0 1 0 0

K 7 0 17 0 0 0 0 0 0 0 0 2 0 0 0

1 4 0 0 14 0 0 0 0 0 0 0 0 0 0 0
T 10 0 0 0 15 0 0 0 0 0 0 0 0 0 0
T 6 000 10 0 0 0 0 0 0 0 0

E 6 0000 44 0 0 0 0 0 0 1

R 3 0 0 0 0 0 0 14 0 0 0 0 0 0 0

S0 0 0 0 0 0 0 16 0 0 Q 0 0 0
#1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 3 0 0 0 0

FIGURE 2

After training on IOTA, the ART 1.5 network was run

with the same vigilances on another pulse buffer known as

"2X", based on the same emitter norms as IOTA but with

twice as much noise. Out of 286 pulses in 2X, 277, or

96.8%, were categorized correctly. Of the 9 errors, 3 were

due to anomalous pulse width add 6 to excessive noise.

In the classification stage of our algorithm, average

frequency (FREQ) and average pulse width (PW) were computed

for the pulses in each category with three or more members.

A pulse repetition index (PRI) was computed for each

category by averaging the differences between successive

arrival times of the category's pulses- Then these three

variables were matched with those of the originally
var4i1ab-lA w'-tters, e using 'I) with x and r. replacedi by
e - - tL ei A k
the two three-component (FREQ, PW, PRI) vectorý and r=r

The category-to-emitter matches obtained were all cor?8t

with one exception. The same two categories matched both

Emitters 3 and 9, because those two emitters happened to

have (FREQ, PW, PRI) vectors that were nearly proportional,

though far from equal. In hardware, this anomaly can be

solved by replacing the angle-cosine match measure, at this

stage, with an absolute vector-distance measure.
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I. Introduction:
One of the tasks of synthetic organic chemistry is to

construct complex molecules from relatively simple starting
materials and reagents. The principal analytical tool used for
planning syntheses is known as retrosynthetic a,-nalysis, a process
in which the complex target molecule is decomposed into a set of
fragments [69Corey]. Each decomposition step represents the
"undoing" of a particular chemical reaction. This process of
fragmentation is iterated until each member of the set of
fragments produced corresponds to a starting material or reagent.
A "synthetic tree" is hereby produced, of which the "leaves"
correspond to starting materials and reagents, the "branches" give
the synthetic pathways, and the "root" is the target molecule.

If. Cognitive Tasks in Retrosyrnhetic Analysis:
There exists a given set of rules by which these

retrosynthetic transformations may be accomplished. A novice
chemist will recognize a feature in a molecule (such as a
strategically placed double bond, or perhaps a juxtaposition of
two different substituent groups), and apply one of the
aforementioned rules in a mechanical fashion to obtain the
corresponding set of fragments ("synthons") for the respectiveI
target molecule. By repeating this process, a synthetic tree will
be produced. In contrast, a more mature chemist will employ
"chemical intuition" to choose a retrosynthetic transformation; in
other words, the chemist will discern a pattern of relevant
features which form a molecular "gestalt", and choose the
appropriate disconnection to produce a set of fragmentary
synthons. The difference in the cognitive processes used by the
novice and the expert are analogous to the difference between a
novice chess player and a grandmaster level player: the novice
inspects the moves each piece can legally make and considers the
"pros and cons" for the piece under consideration, and formulates
the strategy for the current move accordingly. On the other hand,
a grand. master looks for patterns of chess pieces, which in
themselves form a series of "gestalts" which are altered as the
game progr-esses. From the current pattern, the master chooses a
move which will create a winning pattern, or a pattern
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intermediate to a winning pattern; analogously, the mature
chemist discerns patterns to create "elegant" syntheses.

Ill. Models of Retrosynthetic Analysis:
The current computational models [84Wipke] for

retrosynthetic analysis use the strategy of a novice chemist, in
which individual features are recognized. Rules are then applied
to give possible disconnections. By this method, many "synthetic
trees" are generated; each must be analyzed with regard to cost
and yield. In contrast, our approach uses neural networks
[84Hopfield], [86Hopfield], [86Rumnelhart] to encode the sets of
rules which correspond to the set of retrosynthetic
transformations. This approach also examines the entire set of
possible disconnection points in a molecule in a parallel manner,
making it possible to discern patterns of features in the target
molecule. The intuitive leaps which characterize elegant and
creative syntheses are dependent on the ability of a chemist to
discern these patterns of features; our approach thus embodies
"chemical intuition".

IV. Design of an Expert System with "Chemical Intuition":

1. Input and Generation of Internal Representations.
The target molecule is input via a menu-driven graphic input

package, which produces a 2-dimensional picture. Choosing a
graphic primitive, such as an atom, functional group, or ring,
causes its internal representation atom or list to be appended to
the target molecule list. When finished, the target molecule list
contains all lists of primitives in the molecule. This list is used
to construct an adjacency matrix.

2. Parsing Lists for Feature Detection
The target molecule list is scanned so that synthetically

important features can be detected. The scanning "window" is
seven skeletal atoms long, and the adjacency matrix is usec;, in
order to deteci features that might not necessarily be attached to
the skeletal atom chain currently being examined. This scanning
is done for each skeletal atom, in parallel. A set of feature
vectors is thus composed, one for each skeletal atom.

3. Selection of Disconnection by Competition
The feature vectors are presented to a set of neural

networks, each of which is trained to propose a different type of
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disconnection (Figure 1). Each network acts as an "agent"
[86Minsky] for its own type of disconnection; competition
between agents decides which disconnection is performed, and
the loci for the disconnection.

4. Formation of Fragments; Starting Material Detection
Fragment lists are formed accoording to the disconnection

chosen, and compared to lists in a database of starting materials.
Iteration through Steps 2 , 3, and 4 continues until all fragments
produced are found in the starting material database.

V. Summary:
The current methods of computat~onal retrosynthetic

analysis consider the molecule as a collection of discrete
features to be analyzed in a sequential manner, thus limiting the
process of creat-ing a synthetic tree to a sequence of mechanical
steps. Our approach, on the other hana, examines pattarns of
features, composes feature vectors, and usezs ne-ural networks to
find "gestalts" that lead to creative disconnection stops, and thus
to "elegant" synthetic routes.
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Abstract
The use of a neural network embedded in a larger General Purpose Simulation System (GPSS)
simulation used to evaluate alternate human resource policies in a factory setting is described.
The neural network is used to model the optimal control of a machine tool by a human operator.
We evaluate the feasibility of using GPSS for neural network modeling. The interface between
general simulation theory and neural network simulation is examined. Neural networks, when
embedded in larger general purpose simulations, are found to offer the potential for improving
on the capabilities of those simulations.

Introduction
Most neural network software simulations are implemented in either third generation

languages or in commercial software "neural network simulators." The authors' experience with
the development of neural networks in both of those environments [Madey-88] and their experi-
ence with general purpose simulation packages raised the question as to whether a broader
application of neural networks might occur if existing users of commercial general purpose
simulation languages could also tonveniently simulate neural networks. Thus the research
described in this paper was motivated by two questions: 1) can general purpose simulation theory
and languages, stich as the General Purpose Simulation System (GPSS) [Schriber-74], be applied
to neural network modeling, and 2) can neural network theory be used to improve on the state-
of-the-art of simulation theory. We answer both of the questions in the affirmative, although not
without some qualifications.

Several dozen commercial neural network simulation packages are available today,
although the installed base is just starting to grow [PC AI-89]. On the other hand, general pur-
pose simulation languages (GPSS, SLAM, SIMCRIPT, SIMAN, etc.) have been in use for al-
most two decades and currently have a large installed base with a corresponding large population
of trained and experienced users. Thus, it would be of interest to those users if their experience in
the general purpose simulation packages would permit their modeling of neural systems. Using
GPSS we provide a "proof-in-principle" that this can be done.

Several deficiencies of current simulation theory limit the usefulness of that tc:'hnique for
problem solving. These deficiencies include I) the inability to optimize, 2) long solution times,
3) unrealistic and simplified modeling of complex real world phenomena (including human be-
havior), and 4) the requirement for labor intensive development and analysis of simulations. We
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demonstrate that neural systems may contribute techniques that address these traditional defi-
ciencies of general simulation theory.

Problem
Ongoing research by one of the authors [Bruning and Weinroth-88] has indicated a need

for a more robust method for simulating expert human behavior within a simulation of the
impact of human resource management policies in a factory setting. A block diagram of the
overall simulation is displayed in Figure 1. The operation of a machine tool - a representative
factory work station - is simulated to the level of detail in Figure 2. Machine breakdowns and
the variable output of good and defective products per unit of time are modeled as dependent on

Overall Simulation of Factory Human Resource Policies Machine Tool Simulation

Oprtrmachine Feed Speed ProbatoiI I ty (ExtOonential) -

n-Pfaormane 
Machine Feed Pressure

Figure 1: Block Diagram of the Overall GPSS Simula- Figure 2: Model of the Machine Tool Workstation for

tion Profit Evaluation

material property, and machine feed pressure and speed. Profit produced at the workstation is
optimized by the machine operator (through two control parameters - machine speed and pres-
sure) and is modeled by a 3-layer feedforward backpropagation network that is embedded in the
simulation language. See Figure 3. Though the use of the embedded neural network, the relation-
shi-s between profit and human resource plicieo a.,re modeled .. ore faithfully by the frequency
and timeliness of the operator's corrective intervention to adjust the control parameters on the
machine. The optimal control of the machine was taught to the neural net by presenting it ex-
amples of the proper response over the range of possible out-of-control conditions. No simple
mathematical relationship - as might be derived from regression analysis - was found to per-
form with equal effectiveness in capturing the dynamics of the optimal control of the machine.

Approach
The overall simul, ion depicted in Figure 1 was developed using GPSS/FI from Wolver-

ine Software running o0 Li.ther an IBM mainframe or PC [Banks-89], The neural network was
trained both offline on the Macintosh using the neural network simulator MacBrain [Jensen-881.
Prototype experimentation was also performed in training the net within the GPSS/t i simulation
language. A standard backpropagation network with a three layer (4-8-2) architecture was em-
ployed. See Figure 4.

The network required approximately 5000 epochs of the entire training set (20 presenta-
tions) to reach acceptable performance (approximately +/-5%o of the optimal control output).
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Neural Network Model of Expert Human Performance

V -ayer sp reedI

Figure 3: The Embedded Neural Network Modeling Figure 4: Three layer 4-8-2 FeedforwardlBackpropaga-

the Expert Judgement of the Human Operator at the tion Neural Nctwork Used in Simulation
Machine Tool Workstation

Conclusions
We claim that a "proof-in-principle" of the feasibility of using a commercial general

purpose simulation language for neural network sinmlations is provided. We also demonstrate
the potential utility of embedding neural networks within more general simulations (e.g., a

discrete event factory simulation). Table 1 displays several examples of the results of the ma-
chine tool workstation simulation corrected by the embedded neural network. Parallel branches
in the simulation, each using the same random numbers for computing failure times, failed
condition and repair rates, were used to determine the effect of the embedded neural net's
control output. This was needed to obtain an "apples-to-apples" comparison of the performance

of the simulation with and without the input of the embedded neural network.
Other commercial general purpose simulation languages need to be evaluated and com-

pared to GPSS/il for the ease and suitability of simulating neural networks. For example, the
version of GPSS used for this research was limited to integer values for several network parame-
ter values. This required extra steps to scale network parameters to and from large integer values.
Most ot.Commercial sinu .u .on.packages do not have this limitation.

Perhaps neural network simulation modules, similar to templates for spreadsheets, can be
developed for the various network architectures. Only discrete event simulation has been exam-
ined in this research. The continuous simulation languages may also need to be evaluated for
their suitability " -architectures such as the Itopfield net or Adaptive Resonance Theory.

Trial Profit: Out-of-Control Condition Profit: After Intervention by Neural Network

1 $5817.00 $6236.00
2 6730.00 7504.00
3 7246.00 8964.00
4 4621.00 4640.00
5 3834.00 5222.00

Table 1: Comparison of Machine Tool Profitability with and without Embedded Neural Network in Factory
Simulation
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1. INTRODUCTION

Artificial neural networks (ANN) have been applied to problems such as robot control, speech
and signal processing, pattern recognition and, in a more general way, to biological simulation
and cognitive sciences.

The topology and structure of the ANN may vary from one application to another:
Hopfield nets, Kohonen nets, backpropagation nets are only a few examples.

It seems nevertheless that some fields have been forgotten by ANN applications. Economics
and especially economic theory is one of these: as we know, only few applications exist, mainly
related to loan managing or forecasting [Il].

The aim of this paper is to describe one particular aspect of the theory of the household, a
problem of static optimization, known as the Neoclassical Problem of the Household.

2. THE PROBLEM

We can define: the household as any group of individuals sharing income in order to
purchase and consume goods and services; a commodity as a particular good or service delivered
at a specific time and at a specific location.

The neoclassical problem of the household [21 is to choose a bundle of commodities that is
"most preferred" among all the possible bundles, given:

- the utility function, which is a continuous, real-valued function defined on
commodity space and based on some assumptions about the tastes of the household (i.e. weak
preference relation and indifference between two bundles);

- the budget constraint, which states that total expenditure on all commodities
cannot exceed money income.

In terms of the utility function, the problem is:

max U(x1 ,x2 ...2 x)
XIX2, ... ,Xn

subject to Y p,.x= p=.x1+P2.X2+ ... +p*.x < I

with I household income (0>0)
n =number of commodities
x = quantity of the il commodity
x = n dimensional vector of quantities
p, = price of the i' commodity (p>0, i=1,2 ... ,n)
p = n dimensional vector of prices p is given).
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It is easy to demonstrate that the optimal solution yields to a total expenditure of the income,
so the budget constraint may be formulated as Y x I. = 1.

It is important to remark that the analytical form of the utility function of the household is
generally unknown. But some assumptions are made about U(x):

- U(x) is differentiable, and thc first order partial derivatives (called marginal
utilities) are all positive:

> 0
6x

- U(x) is twice differentiable with continuous second order partial derivatives, and
the Hessian matrix is negative definite, so the function is strictly concave and we have:

82 U(X)

< 0 i=1,2, ... n.
x.2

The solution of the problem can be found using the Lagrange multipliers method, that is
defining the Lagrangian function (y is the Lagrange multiplier)

L•x,y) = U(x) + y.(l - Y. x;.p,)

and simultaneously solving the system of n+l equations

6 Ltx,y) 8 L(x,y)
=-0, -- -0, i=1,2, ... n.8y 8x,

3. THE NEURAL NETWORK

The aim of the neural network model is to simulate the behaviour of the household in its
decision-making process: the choice of the n quantities of conmmodities to purchase, given the
income and the n prices, such as to maximize his utility.

Assuming that the analytical form of the utility function is unknown, we consider that the
preferences of the household are based on observed marke: choices. This set of observations
(purchased quantities, prices and income) are used to train the neural network.

For the purpose of this simulation, the training set of 250 observations is generated randomly
using the following utility function:

x= 10<a<l, .a<

The neural network we used is the "classic" three-layer (input, hidden and output)
feedforward network, with a sigmoidal activation function and with continuous, bounded (from
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zero to a maximum) activation values.
The ANN is made of n+1 input units (n for the prices and one for the income) and n output

units (for the quantities to purchase). The number of hidden units has been set experimentally
to 2.n.

The learning rule used was the generalized delta rule [31 with back-propagation of the error.
The net completes the training after 35000 iterations, with the following parameters: learning

rate 0.6, momentum 0.9, error tollerance 0.001, producing a maximum output error of 0.0009 and
a total output error for the whole set of patterns of 0.065.

4. SIMULATION RESULTS.

Using the trained network to simulate the behaviour of the household, with values not
belonging to the training set, leads to good results. The net achieves a good mapping of the utility
function with a maximum error of 8% from generated to expected values in the whole range of
activation values.

The good quality of these results is partly explained by the property of the generalized delta
rule to minimize the squares of the differences between the actual and expected output values as
well as by the uniformditribution of the training set: if the ANN were trained with truc observed
values, not uniformly distributed in the allowed range, it could exhibit a less regular behaviour,
with worse results.

5. CONCLUSIONS AND FUTURE DIR.ECTIONS

The capability of this simple neural network to simulate the behaviour of a basic
microeconomic agent is quite encouraging.

We wish to develop an extension of this application, still related to economic theory,
following two directions:

- the implementation of an ANN acting like another economic agent, the firm, which uses
economic inputs (labor, capital, ..) to produce outputs of commodities sold to households and
other firms, following a production function subject to some constraints;

- the realization of a tiny economic system made of several ANN (each of them
corresponding to an economic agent, household or firm, with different utility functions and
production functions) to simulate and analyze the problem of General Equilibrium [4] i.e. the
interaction between the households and the firms, in the determination of prices and quantities of
goods and input factors.
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Abstract

The implemented system for heart shape classification consists of a preprocessor
and a classifier. Following the presentation of the image preprocessor, the
application of error back-propagation network to the problem of heart shape
classification is exposed. The emnloyed network structure is presented, as well as
the methodology of training set construction, training and testing. Classification
results are discussed.

1. Introduction

The research reported herein concerns the possibility of using neural network
architecture for heart shape classification. An automated system for heart shape
classification could be used for preliminary heart anomaly detection, based on chest
radiographic images being required in mass-screening lung checks. The problem
of automating heart shape classification is well known [1], and is usually solved in
two phases. Firstly, values of heart shape parameters are extracted from digitalized
chest radiographic image. Secondly, some standard classification algorithm is used
to classify any given set of parameter values. We tried to use neural network
architecture instead. The system consists of a digital image preprocessor and a
classifier. The preprocessor finds the heart position on the digital image and
extracts a set of h-lear..t shape parameter values from it. Based on these values, an
error back-propagation network performs classification.
The rest of the paper is divided into three main parts: the preprocessor
description, the network description, and the presentation of results.

2. The Preprocessor

The system has been designed having in mind detection of three heart shape
categories: normal, aortal and myopathic, as sketched in Figures I to 3. The
preprocessor implementation is inspired by some well known r;haracteristics of chest
radiographic images [I]. Preprocessing consists of several pnase•s: early processing,
detection of heart position, generation of binary imjage, correction of heart edge,
and extraction of heart shape parameter values.

Early processing. Standard X-ray chest radiographt film of :J6x3Gcni size is being
digitali :,-d to 5 /x480 pixels of 256 gray levels. 1o enharce siibsequeiit lj ocessiig
the image is zoomed to 2.40x2(.) pixels of the same intensity ran"go Ta,;irig i rlo
account charac teoristics of the camera optics: an ad the shape of digitalaed area, this
process Courvcrts approx. 2.gX105 flm of or'iginial radig'LLaJLhi" image, Ito otto piixel.

IH- 655



.= . --• - --= _--r • i =• ... . .. . . .. .. .. ... . . .. . .. . .... ._ -- 7 - -... --.......-: --- -
S• - = ' -- -. . . _ • -- - .71 - = -: - --- - -:• -- --• :-- :-?=-- := ---- •=--

Figure 1. Normal heart Figure 2. Aorta' ieart Figure 3. Myop. heart

Detection of heart position. Heart position 1- determined via horizontal and vertical
spatial gray level signatures, as shown cz. Figure 4. This is being done in two
steps. Firstly, signatures are constructed ".ased on the whole image area. Using
their extremes, positions of TOH, BOH, Ph:C, LEC, REH and LEH are determined.
Secondly, signatures are constructed ta.,kii into account only the area enclosed
by TOH, BOH, REC and LEC. Using these new signatures, the process of Toll,
LEH determination is repeated,

Generation of binary image. To enable la',.r extraction of heart shape parameter
values, it is etienLtial Lo determine thre V;z.-rt edge position. This may be done by
converting lungs area to black, and hedit cavern area to maximum brightness, i.e.
making binary picture. The thresholi %alue for each picture is defined in such a
way as to produce fixed percentage of olack (white) pixels in the area enclosed by
TOH, BO11, REC and LEC. In this way it is possible to reduce the influence of
average brightness oscillations among the images.

Correction of heart edge. Our preliminary research [2, 3] showed that high error
rate of myopathic heart classification may be caused by preprocessing diaphragm
shadow as a left lung edge, To remedy this flaw, left heart edge is being slightly
corrected. This is being done using the information on maximum brightness changes
in ,rioinal 240x240 inage. obtained by Kirsch dircctional gradient operat....

Extraction of heart shape parameter values. The set of heart shape parameters
consists of distances between heart midline and right (left) heart edge. Parameter
values are obtained in the following way: The interval from A to B (from A to BOH),
Figure 4, is divided in fifteen subintervals. For each one of then the average
distance between midline and right (left) heart edge is determined. Each value is
normalized with distance from MIlL to REH (from MDL to (LEC+LFEHM/2). In this way,
a set of thirty values in the range [0, 1] is obtained. These may be used to feed
neural network classifier.

3. The Network

By comparison of statistical data obtained from 1ll images (37 of each class) it,
became clear that from thirty' heart. shape parameters only nine can be used as
the has is for c lassificattion. The di fferences between thI e classes amion y the rest. of
the ,',a'tnieterrs wet',, iri!significatit, most cri't.ainly due to inevit.,hl( ouscillut'ions in
imag- prep'roces-;itg. Henrce, only nine of, thirty possible J)'l ekXrii('te', i',e-,' used 1_o
feed thi, rnt,worlk, Classification expe:riments!t; wereI [r'ormed with st"-;.atl;tf-r rol'ror
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back-propagation three-layer network [4, 1W
5], of 9-9-3 units respectively. Unit 'TAU
thresholds were free to change, learning
rate constant was 0.25, and learning
momentum constant was 0.9.

4. Results

Construction of the training set. The -
training set consisted of four
representatives of each class. Choosing LE LE
them by subjective comparison of
digitalized or original images produced Figure 4, Binary image with
no satisfactory results. They were signatures
therefore chosen as the best
representatives (prototypes) of their
respective class This was obtained by selecting them in such a way as to minimize
the difference between their parameter values and average parameter values of
their class. From a set of Ill images, twelve were selected in this way. It may be
argued that in this way some ideas of statistical classification theory were mixed
with connectionism. This is true, and we consider it being a positive approach. One
may suppose that an "infinite" testing set will have the same statistical
characteristics of parameter values as the finite set used. Hence, there is a gnnd
reason to make an informed choice of the training set members, since that greatly
affects the learning speed and later classification success.

Training. In each training epoch all members of the training set were presented to
the network in the same order. Each input vector was paired with an output vector,
forcing one of the three output units to 1, and the rest to 0. After 1200 epochs the
total sum of squares error dropped to 0.0105.

Testing. The system's classification ability was tested using 99 images (33 of each
class) which excluded the training set. The network output vector was interpreted
in the following way: The class of the presented image was assumed to be the one
associated with the output unit producing the maximum value. Results obtained
using this procedure are summarized in Table 1.

Human specialist's classification:
normal aortal myopathic

Total number of images 37 37 37

Number of training images 4 4 4
Number of testing images 33 33 33

System's classification:
normal 15 0 7
aortal 10 23 10
myopaLhic 8 10 16

Table 1. lllesults
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5. Discussion and future work

It is evident from Table 1 that from 47 - 67 per cent of each image class is
correctly classified. Percentage of malformed heart shapes classified as normal is
rather low (11% of all malformed cases). On the other hand, false alarnms percentage
(53% of normals) is intolerably high. There are several possible explanations for
these, rather unsatisfactory results: the choice of heart shape parameters, the
quality of parameter values extraction, and the small network training set. We have
chosen rather straightforward representation of heart shape. Other approaches may
be used as well, such as curve fitting. In order to keep the network small, we tried
to use only thirty average distance values. Variations in positions of subintervals
of heart height led to the loss of some valuable information on the shape of neart
aortal area. Finally, the training set was deliberately chosen to be small - it is
about nine times smaller thaai the testing set - to enable realistic testing with
images at hand. If we obtain more images, substantially enlarged training set would
be used.

We plan to evaluate usefulness of some other heart shape encoding schemes, and
enhance preprocessor quality. If that proves successful, we shall try to enlarge the
set of heart classes (i.e. malformation types to be classified).
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ABSTRACT

Transient stability analysis of power systems by Liapunov's second method has been an

area of active research for the past twenty five years. This method allows the stability of a system
to be determined without directly solving the system state equations. In this paper we present a

method for determining the stability of a given system under various conditions. This technique

uses a min -layer perceptron with the back propagation learning algorithm. Three network
architectures have been analyzed to determine the most effective one for this type of problem. By

using the back-propagation algorithm, the network is trained with known input patterns for the

power system and corresponding Liapunov function as the desired output. After the network

attained the capability of recognizing the stability region of known system, a set of data

representing different operating conditions was presented to the network to determine the state of

the system.

INTRODUCTION

In order to determine the most effective architecture for this problem we evaluated three

different architectures shown in Fig. 1, for mean square error and convergence. The architecture in

Fig. lb was the most effective for this problem. This architecture has five inputs, six units in each
hidden layer and one unit in the output layer. The performance characteristics of these three

architectures are analyzed and the results of this analysis are given in Fig. 2. Fig. 2a depicts the
mean square error of the given architectures with respect to the number of training sessions and

Fig. 2b shows the relation between the different values of momentum and the number of iterations

required for convergence.

In the training phase the back-propagation learning algorithm has been used. Initially the
network was presented with random set of interconnection weights and thresholds. The network

with a learning constant of 0.05, mromentum step size of 0.6 has converged with thei mean square

error bound of 0.04 pu.

In the testing phase the network is presented with a new set of data belonging to different
operating conditions. The results of the simulation are presented in Table-1.
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13ACK PROPAGATION ALGORITHM

The back-propagation learning algofidhni was used to train the proposed network. In each training

session the input units were presented with two state variables and three parameters of Eq.(13)

D,P1 , and 5. The state variables are normalized to the range of (-1.0) to (1.0). The output of each

layer was propagated forward through each layer by using Eq.(l) and the sigmoid nonlinewity

f(.), Where in Eq.(1), Xk represent the input data, Wik is the weight from kth to ith Linit and 0i is

the threshold of the ith unit.
F' = •W.ik Xk + 0i

A (1)

Each weight was updated after the output had been compared with the desired output using Eq.(2)

Wk( t + 1) = WVk(t) + l5 kf'(Yi ) + X[Wk(t ) 4VAk(1 - 1)1 (2)

T11 is the step size, C( is the momentum tenn, and Sk is an error term for node k. If node k is an

output node, then

5, -- (D, - Y,)f'(Y,) (3)

If node k is an internal node tien

SUt 
(4)

. . . . ........ 
. ..... .

5 12 1 • •.......... .. ,N \- -%

5 121 %
....... ....... 54441 2c+4

a 2-
(/)

E-: 1C+

0 --" -------- '-'
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SIMULATION OF POWER SYSTEM

The block diagram of a single-machine system with damping is given if Fig. 3. the

following assumptions were made for the system under invcstigation: i) Input to the machine is

constant, ii) Field-Flux linkages are constant, iii) Damping power is proportional to slip velocity,

and iv) Network is purely reactive.

Nonlinearity Iý /S+D S1 W 1

Figure 3

The normalized equations of a synchronous generator-infinite bus system in the post fault

state can be written as

8+D8= PI- Sin8 (5)

Where 5 is the power angle, P i the mechanical input, and D the damping coefficient. The equi-

librium state = Sin-1P i =0 can be transferred to the origin by de.fining new variable

X = 5- 50 (6)

i =-Dk<+P, -Sin ( x +60 ) (7)

2
= U P.(1 -Gosx) -il -P Sinx (8)

By defining

xI =x (9)

X2 =x (10)

f (x)=--P,.(1-Cosx,) + m1-P'in7 (11)

f (X) CQSX')+11 -PI. 2 .Sinx1

The state equation is giveni by

X-=AX +Bf(o)
c =CX (12)

Where

A= [ _,] Bc] = [1 01

The Liapunov lunlction for the above system is given by
22

Dx (1 +D)x) xlD
V(x,, x2 ,P ,D,8o)- 2 + ' 2D 1 x+ (4-P )(M2
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I (i+ Dt (2 Cos)o -P2 (D -2 ,)D)

2 (1 + D') (13)

The network was presented with the data representing various operating conditions of the power

system. This data was not presented during the training session and the results are compared with

actual state of the system. The results arc given in Table-1.

Xi X2 Pi 50 D Actual State Computed State

0.2 0.2 0.4 0.45 0.01 Stable S table

0.6 0.3 0.7 0.3 0.02 Stable Stable

1.5 0.9 0.9 0.7 0.5 Unstable Unstable

1.6 1.2 0.5 0.8 0.08 Unstable Unstable

Table-1. Test Results

CONCLUSIONS

This paper presents a mnethod to determine the stability of power system under various

operating conditions using fcedforward artificial neural network. Due to parallel processing of

infoiMuation,nCural networks pcrform simple oteeratioll to classify the states of the systelm . This
technique is potentially more efficient and less complex analysis. The MSE of three layer network

presented earlier can be further reduced by choosing proper momentum and learning rate.The

system analyzed involves five parameters causing complexity in computations. This method
provides simple and faster solution to the problem. Tins method can be applied to the stability

analysis of Power Systems without damping,with Transfer Conductances, velocity goventor and

Saliency. This method can be used to deterinine the Critical Clearing Angle of Power Systems.

These are cureenuly under investigation alud will be reported later.
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INTERFACING DATA BASE TO FIND THE BEST AND ALTERNATIVE SOLUTIONS
TO PROBLEMS BY OBTAINING THE KNOWLEDGE FROM THE DATA BASE

By
0. Enrique Martinez and Craig Harston

C.A.S.
858 Oak St. #1

Chattanooga, TN 37403

Abstract

This is a neural network that get its knowledge from a data base.
The system is 100 % accurate and can store several thousands of
associations. The memory size is defined by the characteristics of the
data base. One special property of the system among others is that at
recall tirme, the input can be weighted differently to emphasize the
importance of some values over others. The system also provides
alternative solutions with a respronse time near zero for every output
neuron.

Introduction

Data bases are the most important source of information, Tying this
information to a neural network can create a new system with expertise
in any field. The system can provide many answers to a particular
input in a well organized manner. As the number of associations
increase by hundreds, many of these associations become similar and
this makes the need for a very accurate system. The system can find a
single matching solution to a particular input if there is only one
solution, but it can also respond with alternative solutions to those
situations when the input is considerate by us, and no by the system,
to be incomplete.

To keep certain consistency with data bascs, the system uzsG the many
to one relationship. This relation provides the uniqueness of one
element with respect the others. The output generalization depends on
the input and the number of matches found by the recall.

Properties of the system

1) Most neural networks do not grow as intelligent systems because
they do not make use of their knowledge. They do not show to the user
the relations among similar experiences that occurred during the
training. This particular system is not one goal oriented. It does
not look for one exact match to the given input, The goal is to find
all the possible matches by using the input as clue and present the
answers to the user in a well orqanized manner. For many applications.
the matching solution to an input could be the worst solution among the
other possible responses. We will illustrate this with two examples:

Business application: Suppose that you are looking for businesses
that offer benefits in any given criterja. Instead of selecting a
business that only meets the requirements, you can have a listing of
businesses that meet your needs and provide more benefits. The goal is
to find those companies that offers the most by meeting your needs as a
minimum condition. Figure B is an example in which the response 3K
(see figure 1) is the best match with very little to offer for this
hypothetical case, but 3J is the optimal solution because has the mos't
to offer.

Medicine: Here we need information about symptoms and diseases. By
given the most notable symptoms of a patient, the system can recognize
the disease without presenting all the symptoms. It it is more
important to detect what else could develop if the current condition of
the patient is not stabled. A single answer is not enough.
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The business example Thows that the best matching response for a given
input can be considered far remote from the best solution to many
problems. The other example shows that one input can require more than
one answer.

2) Another property of the system is that it can work with
inconsistent data. While other system using back-propagation fail to
work with inconsistent data (1] , the system is ell adapted to this
common circumrstances. We frequently have two or more opinions or facts
about a common subject, for instance: "my car i'! new" and "my car is
red". A question to the system like "my car is " , the system will
simple respond with a combined answer "new " and " red

NEURAL NETWORK DEVELOPMENT

System m~egmory: The system is built using the Hebb learning rule. The
size of the memory is n by p where the maximum number of association is
equal to p. The memory is the outer product of these two vectors,

vectors = Z(n) , U(p)
matrix = T(n,p)

T,. - T, + ( Z, " Uj )

General Neural Networks Problem

Saturation is a problem that limit the number of associations that can
be stored in memory, Saturation also forces systems to increase
unnecessarily the size of the memory in order to increase the number of
associations even for a small fixed size application.

The BAM formula (Haines and Hecht-Nielsen ,1988) determines the
limitation of the other systems [5]. Having two fields n and p, we
take the smallest field to find the maximum number of associations m =
r/(2log r) where r < min(n,p) . Table 1 shows some r values used to
reach a certain nrunber of associations,

r m matrix size (r2)

8 4 64
15 6 225
274 56 75,000
5,000 675 25,000,000
100,000 10,000 10,000,000,000

TABLE 1

Martinez-Harston QIMHJ Frequency

The calculated interaction between memory and input is called MH
frequency. For every output neuron there is a MH frequency calculated
in the first recall, Some neurons might have the same MH frequencies.
The MH frequency is stored in the output neuron array. A duplicate of
these values are sorted and stored in tables (figure A, B, C, D, and
E ).

MH Frequency Table: The tables are used to control the output
responses. All the MH frequencies are stored in an ascending or
descending order to contiol the response in a desired order, In all the
figures, the highest calculated frequency corresponds to the response
that best match the input. The other frequencies correspond to the
best alternative solutions.
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Testing the system: Running one of our experimental data to test a
business information system, we have an input area with 15 input
neurons ( attributes ) and 10,100 output neurons (companies) . The
memory size was the prod'ict of 15 * 10,100= 151,000 and the number of
associated patterns was 10,000.

Results; We have 100% accurazy for every recall made. We worked
exactly with the number of attributes needed in the input field (
fifteen ) . There was no need to increase the number of input neurons to
100,000 as suggested on table 1. The response time after the recall for
additional information was near zero for each output neuron.

Simultaneous recall

It is possible to recall simultaneously two or more associations
that are different or to emphasize the important of one attribute over
other. Figures B and C show the recall of two different associations
and figure D show the simultaneous recall with weighted input. The
half rectangle has a weight of two and the large rectangle has a weight
of 1. Note how both associations are prerented when using the smallest
frequency value.

flypassinq tjhe memory

After storing the MH frequency values in tables, it is unnecessary to
recalculate the MH freauencies because the input is not changed.
Response time is almost zero for evezy output neuron, since we only
have to compare the value in the output array with the one given from
the frequency table.

Conclusion

A important characteristic of the system is that its knowledge is
growing as the number of association increase without being saturated.
The system can become an expert adviser using information from data
base. The other characteristics are: memory size is relative to the
dita base attributes and the number of entries, it can perform in real
t bme, the input can be weighted differently, and it works with
inconsistent data,
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INPUT PATTERGNE A - Rponse
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SA180,444153 • 3j
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0 172.592300 4B, 4C1172.370071 31
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INPUT PATTERN Table - e

0 91.622345 - 3K
91.244987 4K

0 1 2 3 4 91.018570 . 3J
0 87.395927 - 3H

2 3

H~i 714OUR! C R po.6E INPUT PATTERN TaLble.
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Figure 1 has 56 associations 0 4.650 •33tored MI la I 5.15_
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Example : Weighted inp3G

0 1 2 3 4 this figure
0 I i5 assoc.ated FIGURE E
1 to the value ____-- Responses
2 1 3C INPUT PATTERN Table

1i .07107 9 03
14,633303'3 . 3I

The same association is found 0 1 2 3 4 14.25059 5 2D,3E

by following the coordinates 0in figure I1 1

32
Example C Weghedinu

All the reiponues for each input fut are obtained
after one recall. The reacto of each outputon

neuron is measured and ftored in the tables, The
neuronb with the higheut reaction ( pointed by the

arrow ) corresp'ond to the best matching solution.
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Introduction

Group technology (GT) is a manufacturing principle which is based on the hypothesis that
a higher level of efficiency and integration can be achieved by grouping similar parts into part
families. The idea is that through a process of generalization the complexity of raw data will be
reduced into a manageable size of clusters. For instance, a factory manufacturing more than
10,000 different parts may take advantage of the reduced number of 40 or 50 distinct part families.
The group technology principle has been applied in various areas of design and manufacturing
such as variant process planning system, group technology cell formation, group technology
layout of machining tools, and so on.

A. machine-part family formation problem is the way in which the set of parts are
partitioned into families, and then the set of machines are grouped into manufacturing cells based
on the part families [1]. Typically, a set of machines through which a part must be processed is
specified by route sheets or process plans. This information can be represented by a matrix form.
That is, each row corresponds to a different part type while each column corresponds to a different
machine type. A component of the matrix has a value of one if the corresponding part type needs
to be processed in the corresponding machine type. Once the given information is represented by a
matrix format, most of the family formation approaches have attempted to reaTange the sequence
of rows and columns to find a block diagonal form of the matrix. [2] For example, an initial
machine-part matrix and a desirable form of the matrix after family formation procedure are
presented in Figure 1.

parts
1 2 3 4 5 6 7

1 1 1 1 1

2 1 1
machines 3 1 1 1

4 1 1 1
5 1 1

parts
1 3 7 2 4 6 5

3 1 1 1
2 1 1

machines 5 1 1
1 1 1 11
4 1 1 1

Figure 1

11 - 667



King and Nakornchai classified existing approaches to the family formation problem as
similarity coefficient methods, set-theoretic methods, evaluative nethods, and other analytical
methods [3]. However, none of the approaches had taken the advantage of parallel distributed
processing. This paper proposes a new approach to the family formation problem employing the
spontaneous generalization capability of an interactive activation and competition model [4].

A neural network for machine-part family formation

Three types of information are assumed to be given initially: a set of part types, a set of
machine types, and a machine-part matrix from routing sheets. Each part type and machine type is
used as a processing unit of the network. The processing units are grouped into three different
pools. Each pool consists of processing units which respectively represent part types, machine
types, and part instances.

There are two kinds of connections involved in this network. One is based on the machine-
part matrix, and the other based on the similarity matrices derived from the machine-part matrix.

The weights between part instances and part types, and between part instances and machine
types are given as a maximum value if there is a connection, if not, the weight is given as 0. The
null weight means that there is no significant connection betweei, the two processing units.
Normally, the maximum value chosen is 1.

The weights among part types and among machine types are determined by the similarity
matrix. The similarlty matrix for part types is constructed by counting the number of the same
value between two part types, while the similarity matrix for machine types is constructed by using
the same method between two machine types. Diagonal values are given as equal to the number of
components.

The weights among types are calculated by the following formula:
wii = (sij I n) - threshold. Here, sij is the value fr-om the simnilarity matrix, and n is the number of
components of the mairix. The value of threshold is usually chosen as 0.5. Therefore, the value
of wij iie. between -1 and 1. The negative weight means that there is inhibitory activity between
the two processing units. An example of a machine-part matrix and the constructed network are
given in Figure 2.

Each processing unit either receives an external input or output signal from the connected
units. A combined input to the processing unit, i, is calculated as follows [4]:

ncti wij outputj + extinputi

where outputj = [act(j)] . Here, act(j) represents an activation value of the unit j. Also,
[act(j)]+ = aj if aj >0, otherwise [act(j)]+ = 0.

The activation values are updated according to the following equation.
If (neti > 0),

delta ai = (max - ai) neti - decay (ai - rest)
otherwise,

delta ai = (ai - rain) neti - decay (ai - rest)
where max = 1

min <= reset <= 0
0 < decay < ;.

Once a neural network has been established, the family formation is achieved through the
following simple procedure.

Step 1: Seect a part and give an external signal to the part.
Step 2: Run the neural network simulation and store the result.
Step 3: If all the parts are assigned, stop. Otherwise, go to step 2.
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Unlike the traditional approaches, the prop(.,sed procedure does not generate a matrix form.
The groups are identified from the final activation values of each processing unit. That is, all the
units having positive activation values are grouped together.

part type

1 2 3

1 1

1 2 machine type

3

Part Type
Machine Type

-0 7 -0.17

0.17 -.

Part Instance

Figure 2

Conclusion

The described approach has been tested using a simulation program [5] on various
machine-part family formation problems. The preliminary results demonstrate several advantages
of using the proposed method. First, it departed from the most commonly used matrix
manipulation in the family formation problem. In the other approaches, the final decision involves
another step to identify groups from the rearranged matrix because some overlapping of parts
among different manufacturing cells is unavoidable. However, the neural network approach
produces a reasonable result without examining the final matrix again. This feature will open up
more possibilities of integration with other computer aided manufacturing functions.

Second, the approach takes advantage of the inherent parallel processing of neural
networks. Even a huge problem, for example, a problem with 1000 parts and 50 machines, can be
solved instantaneously.
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Third, the neural network approach can accommodate additional information. For
,ample, when certain parts need to be grouped together the only necessary change to make is to

i.,ýrease the weight between the parts.
Fourth, the procedure can be initiated either from part types or from machine types. Since

there is no distinction between part types and machine types when a network is constiucted, the
described procedure can start from either type. More sophisticated approaches may be devised
based on this characteristic.

The most important potential of this approach is that it combines two functions of group
technology, that is, classification/coding and family formation. The classification/coding function
used to be based on the part design specification, mainly from part drawings, whereas the
requirement matrix for family formation is based on routing sheets. Obviously, these two
functions have not been integrated well.

The neural network model can also incorporate additional feature pools without discarding
the already built connections. This will lead to the successful retrieval of incomplete or ambiguous
description of part geometry, and the proper assignment of the part.
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A Neural Net Approach to Electronic Circuit Diagnostics
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1. INTRODUCTION

Our project aims to exploit the learning ability of artificial neural networks

for identifying or classifying faults in electronic circuits. The obvious utility

of detecting and isolating the faulty components after the fact would be

sufficient motivation, but there are additional alluring possibilities.

Conceivably, an on-board neural net would be able to monitor circuit

performance in real time. Warnings of impending failure due to

degradation of components may be possible, as might dynamic

reconfiguration in order to continue service until maintenance can be done.

The methods that we are developing is required to be useful on a wide

variety of circuits, both analog and digital. We have to pragmatically

avoid the combinatorial (or worse) explosion of failure possibilities. In
analog circuits, it is apparent that even the failure-free nominal case cannot

be examined exhaustively. Therefore, it is essential that we concentrate on
representative input signals and realistic fault subsets, based on historical

component reliability data [i].

Avoiding the preparation of training sets from hardware prototypes, vie use
computerized fault simulation, taking advantage of available circuit

simulation tools. Near term practical applications will continue to make

extensive use of conventional systeip elements.
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2. APPLICATION ORGANIZATION

The system architecture, i.e., its functions and information elements,

suitable for a research or a production system, include the following:

"* A circuit model description for a computer-aided design (CAD)

tool.

"* A simulation tool.

"* A library of information describing effects on the circuit of

faults likely to occur.

"* A handier capable of injecting faults in Vhe circuit model and

buildilng a training set from the results.

* A means of presenting the training sets to a neural net

(model representation [2]).

"* A neural net model with the appropriate parameters.

The initial learning paradigm we are using is back-propagation [3], but

counter-propagation [4] is also under consideration.

3. APPROACH

Rather than attempt to design the ultimate system immnediately, we have

graded the types of circuits we want to examine according to difficulty.

"That way the viability of the architecture can be verified without being

impeded by modelling complications - in effect, a proof of concept

demonstration. To simplify, we have picked combinational (memory-free)

logic circuits as the first target. Their input and output sets are finite; for
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relatively small circuits, even exhaustive combinations are feasible. A

wealth of information exists on digital test generation [5] to which we may

turn for comparison, and reasonably expected faults (e.g., "stuck-at-O",
"stuck-at-l") can readily be enumerated. For the present, we do not

have to be concerned with the optimality of the test set regarding fault

coverage and discrimination. Logic simulation is limited, however, in that

it cannot emulate certain kinds of failure, such as power supply

fluctuations.

Even combinational logic circuits, when large enough, can be impractical to

analyze completely. Digital circuits having internal state (e.g., sequential

logic) cause some obvious complications, but still have finite input and

output sets. Technically, that is not the case with analog (continuous) and

hybrid circuits, whether they are state-free or not. (By state-free we mean

that the output signals are instantaneous functions of the input signals,

similar to combinational logic.) All the preceding situations involve some

simplifying assumptions in their modelling. The hardest case we can model

is any circuit that can be represented by linear or restricted non-linear

differential equations (e.g., with SPICE).

Most success with neural net classifiers appears to have been achieved when

the inputs are quantitatively related. Then, in some sense, the learned

relationships have some chance of approximating nearby signals correctly,

using the intuitive idea of distance in a multidimensional pattern space.

The point of this to permit explicit differences to be formed, between the

observations associated with a given fault mode and the corresponding

nominal circuit's observations. Two parts of each training case are

straightforward: The vector of input values and the vector of visible output

values. (We have to allow for the situation where some componernts'

outputs are inaccessible.) The identification of the fault mode is more

troublesome. One is inclined to label the fault mode symbolically; an

implicitly structural labeling adheres better to the quantitative criterion.

To achieve this, we form a list of the components; each item marked "0"
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is normal, while non-zero marks correspond to a fault, the value designating

the nature of the fault. Although this still has a residual symbolic aspect

in that arbitrary designation, the importance of the kind of fault is

secondary.

4. SCOPE OF RESEARCH TO-DATE

A system prototype has been evaluated with a familiar small circuit, the

single-bit full adder, built from nand gates. This has been exhaustively

analyzed; it has three inputs and two intentional outputs. Our

implementation used 11 nand gates, all being visible. Another candidate

under review, is a combinational logic circuit (proprietary), containing

approximately 100 gates. Here, we do have access to the CAD circuit

model description and simulator. The input combinations and fault modes
are deliberately incomplete, i.e., not exhaustive, in the training set. Also,

the circuit design limits the visible gate outputs. Nevertheless, we still

expect to be able to identify some fault modes outside the training set.

5. REFERENCES & NOTES

[1) See databooks published by U.S. Reliability Analysis Center, RADC Griffiss AFB
(Rome), NY 13441.
[2] Specifically, in this case, on an ANZA Plus (Hecht-Nielsen Neurocomputers).
[3] D. E. Rumelhart & J. L. McClelland, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Volume I: Foundations, MIT
Press, 1986.
[4] R. Hecht-Nielsen, "Counterpropagation Networks", Proceeding8 IEEE First International
Conference on Neural Networks, II, 19-32, 1987.
[5] For example, A. D. Friedman & P. R.. Menon, Fault Detection in Digital Circuits,
Prentice-Hall, 1971.
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A NEURAL NETWORK IMPLEMENTATION OF PARALLEL SEARCH
FOR MULTIPLE PATHS
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41-11 Eastern Avenue. SA. C

G randi Rapids. Michigan 44518

.4 bslrucl

Th'ie S IA A vri aric Svsterrr'ý Corp. (SI IA S() of Stni ibs Induistrie's has performed Independent Research and(
D)evelopmrenrt t" inivestigaIte ad vanced parallel processing architectures f' ar path planning applications. WVe are
investigating neural net work tech n(ultgv for flight mtanagemntit (FNMS) and vehcltelv maniagcirrent (VMIS) svsteni

applicr.atio ns of o ptrtimal t rajecta r v generation III ellilbedided svsterns. i This paper describes at parallel search mlldei

for multi pit path genetration and its nieural net work i mupiementati(: f.

INTRODUCTION

'Yfi is paper de scrribes' it n u rai netwi'~rk architectuire for fi ridring multi pie paths- 'The mia thenmatical model whinch Is
the basis for this architecture is based oni a conjecture that tlie( probliemi oif fintding the best path through a region
which contains at vzariable coýst function is similar to thle plroblemr of findiking tile InaXiniiinmi current. flowk through ant

noinuniformr conducting mieilia, stich as a plate of Iit lioni ogemieiois resistive mnateriatl. T[li variable cost function0 is
analogous to thre nonuiniformn cond uctivity of thle plate miedia. Boundarv conditions for thc source potential and

sinik potential are analogous to the sta rt and goýll nodes, respectively. 11v n urerir'all v solv\ing tIrhe finite difference
aipproXIniatitiI toi thIe appropriate partial differential equiation which dlescribies tile scalar electric field potential
in tile media. tie cturrent flowk can lit fouind as at vector field.

Ex'perimetal u ii nve:stigatiirr 'if tit's lech (4frti1r has sh"tiait promising results. 'ThIe solutions generated by lie
Simnulate d archi tectirers have been chiecke d againrst known admissible algoritlini result-s.

BACKGROUND & PROBLEM DESCRIPTION

'The path plan ni ng problem consists oaf at linrge problem space. tYJpicaliv wi-bh several state variables. Diue to

its large search space, tihe path planning problemi places severe dlemands on comiputational resources. These
problemis oifterr requiiire real -timrie soaluiti on-, utnavai lablet fromnt cur rrcnt tee Itnolag v. Path plan n ing is achieved bN

scr nti oe n si r aistt tii i rbl Irr oa srri sac for thie pad tidn WItLile opti tral perrformiance

inrrastitri'.

A difficiltl praafilr'n Iin pail planniing applic'atiiins is computing an airc-raft t rajectorv!W Itt real-time onbnoarrd

a high perfiortantce aircraft. fior tact call aircraf't tire olrjrct i vt of trajectory genterattion is to tItcre'ase thle aircraft
survi vauilit v anld miissronr elfectiveci tss b) living law to thle terrain to avirir threat radar detection, referred to as

threat penet ratiaori iii. 'I het quart iitat i ve mreasuire iaf perfoirniaricc is isirafi e x pre'ssedl as a probabili~t of survival

P~ alonig tile airecraft traject iat
1

. ''li is pe rf'orrinaii met'lasurre attt~ll)'ni pi 1 C i acatlire a mitii tirical represerntationi of' ire
probabilitv of'stccessfuii ('urn pdetiitg tire ntiissiioi. Thits Is miet, by findin~g a t r;Ljcttr'tar thiraiugih tire thireat region f'ori
whinch tue pierformranrce niwasitrt' is miaximirized . Ratt her t hiant maxr imi zinzg I. Ir praabilt v 4 stirvi vals performance
riteasktre, tire, problemi is converted tio tihe mnirinitzatimai of a pertiartnl~tnItt rIttastirt' Which is it functiknon tift(n'

negative logarithm (r if thre probabili tv of stirrvi val'I9

1) Jif fla, g P.)(I

Tins, fuirctiui ri 'itiptris at darrngr mltrifIri barse ifuponr tht( sirrviva-bilttv iii ;a dense threat environimienit taking mink
account the( threat. loacatitans, -iriliali tv. aircraft i'xpistirt' dii' t, io ilttituft'. arid triskitig effects fromt tile terrainl.
'l'iris mtrit c is itsedf asý ie caost fiunctiion liar Hici seari'h byv assigning at daniger valmin I ear'lt stant'.

Tbis rese-arr'h .12i fins tntvest igaril comunt prer architecture's andri alga nIthrirs cltaacrerizi'd bv martssive paralle-lisnit
,whicht siolve' r'aitrib-inaarial setura'l prolaffi'ttr NI rich )If' the resi'archt regardting r'a'nibnl-trriai sr';trcii algaorithmns has
focuise'r on algoarith dever lo'r'ipmetr r arid artah~i, 6r tr scyiqiem al ora''sar.ar (list ri bitjted nitiultiprot'essors. [hlit'
("ia1ipritaUtiaari1al architrit'cirr' know tariasti', OW i a~liC Lrrt-vI; dhrivt's f~rainr Its slittillritv h :iiagrid. w~ith eaich pmiuti
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of the grid as a vr-csso)r. aitid thre links if tite grid consistilig of the liniks bet ween t lie processors. This arrav
characteristic of the architecit ire capitaliizes on ilie regular and 5m ciular strurct~ures wh ich imatch the Colipu tationll
requiire inenis of the algirint hm Cu( Irren t research Iut eresti Ii add resses developinrg newv cornpuitational architCcttiirve,
and algonrithirtv imitinvatcd byv the iriass, ~e paralielisii if the L~rairi. Neuiral rictNork architectures for coimbinatorial
search arbens ri n al examplep of sunch rrevý apfproachie.

MATHEMATICAL MODEL

'I'hie mathiematical niodel is brased ont electric field theorv8.' Fronti thle definiiitiorn for current. density and its di ver-
gerice in stead v state condi tionis the electric fie'ld potential oIf a norm ni foiin coniductive media can be derivedl 1]i
as

7204 7-c - V t)- (2)
C.

where (T is the nionuiniformn coridticti vi Lv of the media. For this research, the danger ( I )is used to model the
rcsisti viti or (iniversel y) the( onid ielvi~tiVI (T Of tite Conduictiing nitedia. Expanding tile gradient arnd divergence
oijerat(Irs iii t wo di nierisioris resulIts titr the follow inig second order partial differential equationl

I II

Since the electric field arid cuirrent (lensit v results fromr tire gradient (ifa scalar field. they are conservativye fields,
and the field li nes emnanate from sounrce charge,; and t erminirate on sinik chargesý1I3ý . These field lines represenit thle
soluiitioin to the search proiblemritas mnultiple pathis. Several properties iof the( paths are noteworthyv. First. ePvery
heading fromr the start node hats at defi ned p~ath due1 11)tnec ti tin l01111Iios vecto~r field emranating fronri tile source.
Second, every location which has non-zero coridutcti viiv hats a pathr deflined through it for the same reason. Third,
thle runnder supports , rI arid intl lilt, danger igrOwn.

NEURAL NETWORK IMPLEMENTATION

Thle nut nral nc ttwoirk is cHII)i p Ie tio perfiirni a parallel corn puntation of tire scalar potential field (b at every spat-Lai
point. TIhis requirieNs t he ne.twt irk to compute a nurmerrcal solution to () hs h rhtcueo ienua
netwiork miust sol ve tir .lt elptic partial differential equation.

There are manev inurnerieal rrnethods for solving partial differential eqinations I .6L In this research, finite
di fferenieesi 2 ,7 were emIployed ti i olve the potential field equnation (3). Such an approximation is tire live. point
forniuila

Vi i.'i 4 1 (hi !(1ý 20j 1;2
< 4

For the( necural nticwork imrplemencitation, the( neuron inpu~it funcrtioir ItIs definled ats

(I 0. (T ~ >

2r1 2(7 2(T 2) (

Thie synaptic "Veights inn llerirent the riiir-unifiirri v of the( cost functions (the coefficienits oIf (5) which contain
(T. and cr ) . 'I'Irerii'rilincnar nri.'ionrir utput. Iun utniti r,,. Is dcfitw ai.lis

V ref 111, < . Vref*

I'ref 11
i'j I I 'ref

A pr'Ttori oIf aI neural niet work III sil ye liii laplaciari partial differenrtial eqiiaioiiii fir r. 'ý (IT, : a Y - 0, urnifornm

Cost firnictiiiiit) is showýn using an it o'pratiiiricl amplifier tin pleiciiiitatiiiri in Figure 1. The entire search space is
i',iirstrrictvid 4v rep~licat inig this lrirtiiir il hi' neural nict~wiirk ii'ier thre cut ire grid] arrrx if the search space. ''lii'
iii put i if lii siirirc'( aridl sink ruicriris wthichi ciirrtesliiri ti tire start arid goal niodes are, clamnped toIV re-f arid

Irecf- risi-et)((- i vii ý Sli ire thle claripinig if the siiirce arid sink loi rjie iriaxirirnri arid mnnlrinirnn (resliectivulv)
1(Ierintial vhuliir( n :r .. oil th Imeuiinrharv ut tie lpriihivl'i, It Is atilrripric it,' liirse t hiese clamiped valueis as, tiii' limnits
,fr i( rirririm iii'liiij hirnitrir (6i), sincer all poutenrtial values insle ld e thV oiriuldaCt of thle problemi are giiratritecd(

ti lie blot vl O'iii I hse i rii s
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EXPERIMENTAL RESULTS & FUTURE DIRECTION

TIhe pl1(,t in Fi"gure 2 illuist~rat~es the resiilt~s of'experimentrrs. 'Illii c,,s. fucionei~r is displayved uiinirg 7mi-ouiiir lilies. Tie
dashed cu rv,- is the refeVren ce o ptiminalI patIh 1-h Ich -- is e~rt~i pitIed usIring liezst -Ii rstI searceh. 'The remnaining curves
courneCting thle Start ioiie Lo the goal niode are tiec field lines dlerivedf fromi thne gradient idescenit ol Ltle p)otential

field comnpu ted b,; the neural network. li)v i nspection Lthe field line-, call lie seen to have at reasonable location
about tile reference path. The reference path is entirely contain ed wItIithin a region which is hounded by' a pair
Of field lines. Several portionis of thle reference path are closel v approximatc enl b the field Iilines. Both of these
examples were cornputed using a five poiniit approximation, thus each neuron had in puts fromt its north, south,
cast. anid wvest neighbhors. The net~work for the plot onl thre left contains 36t00 licurons, while tilie one on thle right
contains 422", nt iironis. The reference path for tht left examptle hiadl a vatlue )f 5.3-43, while the mninimral field
line at. one( degree resoluti ion occiirred at at 96 dlegree heading wvith it valule of 7.678. l,'or the right example, tile
reference path vialule was 0.4495, and the Yt0 degree field title Va1 oe was -144w hiceh represents a 1.15/ error.

Future work on this model is to add additional network lavers toi coimpute the gradlien t of the scalar field.
Work witll begin oii a VLSI I nipleinen tatioi oif a prototvpe chiip. Th'e pat lis obtained by thiis miodel are reasonable,
but mrodel considerations based oti the calcutl us of variations should be studied to dfetermiinle if another partial
differential equation trav provide better results. Withi anl analog V LSI imiplemnentaotion, rapid settlinig t-imes occur
arid super real time pred iction iuisiing dv namec co.sts wo-uild be possible.
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NEURAL NETWORK MODELS AND THEIR. APPLICATION TO THE VUV AND
OPTICAT. -1:'-ECTROSCOPY OF MOLECULAR SYSTEMS

Kresimir Rupnik
Department of Chemistry, Louisiana State University

Baton Rouge, LA 70803

ABSTRACT
We are investigating possible applications of Neural Network models to the VUV

and optical spectroscopy of molecular "electronic and nuclear) systems, The principal
goal of the study is to examine the information content of series observed in the
spectroscopy of the excited electronic (Rydberg) transitions as well as of the spectral
structures (rotational-vibrational) in the optical ýRaman) spectroscopy as a function of
the spatio-+emporal characteristics of the excitation fields. A model for the
calculation of the continuous-time sustained momentum gain or momentum transfer to
molecules from external fields is being developed. The study of the nonlinear systems
in which the coupling of nuclear and electronic moments takes place in the presence
of the external fields is also important for better understanding of the mechanisms of
biological information processing and possible applications in the engineeritig of neural
and opticai computers and Very Large Systems of Neural Networks.

INTRODUCTION
The physical characterization of biological systems, as provided by atomic and

molecular properties, must describe the biological structure and the biological
fun•ctions rclativ. to the natural enviro/innment of the biological syste•in. Bioluoical
molecules are parlicularly sensitive to perturbations due to the interactions with
electric and magnetic fields. At-sorption and Raman spectroscopy of atomic and
molecular systems in the optical and Vacuum Ultraviolet (VUV) spectral regions,
provide important information about the molecular structures and possible biophysical
or photophysical processes (e.g. photosynthesis, photomovement, photosensitization).
In order to characterize these processes and structures in a proper manner it is
necessary to apply a "structur:•d" perturbation to the system and analyze the induced
changes which appear in the molecular spectrum. These measurements, in which time-
de pendent changes of the polarization o. the electric and magnetic fields occur, are
referred to as polarized light spectroscopy. A major advantage of polarized li'ght
spectroscorpv is the precision with which the perturbation can be applied.
8xperimental investisa ions of polarized light spectroscopy of smalf molecular systems
and of some larger biological nmtaerials are requisite to a proper interpretation of
parallel distributive processes involved in the momentum (and energy) transfer under
the *ifluence of external ficlds. In Circular Dichroism spectroscopy (CD), for
example, one measures the differenct in absorption between left and right circularly
polarized light caused by the different torques exerted on the molecular constituents
by the electromagnetic field. Consequently, the measurement is dependent on the
molecular structure as well as on the changes that occur during interactions with the
field, which is a continuous-time process sustained by a characteristic input pattern
(of traveling waves, for example) and the response of the molecular system. In
Magnetic Circular Dichroism (MCD) measurements the two forces, circulary polarized
light and the magnetic field, are coupled. Since there is a coupling of a number of
constituent parts in all time-dependent interactions, the measurements are expected to
show explicit nonlinear behavior. From that viewpoint, Rydberg progressions are
clearly one of the most important subjects for the study of nonlinear effects since
they span broad and relatively well-resolved patterns ii the frequency space. The
information content of these spectra is related both to the spatial and temporal
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characteristics of the processes. Recent spectroscopic investigati9 ns of the effectl of
the strong magnetic fields and circulary polarized light on atomic1 and molecularz
Rydberg transitions and of the effects of perturbers on molecular Rydberg transitions
at relatively high number density-' have given a new impetus to the study of the
nonlinear mechanisms of electronic excitations. We have begun investigations of theVUV absorption and MCD spectrum of the HI molecule 4. The measured spectra of
that molecule is of particular interest since it represents a study of excitation of a
simple AB type molecule that exhibits resolved rotational and vibrational electronic
(Rydberg) absorption structure. This is the first attempt of interpretation of the
MCD measurements of that molecule and a challenge that will test the proposed
theoretical models.

NEURAL NETWORK MODELS AND THEIR APPLICATION TO THE SPECTROSCOPY
The studies of the response of the molecular systems to the external fields, as

measured in optical and VUV spectroscopy, provide a new framework for application
of Neural Network models. A possible phase-space approach to the calculation of the
Rydberg constant has been discussed recently in the framework of g study of
nonlinear dynamics of atoms and molecules in highly excited states . One of the
principal goals of this study is to examine the information content of optical and VUV
atomic and molecular spectra as a function of the spatio-temporal characteristics
(structures) of the excitation fields. Here, the spectral features are calculated using
the algoxithms that evaluate the momentum (energy) transfer through continuous-time
momentum gain (trazsfer) mechanisms, as the result of the interactions between the
molecula!- and field moments. These processes can be described by a non-linear
function of a neutral network system6. A program "CORRECT" for the calculation of
the momentum gain (transfer) is written for the tabletop computer (in ObjectLogo for
MacPlus or Macd). The program contains a simple algorithm (primitive) for a simple
momentum gain and loss (XG(t)) and XL(t)) in time t, from/to an external field. It
can be represented by the equations that are generally written in the form:

XL(t+ 1) = (1-a/N) XL(t)
XG(t+ 1) = (1+a/N) XG(t)

where the parameter a = .451 ,8 and N is the number of steps.. In the case of
Rydberg transitions it is shownV that the parameter R, fiom the expression:

a =-(1-R/2) [3]
gives the valeR in agreement with the measured Rydberg constant 7 . The agreement
is explained in the framework of a continuous-time phase-space model, where the
Farameter R enters the formula:

XG(t + 1) = (1 + (R/N)/N) XG(t) [4]
which leads to the ccurjte rep resent, tion o, the Rydberg transitions8 :

d( )/(cm l'*-) = R/(1/MZ-1/N') [51
for different numbers N,M (1,2,3... ). The expressions (1), (2) and (5) indicate that a
consistent transcription of the various different ap roac es to the study of Rydberg
transitions (such as the Quantum Defect Theory (.• ), for example ), is possible in
the Neural Network models. It should be mentioned that the algorithm for the
Rydberg series (5) represenms the general pattern of the measured series. The
formula (5) relates to the so called n-quantum numbers. The development of the
relations for the other quantum numbers (1,m,...) will be given elsewhere.

In addition to the study of Rydberg series we have also investigated the
application of the Neural Network models to the rotational-vibrational spectial
structures. If the momentum gain (transfer) relations (1) (2) and f3) for the
combinations of the Stokes and Antistokes transition- are writtenD in the form:

XG(N 4- 1) = (I. -r (R/2)/N) XG(N) 661
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they lead to the relation that can give the rate between some of the successive1 0

frequencies X,Y of the Raman vibrational rtructures. Here, we treat the rotational
envelopes as the "perturbation" of the vibrational structures. Our calculation ýrves
the value k 0.4326 for the ratio between the measured frequencies *X/Y. The
correlatioi" -'tween the measured experimental values of the successive vibrational
frequencies in optical (Raman) spectroscopy for a number of small molecules gives the
value k(experimental ) = 0.435. This result is in excellent agreement with the
value calculated by the momentum transfer model. We have also measured some
vibrational spectra (for molecules like CH3I and CD3I) on our Raman system (Coherent
Inova Ar-ion (20W) laser, ISA-1000 spectrometer and IBM XT computer with data
acquisition system). The rate of the observed vibrational frequencies for these
molecules gives the parameter k (experimental)in the range between 0.42 and 0.46.
This work is in progress.

In conclusion, a brief description of the work done on the application of the
neural network models into the VUV and optical spectroscopy is given. We do believe
that the interpretation of the spectral structures in the optical and VUV regions
could be given in terms of the Neural Network models for the calculation of the
momentum gain (transfer) from the external fields, even for more complex molecular
systems.

References

1. J.C. Gay in "Atoms in Unusual Situations", p. 107, J.P. Briand, Ed., NATO ASI,
Plenum, New York (1986).

2. S. P. McGlynn, J.D. Scott, and W.S. Felps, J de Phys. (Paris) 43, C2, 305 (1982).

3. U. Asaf, W.S. Felps, K. Rupnik, S.P. McGlynn and G. Ascarelli, to be published in
J. Chem. Phys.

4. K. Rupnik, W.S. Felps and S. P. McGlynn, unpublished iesults.

5. K- Runnik, "Phase SSnace Approach to thc Calculation of Rydberg Constant",
Optical Society of America 1989", Washington D.C. 1989

6. For definition of the Neural Network Systems see: IEEE International Conference
On Neural Networks" Vol 1. IEEE, New York, 1987.

7. The value of the Rydberg constant calculated from the hydrogen series is Ry =
1.0968, see also P. Zhao, W. Lichten, H. P. Layer and J.C. Bergquist, in "Laser
Sp ectroscopy VIII", p. 12 W. Persson and S. Svanberg Ed., Springer-Verlag, New
York, 1987.

8. The experimentally observed regularity of the hydrogen series was first
mathematically formulated by Balmer. The equation for frequency is given in the
form of eq ( 5 ).

9. U. Fano, Phys. Rev. 124, 1866 (1961).

10. As an example, in the case of CH3I and CD 3I we have compared the rates

II- 681



between the frequencies of the vibrational modes 1 2 and 3. A precise
description of the assignment of the vibrational frequencies for all molecules
taken into account will be given elsewhere.

11. A. Weber, "Raman Spectroscopy of Gases and Liquids" Springer Verlag, New

II - 682



Principles of Sequential Feature Maps in Multi-level Problems
Jagath K. Samarabandu and Oleg G. Jakubowicz

Dept. of Electrical and Computer Engineering
State University of New York at Buffalo, Amherst, NY 14260

bandu@cs.buffalo.edu, jakubowi@cs.buffalo.edu
Abstract

A neural network architecture based on self-organizing feature maps which is suitable for interpreting
sequential information is presented together with how it can be applied as a building block for multi-
level systems. The network is applied to the case role assignment problem in sentence understanding and
the results shows good generalizing and asociation capabilities coupled with the ability to regenerate
missing or empty features in unfamiliar input words.

1 Introduction

Interpreting sequential information is a part of most cognitive tasks such as speech recognition, natural language
processing etc. In this paper, we will present a general purpose neural network architecture for processing sequential
information using self-organizing feature maps [1] that can be applied to multi-layer systems. We will also show
the application of these neural networks to the problem of speech perception.

At the lowest level, speech perception consists of phoneme classification from the acoustic signal, The next
higher level can be the recognition of words from phonemes, Subsequent levels can be formed as assigning case
roles to the input words (local context), story understanding (modeling global context) etc.

In the past, researchers have applied various neural network models to each of these levels and it is our
intention to present some general principles that can be applied to this particular problem.

At the phoneme classification level, McClelland & Elman [2] uses the interactive activation model in their
Trace I model and Kohonen [3] uses self-organizing feature maps in his phonetic typewriter to recognize phonemes.

At the word level, McClelland and Kawamoto [4] uses a distributed representation (semantic microfeature
encoding) where each word is classified according to a set of features (dimensions). Each feature (dimension) is
assigned a node and the representation is in the form of a pattern of activation over the set of nodes.

Another method proposed by Miikkulainen and Dyer [5] exploits the formation of internal representation in
the hidden layers of a back propagation network by extending the error signal to the input layer and developing
re-pre.senwtions of input data at the input layer.

The notion of microfeatures are applied at a higher level if-, word sense disambiguation by Bookman [6] in
which each sentence modifies a set of microfeatures representing global context and these microfeatures in turn
affects the interpretation of subsequent sentences.

2 System Description

2.1 Basic Architecture

The basic neural network architecture can be considered as having three layers (figure 1). i.e. an input layer,
a topographically ordered intermediate layer and an output layer.

2.1.1 Propagation

Propagation equations are as follows,

a, (t) = • c(t) .niu -4j +.O0 (t - 1) (1)
j=o

Oi (t) = f (ai (1)) (2)

II - 683



ml, m2 - weights
Ou4ut Layei - Feature map output

X- input

mam2

Fcidback

Figure 1 Basic Ncural Network Architecture

WhereM

Oi-- feature map output
f (z.) -- sjrm.oida_! output function
eE- hysterisis

Propagation from the feature map layer to the output is similar to the above equation except that 0 is zero. Input
is propagate.- io the feztxure map layer for every input where as the feature map layer is propagated to the output only
at the end ot an input sequence. We have successfully implemented this model in robust word identification problems

2.1.2 Learaizig
Leazning fv•" t1e reature map occures in two steps. During initial learning, feedback from the feature map is

disabled tc. allowt c~oe:ext, free learning. Subsequcnt enabling of feedback allows learning input with the context.
Standard Kohnei) feature map learning rules are used to lcarn ml and m2 except that the output layer utilizes
supervised leoargihg a,,d .ence does not need to find the node with the minimum distance.

The, med i diaffrnce between the above nesuwork and Kohonen self-organizing feature maps is that the feature

reap retains cu'p:' during a sequence of input vectors and that there is time delayed feedback from the feature

map output to the ir.put This provides the ability to extract contextual nformation as well as learning time varying
sequences..

2.2 Applicationi

The abot". model can be applied to the task of speech understanding as shown in figure 2
Each level of the system can be implemented using the proposed neural network architecture. In particular,

we have applih.. tihz aet'ork for case role assignment in which each word is represented by 47 microfeatures and
outputs the woicrcobaturcs for each of the five case roles.

First, the fc-nl-re map layer was trained with the given vocabulary. Once the topological ordering of the
input vocabulary is learned, the output layer was trained with the input sentences. This was accomplished by first
calculating the feature tnap output using equations (1) and (2) for the entire sequence (assuming Oi (0) = 0 ) and
then training the five micro feature vectoi ; for agent, action, patient, instrument and modifier with the corresponding
input micro feature vectors as teaching patterns. (figure 3 (b))

A secondary supervised learning mechanism is also incorporated such that it learns both the microfeature
representation of words in the lexicon and the weights between the output layer and the feature map of the neural
network if the output microfeatures substantially differ from thl se of corresponding input word (as in the case of
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Micro features of phonemes

Phoncmne Classificat~io~n

Figure 2 System Block Diagram

unknown words). The new microfeatures are learned at a rate that is proportional to the number of times that word
has been encountered. -.hus, the course features are learned quickly for a new word and fine distinctions occur
slowly when the: word occuts in different contexts.

2.2.1 Per.zrmnance
",be system was initially trained withi a vocabulary of 28 words (feature map size was 10 x 10) and the output

layer was trained with 120 scatences. The vocabulary, sentences and the case roles were adapted from [4] in order
to make the comparison ea.b'r. Sentences from the training set gave 100% recall (despite the fant that there were
three overlapping words on ý;e feature map). When tested with unfamiliar sentences (known words) 81% were
identified correctly.

For unknown words (blank micro feature templates) the system selected the most frequent training sentence
form, i.e. the training set contained 5 sentences of the form boy ate <food> out of 8 boy ate <foodinstrument,
modifier>. Thus the sentencs boy ate <newword> interpreted the <newword> as food.

Capacity of the feature map was tested using three different feature map sizes and the results show the
degradation of the learning ability with increasing vocabulary size and decreasing feature map size(figure 3 (a)).

3 Future work

The main thrust for futher work is in applying the network to other levels of speech perception. At the phoneme
level, the network will accept acoustic signal as the input and outputs either a distributed or local representation of
phonemes and at the word level, outputs the microfeatures of the words. At a more higher level, information about
case role assignment can be used to produce a global context in understanding a ý,ript.

4 Conclusion

We have proposed a neural network architecture based on seff-organizing feature maps which can be used as a
building block for complex cognitive tasks involving mutiple levels. With the modified Kohonen feature map, the
sytem is capable of handling sequential information and shows good performance in handling variable time length
sequences. Addition of an output layer makes it easy to triasform the feature map output to the desired form,
making it easy to use in a network with several levels. Application of the system in case role assignment shows
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Figure 3
(a) Number of distinct words learned as a function ot the size of the feature map
(b) Casi Role Assignment system

its ability of forming good associations and generalizations. Further, the system is able to learn the coarse features
of unknown inputs quickly and to learn the fine features slowly over time. This ability was adopted to enable the
system to learn while testing, thus gathering "experience" from each test session.
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ABSTRACT

The computation performed by an analog computer to solve partial
differential equations numerically is studied from the iiewpoint of a Hopfield
neural network that optimizes a quadratic performance index. Energy equations
for a Hopfield network that will solve Laplace's and Poisson's eCuations are
defined by using the constraints that must be met for a numerical solution of
both partial differential equations. The connection weights and the external
bias terms are generated by comparing the standard Hopfield net energy
equation and the proposed energy equations for solving Laplace's and Poisson's
equations. It is also shown that the minima of the proposed energy e.quations
correspond to solutions of Laplace's and Poisson's equations.

INTRODUCTION

The goal of this paper is to show that spatial solutions ot certain
classes of partial differential equations (pde's) can be computed by Hopfield
networks with linear activation functions. An analog computer configured to
solve pde's may be viewed as a special case of a Hopfield network with linear
activation functions.

Analog computers with identical computing elements have long been used
to solve certain classes of pde's (6]. For example, to solve Laplace's
equation spatially, each computation element might consist of an adder and an
integrator configured as shown in Figure 1. The governing dynamics of the
computation elements are given by the following equations:

dui/dt= -ui + (1/W)I.GijVj, and

jEN
Vi = f(ui) = ui, for i = 1, 2,..., N; (1)

where Oij is the topological neighborhood (TN) function defined by

Gij = 1, if Vi and Vj are topological neighbors,

Oij = 0, otherwise, and
W and N are the number of topological neighbors and the set of computation
elements respectively. A network topology to solve Laplace's equation
spatially in two dimensions is a two-dimensional grid where each grid point is
assigned a computation element [7]. In order to incorporate the boundary
conditions in the problem solution, the activations of computation elements
along the boundaries are clamped to appropriate boundary values. Initially,
all activations are set to zero except the ones representing the boundary
values. At t ) 0 all computation units start to integrate the error which is

I J- 687



the difference between its current output and input. The computation is
complete when all activations are equal to the average of the topological
neighbor activations.

U- uj

U1

Figure 1. A Computation Element

A HOPFIELD NET AS A PDE SOLVER

System Definition

Let VIE[0,1], ViEN, where N is the set of activation functions.
Hopfield [1-41 shows that

Ex = -(1/2) V V Ti:ViV + (1/2)R-]V(V2)2 + V (2)

iEN jEN icN ieN

is a Liapunov function for the system of equations defined by

dui/dt = -ui/T + X TijVj + Ii, and

j eN
Vi - f(ui) = Ui, Vin. (3)

La~lace's Equation

The numerical solution of Laplace's equation in a two-dimensional
coordinate system satisfies the following equation for each spatial coordinate
[5]:

Vi = C1/%F)I aijvj, ViEN, (4)

JEN

where aij is the TN function, V is the number of topological neighbors for

coordinate element "i" and N is the set of coordinate elements.

Consider the following quantity as an energy equation for a network that
will solve Laplace's equation spatially in two dimensions (IF = 4 for two
dimensions).

EL 'T [V-(/)jOj~] (5)
icN jfN
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For a given vector, V, that is a solution to Laplace's equation, the
energy function is equal to zero. This result can easily be observed if
Eq. 4 is inserted into Eq. 5. For a vector, V, that is not a solution, the
energy function is greater than zero due to the fact that at least one term in
the summation is nonzero and quadratic. Thus the energy function minimum
corresponds to the solution of Laplace's equation.

Comparing Eq. 2 with Eq. 5, we can determine that Tij= (4 /1 )Oij and
Ii = 0 subject to the constraints that R = 0.25 and

Vi = (1/v)2 OijVj, ViaN. (6)

jEN

Note that last constraint simply imposes the condition that the net input sum
to i-th node needs to be weighed by 1/V. We can therefore transform Eq. 5
into the form of Eq. 2 using the above conditions and conclude that Eq. 5
represents a Liapunov function for the network.

Poisson's Equation

The numerical solution of Poisson's equation satisfies the following
equation for each spatial coordinate in two-dimensional space [5],

2[(Ax/Ay)2+11V. - •`Itijaijvj _,x 2,xy., i,(
jeN

where xi, yi are spatial coordinates of Vi,
Ax, Ay are spatial difference between nodes along x and y axes,

aij is the TN function as defined earlier,

eij = (K/Afy) 2 , if Vj is a topological neighbor of Vi along y-Pxis,
bij = 1, if otherwise,

f(Yi,yi) is the value of source term at coordinates (xi,yi), and
N is the set of spatial coarAnane-a 4n a t ao-dimensional system.

Let a = 2[(Ax/,y)2+1], ( = (Ax)2 and uij = *ijuij then consider the
following as an energy function for a network that will solve PGisson's
equation:

E = I-[aVi + Pf(xi,Yi) --- ijVj]2. (8)

iEN j eN

Consider the case when V is the solution to Poisson's equation, then the
energy function is equal to zero since every term in the summation is zero.
This can be verified by substituting Eq. 7 in Eq. 8. If V is not the solution
vector, then the energy for this case is greater than zero since the summation
term is always positive due to some of the quadratic terms violating Eq. 7.
Therefore the energy function has its minimum which is equal to zero for a
solution vector.
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In order to put Eq. 8 in the form of the standard energy equation, let

Ep = Eta2 . Defining Tij = (4 /a)/4ij and Ii = 2 (P/a)f(xi, yi) subject to the
constraints R = 0.25 and

Vi -(Ia) [Pf (xi, -I Pij], Vi (,9)
j EN

demonstrates that Ep(and hence E) is a Liapunov function for the network.
Again, Eq. 9 clearly states that the activation function of the computation
node must be linear.

CONCLUSIONS

We have shown that the analog computation performed by an analog
computer to numerically solve pde's is stable and convergent to unique
solutions of pde's by interpreting the computation of the analog computer from
the viewpoint of a constraint satisfaction neural neL. We first noted the
similarity of analog computer solutions to that of a Hopf ield net and then
applied the same mathematical tools used for Hopf ield net analysis towards
establishing computational stability and convergence properties of pde-solver
analog computers.

It is worth mentioning some of the problems associated with the
representation scheme. The representation of the solution to a pde does not
have any inherent redundancy to compensate for the failures of computational
elements and hence is not fault tolerant in that sense. Another aspect is
that the solution of the pde is a numerical approximation; hence some error is
introduced. Also, the representation is very sensitive to noise inherent to
the computational elements. Additionally, the activation function of a
computational element must be linear, which may be difficult to realize with
physical elements .

REFERENCES

[1] Hopfield, J. J., "Neural networks and physical systems with emergent
collective computational abilities.", Proc. Natl. Acad. Sci., USA, Vol.
79, ppo 2554-2558, April 1982.

[2] Hopfield, J. J., "Neurons with graded response have collective
computational properties like those of two-state neurons.", Proc. Natl.
Acad. Sci., USA, Vol. 81, pp. 3088-3092, May 1984.

[3] Hopfield, J. J. and Tank, D. W., "Neural Computation of Decisions in
Optimization Problems.", Biological Cybernetics, Vol. 52, pp. 141-152,
1985.

[4] Hopfield, J. J. and Tank, D. W., "Computing with Neural Circuits:
A Model.", Science, Vol. 233, pp. 625-633, August 1986.

[5] Burden, R. L. and Faires, J. D., Numerical Analysis, Boston: PWS
Publishers, 1985.

[6] Johnson, C. L., AnalqgjComputer Techniques, New York: McGraw-Hill Inc,
1956.

[7) Tou, J. T., Advances in Information Systems Sciences, New York: Plenum
press, 1969.

1I - 690



NEURAL NETWORK ENHANCEMENT
TO

TRADITIONAL COMPUTER ENVIRONMENT

Yuri Shestov

Department of Computer Science
MET College, Boston University

Boston, MA 02115

TU Inc.
8460 Tyco rd.

Vienna, VA 22180

Abstract - Neural type connections are introduced in hypermedia like memory
organization, utilizing parts of traditional file system structure without corrupting the
latter. Logical chunk, of memory (e.g. files, their parts or combinations thereof) are
uniquely represented by small and convenient-for-manipulation forms or MEmory
Descriptors. These descriptors are interconnected (with weighted links) into a large,
adaptive MEmory MAnifold. This neural hypermedia or Neural Interactive Paradigm is
an adaptive environment with computer situation sensitive functionality where
sensitivity is tuned via an attention span filter mechanism. This schema allows smooth
and effective control of a computational process with more streamlined user-system
interaction. It implies a very effective caching procedure.
Memory organization- Typical file structure organizes files into hierarchical
directories with little consideration of logical, situation or procedure dependent
closeness of tiles or adaptability to different users or repetitive computational patterns.
Symbolic means of referencing the files are the corresponding file names. Here we
introduce dynamically adaptable, computer system situation dependent memory
organization. System situation describes the system in terms oil the activity of its
memory.

Memory formation, typically a file, is pointed to from a small template like object
called a MEmory Descriptor or MED. This descriptor provides information on the
pointed memory. As a symbolic means of referencing corresponding memory it affords
a much richer functionality compare to a mere index information of the traditional file
system. MED is a template or a collection of fields from an expandable set of standard
information fields of certain types (e.g. memory pointer, date of modification, author,
l-igthts, furiionallity, help pointer etu). it is an object with multiple inheritance from the

classes of constituting fields [MTW]. To point to the memory at a finer grade then a
file, the file's MED contains additional pertinent fields with corresponding information
utilized by appropriate methods.

MEDs are further dynamically interconnected into a more logical or computational
process dependent memory structure. Information about links is stored in MED fields.
All together, information on the described memory may be efficiently manipulated and
utilized by the system or user working with large sets of MEDs and invoking actual
memory only when it is indeed required. So far it is just a different type of hypermedia
memory organization [BV, CEJ]. However, MEDs memory structure consistently
incorporates a native file system plus the descriptor information organized more like
Minsky's frame [MM].

This memory organization does not need to violate or change the way of a
conventional file system. Rather, it offers a more convenient alternative practice
without interference with the fonner way of operation. This compatibility opens a door
to a great number of new applications to be introduced consistently into traditional and
dominating computer system environments. Some application areas to consider are
knowledge representation (especially the correlation or unification of an accumulated
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-,et of perhaps diverse information), expert systems enhancements.
Now we marry one great idea to another.

Neural structure of memory - In addition, MED incorporates fields describing the
neural nature of the environment: threshold, excitation, list of normalized weighted
connections to other MEDs etc. They are instrumental in shaping a geometry of
memory. Geometry here is a dynamic structure depending on changes in actual
connections, their weights, and excitations [MWS+, RF]. Topology of the memory is
derived from the architecture of actual connections. Long term memory metric is
defined by weighting of those connections, MEDs with heavier links are stronger
related and thus closer in our memory organization, The short term memory metric is
defined via actual levels of excitation of our nodes. At a given time the latter metric
depends on the absolute value of the excitations of memory nodes, depicted in the
corresponding MED fields. It is presented to the user or system via an attention span
filter, showing locally all sufficiently excited memory.

Total collection of all interconnected MEDs is called MEmory MAnifold (MEMA).
It may be represented as an arbitrary directed graph with weighted links. MEMA may
serve as a more generic memory model to embrace different excitation flows and their
interactions, complementing (e.g. allowing smooth incorporation in traditional
computing environments) a multitude of particular experiments in neural architectures
of formal neurons (e.g. ART, backprop, Kohonen, Hopfield etc).

MED, as a node, in MEMA is different from a traditional formal neuron. It is not
only a part of an architecture, where an individual neuron may not mean much on its
own. The MED node carries not only external information through its weighted
connections and firing regulations but it also has an internal structure providing
information on the functionality and status of memory it represents. Therefore, active
and rich functionality, which may be attached to the node, makes a much greater
ftiractional romplexity then that of a formal neuron. The neural node in the proposed
Neural Interactive Paradigm or NIP model is not like an individual neuron but perhaps
some neuron assembly responsible for a particular functionality which is in turn in
neural ensemble with other functiom u1 groups. This schema is not an atomistic one in
that smaller constituting blocks nee.d not to be considered of elementary functionality
but of open, dynamically evolving one [GS].

One may point rather quickly to discrepancies with organic models, which may be
mellowed in refinements of the schema, but we are making no such claims to the
correspondence and rather making a technical proposition.
Excitation propagation - Neural excitation in a network of MEDs propagates from
active nodes through local connections to the neighbors. In addition to the local
excitation propagation via weighted connections there is also a global, related to "long"
haul message communication mechanism, where one node sends a message to a group
of other nodes (e.g. one to one, broadcast), causing appropriate actions and events e.g.
excitation of some MEDs with corresponding propagation of the excitation and
perhaps modification of weights (e.g. arriving of mail to user's mailbox).

Attention span plays a significant role in the modification of excitation propagation
by selecting resolution levels of a global picture and thus the direction of an excitation
propagation.
Attention span - The number of excited or neighboring nodes mty be considerable
(e.g. a word processor, called by user to action, may excite a large number of files that
could be edited with this word processor or a problem of overloading with large fanout
hypermedia). Thus, to focus the attention of a system or user on a related subset it is
natural to introduce a filter (e.g. a prioritized subset of recently or frequently accessed
word processing files by this user or more typical nodes for hype, ,nedia transition). An
adjustable attention span is a view comfortable to a user (e.g. a screen or window ftll
of appropriate and affordable informnation). The only nodes with a cer~ain level of
excitation, default or satisfying some other pertinent property get into immediate view
and access an area of attention span. Attention span masks sufficiently excited nodes
and may compute propagation from this set.
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Thus attention span is a mechaxrism to map a global picture into a local one. This
mechanism allows experiments where global conditions affect local modification to
excitation propagation. It could be a convenient instrument in determining a mode
change or a global shift of behavior.
Navigation and flow of attention in memory manifold - Navigation or transition
through MEMA of attention span or locale of activity can be done by a user or system
in control or via an auto transition both using presented information on a system
situation. The last may be done in several ways. For example, one may transit on the
heaviest link from the current situation to the next one (we may refer to it as a local or
hyper transit). Another way, is to transit to the most excited node in the attention span,
perhaps with a construction of a corresponding path plan. In that case, there is a
convenient opportunity to identify special cases where a new link may be created. Any
auto transition should provide some default time window to override it.

In effect, the system offers and may enact reasonable action based on the
combination of experience stored in LTM, current information on the situation from
STM and canventional information provided by MED fields. This mechanism enablts
a potentially very intricate response of the system to accumulated information relating
to the specific situation. Therefore it provides architecture for sophisticated interaction
or "control" in complex mult;mode environments, where global information can be
taken into consideration.
Learning - Learning in the system occurs thro-igh interaction with it. Modification of
weights perhaps to be done when a desired or actually made transition differs from the
one suggested by the system. That situation may be easily detected and the learning
subsystem is alerted. That is when a user or system forces transition to a particular
situation and then, if it is satisfactory (e.g. when some process or underlying memory
engaged), issues a command to learn. At that time the weights for the appropriately
computed short path will be modified and weights of pertinent links renormalized or
even connection architecture may be changed.
implementation - Software, reflecting this type of architecture, is implemented as
Hyper Information Manager (HIM) in the Neural Interactive Paradigm.l It provides
adaptive, situation sensitive (e.g. user sensitive) interaction with the computer system.
Standard primitive types of files that the application allows to connect are executables,
text and graphics.

We adopted a Markov chain as an restricted but easy to implement model for
excitation propagation. Excitations and weights are real numbers from the [0,1]. A
particular computer system situation may be represented as a distribution pattern of
activity of the system memory or excitation of MEDs in MEMA. Thus it is a vector
(wi) from [0,1] ], where wi is a probability of MED node i to be active and n is a total
numbe-r Of niodes in the system. Weighted connections are represented by the transition
matrix (w-,) of r,*n size, where wi. is interpreted as a 11robability of transition of
activity frnm node i to j. One ste4 of propagation in our model is equivalent to
multiplication of a state vector (wi) by the transition matrix (wij). Dynamic behavior of
that system is well known [FWJ. We fuzzy the system up by' computing propagation
from filtered and normalized attention span mask.

The systein starts up in a special junction node ROOT (as parameter, we may
specify user bias node) being active. From here system starts to propagate to the
neighbors and fills in the attention span window (input or perception), presenting more
likely choices to transit. Evaluation of the most excited node in the attention span
determines the next most likely activation site or/and transition path (processing or
cognition). The auto navigation system then moves to this new active node and/or does
other appropriate actions (output or action). A user may always preempt and correct the
transition of the system, leading ;t to any desired computer situation (fact of correction
is again considered as an input or perception).

The lack of success in auto navigation is marked by the user's change in the learned
flow with consequent engagement of the memory for base furictionalit-,. At that point

1 This implementation is done under a contract with TU Inc.
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recomputatior. of weights message is issued, shortest path computed and corresponding
weights are modified and rcriornaiized (learning or adaptation). The cycle of
perception, cognition and action is repeated.
Comments in conclusion - The neural dynamics already implemented in HIM are
rather trivial but sufficient to illustrate the potency of the idea with a simple but
effectively useful application, and thus invite further exploration. We are currently
working on Unix version of HIM, and some variations on neural dynamics in MEMA.
Mathematical foundation for this kind of memory organization is being developed
[SY]. The, whole schema is wide open for different implementations and
experimentations.

Proposed memory organization enables the following theoretical and practical
implications:

streamlining interaction with complex systems, utilizing the experience of experts:
through learning or compressing information of tihe "typical" computational flow
and memory organization of the experts and suggesting those choices to a less
experienced user
emergence of naturally intelligent behavior of NIP system: reasonable anticipation
and response through a "look ahead" for some most likely computational behavior
recorded in the learned weights from previous experience
efficient cache memory procedure. by bringing in the memory logical pieces which
are more likely to be used next, via monitoring excitation values and perhaps their
rate of change through appropriate filters
natural paradigm for parallel and distributed computation: by automatic
invocation of processe,; based on the appropriate level of excitations in the
environment of these processes, and information on the most likely future for
distributed computational flow.
productive way to neurocomputer architecture: by a mutually advantageous
relation with a rich and fertile world of classic computing on von Neumann
machines thiough the incorporation of the existing computing structures instead of
building Lhem from scratch.
This paradigm offers an effective and natural mechanism to interact with (e.g.

manage) great volumes of information by compressing it, or making it handy (localized
and filtered) on situation dependent demand, through "on the job" training. That fact is
very timely and important in lieu of the advent of very powerful machines and the
rising information management bottler.-e-k: gigabytes of interrelated information on
line we would like to handle. Here we offer an example of some appropriate tools for
the task.
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Abstract

Several automatic music arrangement systems have been developed with the pervasiveness of
MIDI' controlled music instruments. Harmonization modules usually used in such systems are
based on rules. Both AI and music knowledge are necessary for describing harmonization rules.
Moreover, each music genre requires different rule sets. This paper describes an alternative idea us-
ing associative memory, a neural network based melody harmonizing method whose network can be
trained by examples. It also presents the results of a subjective evaluation for the accompaniments
obtained by the personal computer based music arrangement system equipped with the module
based on this method. As the result of the evaluation, the module based on this method without
making any rules generates as natural chord progressions as a transition table driven harmonization
module does.

1. Introduction
In accordance with the development of digital controlled musical instruments, especially music

synthesizers, several automatic music arrangement systems has been developed. Such an automatic
arrangement systems are constructed on an assumption of existence of tonality, and includes chordal
harmonization module [1] [3].

In some popular music, like modern jazz, harmonizations are symbolized by chord progressions,
usually indicated by chord symbols such as Am7-5, Cmaj7,C±, etc. However, there is no es-
tablished harmonization theory which provides one-and-only chord progression for given melody,
and this lack causes rule based machine harrmonization approach difficult to generate natural chord
progressions. For example, if a user or a knowledge engeneer is to improve those ruleb, s/he may
avoid inconsistencies which are productions of ambiguous rules by eliminating some rules and may
suffer unnatural progressions caused by those eliminations. Some systems avoid this problem by
showing possible progressions and leaving selection to user, others use transition rules [i][3] which
are sometimes mapped into the tables.

In this paper, a rule description free associative memory based harmonization method is de-
scribed. The results of the subjective evaluation for the musical performance outputs obtained by
the music arrangement system [1] equipped with this method based harmonization module is also
reported.

2. An Overview of Automatic Music Arrangement System
Fujii et al.[1] developed a music arrangement system based on hummed melodies. The system

uses a 16-bits personal computer (NEC PC-9801 series), a digital signal processor, an A/D con-
verter, a microphone and music synthesizers . This system consists of four modules; a transcription
module, a chord generation module, a melody analysis module and an arrangelmeat module(see

'Musical Instrument Digital Interface
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Figure 1: Four Modules of the Music Arrangement Syctem

Fig.1). Hummed melody is transcribed into musical notation in the transcription module. Then
results of the transcription are passed to two modules which provide chord progression and struc-

ture of the melody line. The melody analysis module divides the entire melody into relatively small
melody blocks, and determines relations among blocks as the structure of the entire melody. The

arrangement module generates an accompaniment, an introduction, an intermission and an ending

using transcribed melody and generated chord progression.
The chord generation module which provides chord progression selects candidate chords every

half measure by examining the melody line. Then fittest chord among the candidates is selected for

each half measure according to a chord transition table. This method is referred as the transition

table method in later chapters.

In this table-driven system, wbat most affects chord progression is the chord transition table in

the chord generation module. However. chord progressions generated by using such table are some-

times unnatural, because the transition table are made by considering not about the really existing

melodies and chord progressions but only about the possibilities of adjacent chord transitions.

The maintenance of such transition table is difficult because of ambiguity of harmonization. So

the easy maintenance for the transition table emerged as a first motivation. Music harmonization is

a kind of pattern association. If that association is to be self-organized by only showing examples,

maintenance of rule set is replaced with selecting typical examples of melody a '4 chord progression.

3. Chord Association from Melody

In most cases of tonal popular music, especially in chordal compositions, basic harmonization
is done in the following sequence [4]:

* Step 1 To search where the cadences are.

* Step 2 To search most important note in each bar.

* Step 3 To see if such notes forming or suggesting a-particular chord.
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Figure 3: An Example of Output Representation

Step 2 and step 3 suggest the posGibility of an associative iauiiury approach for musical har-
monization - associating chord progressions from melody/phrases.

And step 1 is an interesting but difficult problem. In our experiments, we restrict music genre
to Japanese traditional popular songs, Enka, whose melody may easily be divided into 4 bars long
phrases like Gershwin's standard songs, so that we can easily extract typical chord progressions
from Enka songs and avoid cadence searching problem. The next chapter describes a neural net-
work based harmonizing method.

4. Nietwork Architecture and Representations
A three layers feed forward network is used for associative memory model. This network was

disciplined to recall chord progressions from input melody using error back propagation learning
method [2].

Input melodies, transcribed to MIDI code in the transcription module discussed in chapter 2,
must be translated into the representation seemed fit for such networks. According to the solution
for step 1 and network architecture, such a representation must have indices for note positions and
pitch indices, say timing-index and pitch-index respectively (see Fig.2). In this simulation, timing
resolution was set to an eighth note, and pitch resolution to twelve tone, so that network requires
384 ( = 8notes x 4bar.5 x 12tones ) units for input layer.

Chord progression representation was decided to use chord tone. Figure 3 shows an example
of chord progression representation. In this example, one chord is represented by 24 units, 12 for
chord tone and 12 for root. As for pitches cor-" i in both input and output representations,
octave-equivalent pitches category is represented by one unit. We gave two chords per a bar in the

implementation, so the output layer requires 192( = 2chords x 4bars x 12tone.s x 2 ) units . Note
that representations like one unit per one chord symbol for every harmonic rhythm lead impractical
number of output unit if we consider combinations of root notes and triads and tension notes used
in chord symbols. Representations like bursting chord symbol into root, triad type and tension
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notes literally do not seem appropriate because network using such representations will be tend to
give conflicting triads against desirable output.

In this implementation, we put 150 units in the hidden layer. We have not examined other
number of units in the hidden layer, and it may be reduced to less number.

5, Simulation and Subjective Evaluation for System Output
Melodies and chord progressions for training data are chosen from Japanese traditional Enka

songs of minor key. Each song is transposed to one key, to say, A-minor. 198 patterns are derived

from 33 songs, and the network is trained with those data for 1000 epochs, e in Rumelhurt [2] set
to 0.01. The total sum of squared error became 63.98 .

The :,fficiency of this method was compared with the table-driven chord generating module by
subjective evaluation. The results showed that chord progressions generated by this method are no
worse than the ones produced by the original chord generation module at least. Twelve accompa-
niments for chosen six Enka song melodies, not included in the training data set, were evaluated.

Those Melodies were hummed into the system and every transcribed data was harmonized by two
modules, then twelve accompaniments were obtained. 19 subjects evaluated these accompaniments
in terms of naturalness by five categories - 1 for unnatural to 5 for natural. The scale values for
this method and the transition table method were 3.13 and 2.91, respectively, but it followed from
F test that the difference between the two values was not significant.

6. Conclusions
In this paper a nearal network based machine harmonization method which requires no rules

as for chord progressions is described. In the implementation on the personal computer based
music arrangement syatem, the network was trained with Japanese Enka songs to associate chord
progressions from melodies. Through the training, only the training pairs of the existing melodies
come in through the transcription raodule and chord progressions burst into chord tones were pre-
sented to the network. Nevertheless, this method showed the equal performance with transition
table method, that tiLe results of the subjective evaluation for accompaniments obtained by the
arrangement system equipped with this neural network based module yields.
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Abstract--In this paper, we have investigated the faults that may occur in hardware implementations of
neural networks. The effect of these faults on network performance is simulated and analyzed by modeling
the faults and the neural network in software. We shall consider four different types of faults in our
analysis--i. Noisy inputs, 2. Connection weight modifications, 3. Stuck-at-faults, and 4. Delay faults. A
Hopfield auto-associative memory is usea as the example network in our experiments.

1. Introduction
A fault-tolerant system is one that can continue to correctly perform its specified tasks in the pres-

ence of faults. The failure of a hardware component in a fault-tolerant system does not inhibit that system's
ability to correctly execute its functions. Faidt Tolerance is the attribute that enablces a system to achieve
fault4olerant operation [1].

Systems achieve fault tolerance through the use of redundancy. Since a neural network (NN)
employs a large number of functionally simple and similar elements, more than necessa-y to realize the
function the NN is supposed to realize, it is inherently fault tolerant. Belfore et al. [2] and Kidwell [3] have
also looked into the fault tolerant behavior of NNs. The objective of this paper is to model faults that occur
in hardware implementations of NNs in software and analyze the behavior of the networks in the presence
of faults. A Hopfield auto-associative memory is used as the example network in our experiments.

The faults that occur in NNs include,
1. Noisy inputs
2. Connection weight modifications
3. Stuck-at-faults
4. Delay faults.

NNs are expected to operate in noisy environments, where the received inputs do not exactly
match the inputs on which they have been trained. A large class of NNs is used to solve pattern matching
problems where almost always partial information is provided as the inpuL This partial information can be
viewed as noisy input. In the binary domain (inputs are binary vectors), a noisy input would be a vector
with some bits complemented.

Modification of connection weights can occur in hardware implementations of NNs. Carver Mead,
in his VLSI implementation of a Hopfield net, used an operational amplifier (Op Amp) as a neuron [4].
Each Op Amp provides positive and negative outputs to realize positive and negative connection weights.
A bridging fault between the Op Amp's outputs could reverse the polarity of the weights used. In Howard
et al. 's implementation, each weight is stored as a binary word [5]. Complementing bits in a word results
in weight modification.

The classical stuck-at-fault model from switching theory is used to model faults within a neuron
(with binary outputs) as stuck-at-0 and stuck-at-I faults at the neuron's output. Hardware neurons in a net
have varying processing delays because of variations in device parameters (due to fabrication, aging). This
effect is modeledl as a delay fault. Section 2 describes the simulation settings. The simulation results of the
above four faults are presented in Section 3 before concluding in Section 4.

Table 1: Patterns stored in the Hopfield net

Patterns Groups

____ 2 3
P¾ 11111111 00000000 1 0000000
"P2 00000000 11111111 0 (X)000)000
P 3  00000X0 00000000 0 11111111
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2. The Hopfield Net and the faults
We illustrate, as an example, the fault tolerant behavior of a Hoofield net. A 25 neuron binary net

is used as an auto-associative memory [6]. The net stores the 3 patterns shown in Table 1.

Each pattern is divided into 3 groups (G 1, G 2 , and G3 ), a group of all Is and two groups of all
Os. These patterns are mutually orthogonal to each other. This is done to enhance the fault tolerant
behavior. The neurons are also considered to belong to one of the three groups. 'The Hamming distances

(HDs) between the patterns are,

HD(P 1 ,P 2 ) = 17 (1)

HD(P 1 ,P 3 ) = 17 (2)

HD (P 2 ,P 3 ) = 16 (3)

The HNC-Anza neurocomputer was used for the simulations. The simulation results are presented in the
following section.

3. Simulation Results
(A) NOISY INPUTS
In this experiment, the stored patterns with some bits complemented are presented to the net. A specific
method is followed in the introduction of noise. At any time, the noise introduced causes the resultant pat-
tern to be related to two of the stored patterns. For example, consider P and P 2. In case 1, we start with
P 1 and introduce noise in G I until the G I field ofP 1 becomesequal to the U I field of P2 Next, we
start with PI and introduce noise in G 2 until the G 2 fields of P. and P 2 are equal. Finally, we start
with P 1 and introduce noise in both G 1 and G_2 until the result is ,.

The simulation results of the above example are presented in Table 2. In case 1, the G bits of
P 1 are complemented sequentially and the pattern is presented to the net as Pi. The HD (P 1 , P1)
increases while the HD (P 2 ,Pi) decreases. We see that the net produces the correct pattern, P as long

Table 2: Simulation results of a noisy input experiment

Input Pattern (Pii)(_ ,P HD (P2,_iP) Pattern Found
0111111100000000100000000 1 16 PI
001l11100000000100(,0000) 2 15 P 1
0001111100000000100000000 3 14 P1
0000111100000000100000000 4 13 P 1
0000011100000000100000000 5 12 P,
0000001100000000100000000 6 11 P.
0000000100000000100000000 7 10 P 1
0000000 0X)0000O10000000 8 9 P"
11111110000000100000000 1 16 -)--
1111l111100• lOO100000000 2 15 P 1
1111111111100000100000000 3 14 P 1
1111111111110000100000000 4 13 NONE
1111111111111000100000000 5 12 NONE
I1l11 11 1100100000000 6 11 NONE
llllllll1ll1lll1 00000000 7 10 NONE
11ll1111111111100000000 8 9 NONE
0111111110000000100000000 2 15 Pl
0011111111000000100000000 4 13 P 1
0001111111100000100000000 6 11 NONE
0000111l1I1l1I1000001000 8 9 NONE
0000011111111000100000000 10 7 NONE
00000011ll111100100000000 12 5 NONE
0000001 11111l1010000000 14 3 P 2
000000001111111Oi1100000000 16 1 2_.
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as at least 1 bit in G 1 remains incomplemented. This is because of the zero inhibitory signals from groups
GI anm G 2 .

In case 2, the G 1 bits of P 1 are correct and the G 2 bits are sequentially complemented. The
expected output is P 1 whose G 2 neurons should have output of 0. The negative weights from the G 1
neurons give a total inhibitory input of -9 to all the G 2 neurons. Thus, as long as the excitatory input to the
G 2 from their own connections within the G 2 neurons remains less than +10, the net produces the
correct output. Thus, the net can withstand 3 bits of G 2 being complemented as a fourth bit complementa-
tiun will give the G 2 neurons an excitatory input of +12 and then cause the net to produce a wrong output.

The behavior of the network when noise is introduced in both G I and G2 is similar except that
the inhibitory input to a G 2 neuron from the G 1 neurons is reduced and hence a fewer number of faults
are tolerated. The results obtained for the other two pattern combinations can be explained in a similar way.

(B) WEIGHT MODIFICATION
In this experiment, connection weights are modified and correct inputs are presented to the net-

work. The net is consideied to have failed when it fails to reproduce any one of the inputs. The weights to
be modified can be selected in two different ways, randomly and modified singly, or randomly and modi-
fied symmetrically, i.e. both W- and W-i modified simultaneously. Faults in VLSI chips may be res-
tricted to very small areas, spot faults, or may affect very large areas. Accordingly we consider both, the
modification of weights located within a small area of the weight matrix and weights distributed uniformly
across the entire matrix. Further, selected weights are either set to 0 to model physical shorts across resis-
tors or their signs are reversed to model bridging faults between the Op Amp outputs.

A random number generamr- is used to select the weights. The seed was used the control the range
of numbers generated and hence the area of the weight matrix that was affected. For example, a seed of 52
resulted in a uniform selection across the matrix, wý;le a seed of 364 caused weights in the central area of
the matrix to be selected.

When a large number of the weights of a neuron are modified, there is a change in the sign of the
sum of its weights, resulting in faulty outputs. Thus, the net fails when a particular neuron has, in the pro-
cess of weight selection, a iarge numbelvr of its weights modified. Setting of weights to 0 requires a larger
number of modifications to cause a sign change than when the signs of the weights are reversed. Hence, the
net is able to tolerate a larger number of short circuit faults than bridging faults. When weights are modi-
fied uniformly across the matrix, the piobability of a large number of a particular neuron's weights being
modified successively is low, and hence the net is able to withstand a larger number of faults than when the
area affected is small. The effect c.f modifying symmetric weights again depends on the area of the matrix
being affected. This may or may not result in quicker failure than when non-symmetric weights are modi-
fied. The results are condensed in Table 3.

The values of the modified vweights also affects the performance. Modification of large valued
weights causes a faster decay in the plrionnance.

(C) STUCK-AT-FAULTS
In this experiment stuck-at-faultz. are introduced at the outputs of neurons and correct inputs are

presented to the net. A net is said to produce the correct output if the fault free neurons output the correct
values. Also, s-a-1 (s-a-0) faults are introduc.ýd in neurons which normally output a 0 (1).

The effect of s-a-0 faults is ic eliminate some normally necessary weights in the output evaluation,
while the s-a-I faults introduce a normal!y ineffective weight into the output evaluation. Hence, the relative
effects of these two faults is the same and depends on the values of the weights they affect. In one

Table 3: Weight modification experiment results

Seed Type of No. of weightL Pattern at which
weight modification modified before failure the net failed

52 Non symmetric 180 P3
52 Symmetric 144 P3

364 Non symmetric 21 P 2
364 Symmetric 38 / P 2
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experiment, pattern P 1 was presented to the net with neurons in G 2 and G s-a-l, The results are shown
in the Table 4. The interesting point is that when G-2 andG 3 neurons arG simultaneously s-a-1 the net
withstands a larger number of faults than when the faults lie only in G 2 or G 3 . This is because with s-a-I
faults, the G-2 and G(3 neurons mutually inhibit each other causing them to continue to output Os for a
larger number of faults.

(D) DELAY FAULTS
In this experiment, neurons with delay faults are modeled as having D latches at their outputs. If

the processing delay of a neuron has to be increased over its normal value At by a factor of n, we place n D
latches in series with the output. If each evaluation iteration through the net is considered as the basic pro-
pagation delay of the neuron, then after (n+l) iterations the correct output will be available. The net will
then take n more iterations to arrive at the correct output.

4. Conclusion
In this experiment we have investigated the faults that may occur in hardware implementations of

NNs and have observed the effects these faults have on network performance through simulations. The
faults considered include: (1) Noisy input, (2) Connection weight modification, (3) Stuck-at faults, and (4)
Delay faults. The results presented here are for the cases where all faults were considered independently.
Simulations with combinations of faults were run and as expected, the network performance degraded fas-
ter. With some combinations however, one type of fault counteracts the effect of another type and increases
the fault tolerance. The large numbers of faults tolerated by the net is due to the high orthogonality of the
stored patterns.
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Table 4: Results or s-a-i fault simulations
Input pattern =P 1

No. of s-a- I No. of s-a- I Pattern found
neurons in G 2  neurons in G 3

3 0 FOUND
4 0 NOT FOUND
5 0 NOTFOUND
6 0 NOTFOUND
0 3 FOUND
0 4 NOT FOUND
0 5 NOT FOUND
0 6 NOT FOUND
2 0 FOUND
2 2 FOUND
4 2 FOUND
4 4 FOUND
5 4 NOTFOUND
5 5 NOT FOUND
6 5 NOT FOUND
6 6 NOT FOUND
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Space-Scanning Curves for Spatiotemporal Representations...
useful for large scale neural network computing

Harold Szu* and Simon Foo
FAMU/FSU Engineering, Florida State University,Tallahassee, FL 32316

*Naval Research Laboratory, Code 5756,Washington, DC 20375
Abstract:

Neural Networks (NN) for computing should be able to deal with a large scale visual processing, since
animal species have survived through the prey-and-predicator relationship by quick scanning and computing.
In order to avoid the unnecessary detail in the wide open and cluttered field, an efficient spatiotemporal
analysis must be based on motion detections and the cause and effect judgement. Thus, a space-filling curve
covers a large scale spatiotemporal domain to any desire degree of accuracy, suggested by the french
mathematician Peano and supported by human eye scanning experiments, is adopted for dividing a large scale
NN in a controllable and successive coarse graining sense. This kind of Peano curves is general and applicable to
many classes of spatiotemporal control problems in a natural environment: TSP, Rocket Engine Plume,
Autonomous Robots and Vehicles, to name a few; all require real time optimization, ahead planning for
anticipation, as well as the associative recall for the past performance experience.
Keywords: Hierarchical Neural Network, Spatiotemporal Representation, Space-filling, Fractal, Trajectory,
Optimization, Planning, Associative Recall, Divide-Conquer, Cut-Splice, Travelling Salesman Problem, NP-
Complete
1. Background:

Our case study involves a classical generic problem - the large scale traveling salesman problem (TSP),
which belongs to the class of NP-complete (nondeterministic polynomial-time complete) problems, as noted by
Papadimitriou (1977) and Garey and Johnson (1980). The task of the salesman is to make a round trip of all the
N cities once only, and determine the tour of the minimum possible distance. In the simplest case where the
cities are points in the plane and travel cost is a function of the Euclidean distance, the problem is to find a
polygon of minimum perimeter passing through all cities. Although easy to state, the problem is hard to solve;
the number of possible tours increases exponentially with the number of cities. in fact, for a N -city problem,
there are N! possible tours. However, since each tour may be traversed either clockwise or anti-clockwise and
each tour may be started from a different city, the number of unique tours is N!/2N. Since exact solutions are
unattainable for problems of any appreciable size in reasonable time, there has been interests in heuristic and
parallel distributed processing (PDP) approaches. Lin and Kernighan [1] introduced a heuristic method for
solving TSP based on an interchange strategy and backtracking. In 1985, Hopfield and Tank [2] pioneered a
heuristic method based on neural network energy landscape approach to solve the TSP. Since then, Wilson and
Pawley [31 have pointed out a convergence difficulty oi the Hopfield and Tank algorithm in solving a larger
scale TSP. Szu [41 proposed a Fast TSP algorithm based on an efficient hybrid neuron model (analog input and
binary output) that is appropriate for an internal logic problem without noise( as opposed to the sigmoidal
neuron suited for an external sensor problems with noise). Moreover, the binary output ignores other neurons'
inhihitinn,; and by jumping to conclusion to visit a particular rity for any weak positive encouragement, can
energize the monotoneously decaying Lyaponov system to keep the optimization ball game going. Fast TSP
allows no self-talk (zero-diagonal interconnect matrix elements) in order to insure the absolute convergence
[dE/dt < 0 for any real E(Vi), e.g. [111 for a general proof]. Lastly, Fast TSP adopts the necessary and sufficient
constraint of a permutation matrix (row-sum and column-sum equal to one), in order to eliminate the ground state
ambiguity in converging to a valid tour only. Never mind about the dynamics. Imagine the statistics what
happens when a board of chinese go game gets bigger, as one requires to throw one and only one piece of stone in
each row and column. For much larger size TSP, even the modified H-T algorithm, Fast TSP [41, becomes
inefficient using single layer neural networks, because the phase space for the valid solutions becomes
exponentially smaller as the problem size increases. Thus, Foo and Szu [51 introduced an ad hoc cut-and-splice
algorithm using a first layer of four partitioned neural networks operating in parallel and a second layer single
network for global interconnect. Other recent approaches includes an "elastic net" meuthod by Durbin and
Willshaw 161, and Angeniol, Vaubois, Texier [71 based Kohonen adaptive net, divide-and-conquer algorithms
by Prof. Karp (Turing Award, 1985), and space-filliv,; curves by Bartholdi and Platzman[SJ.There are several
interesting developments that have led to the preserii vvork. Our work is motivated by the question of how to
solve large scale optimization problems using divide-and-conquer neural networks and fractal space-filling
curves (c.f. Appendix A What are Fractals ?).
2. Reduced Neural Nets over domain-s controlled by Space-Scanning Curves:
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A lexicographical scan is not suitable for vector representation of a two dimensional image since two
pixels next to each other on two rows become far apart on the row-by-row scans. A spiral scanning is only better
in maintaining the relationship near the center of the spiral but has a similar drawback as in row-by-row scan.
Our challenge is to systematically break down a large scale neural network over a large spatiotemporal
domain. We wish to map arbitrary spatiotemporal domain onto a linear sequence that can be easily partitioned
and yet maintain the causal neighborhood relationship.

The basic question of how to partition and preserve a neighborhood relationship has been posed by a
French mathematician Peano [91, who has proved that the mapping of the two-dimensional neighborhood
relationship can be preserved onto a real line. In other words, any partition on the real line defines connected
regions on the plane that can fill the plane. A deterministic fractal curve has been developed in a recursive
algorithm that can fill the plane in a successively increased resolution, as shown in Figure 2. In other words,
the line density of the' space filling curves increases linearly as the number of iteration increases, from a coarse
graining to a fine resolution, e.g. Dragon curves, etc.
3. Applications:

Numerical simulations will be presented. A stochastic application has been documented in the 1-D fast
simulated annealing feature extraction technique based on the 1-D Peano curve from the 2-D occluded and
cluttered moving objects [12].

3.1 Fractals for large-scale TSP? We think so. In small-scale TSP, the "fractals" may not be applicable.
But for large-scale TSP (with thousands of cities), fractals can be used to identify the flavor, the attrator
source, the chaos, etc. The proof is made by calculating the fractal dimension D of both city sets and showing
that they both have approximately the same D. This phenomena is analogous to that of the convergence of a
fern leaf (c.f. Barnsley [10]). Imaging how do we exam a maple leaf, whose circumference may be approximately
inscribed by a convex polygon of minimum perimeter connecting edge cities solving TSP of several thousand
cities. Consider initially clumps in fewer tens cities, and later hundreds, and thousands cities, by beginning
with a blurred/lowpass maple leaf that has been successively bring into sharp focus.

We present two aigorithms to do precisely that based on divide-and-conquer with space-filling fractal
curves. The first ad hoc procedure is as follows: (1) Partition an N-city map recursively until each square (or
cluster) has an approximately even distribution of cities. (2) For each neural network representing each cluster
of cities: (2a) Prefix a pair of "starting" and "ending" terminal cities; (2b) With local tour partially fixed, let
NN converge a open-tour. (3) The fractal curve (such as the one in FigurL-2) is then applied to globally connect
the open tours in a successively increased resolution until all cities are covered. Figure 1 illustrates the first
algorithm with the city map being recursively partitioned and the corresponding representation by a
hierarchy of neural networks. The fractal curve is applied at the "merging" layer. The depth of partitioning
depends on the distribution and concentration of cities. The second algorithm is a variation of the first with
"even" partitioning of the city map, as shown in Figure 2. Each square (representing a neural network) is
processed based on the flow of •. - fractal curve. With increased resolution (or more levels of partitioning), it is
possible to preserve the neighborhood of the cities. However, this meanrs more boundaries, i.e., more global
interconnects. Therefore, we will investigate the relationship of the minimum tour distance and the number (or
depth) of partitioning. A parameter as a function of tour distance, number of cities, and number of cycles required
for convergence, is identified.

3.2 Spatiotemporal Jet Engine Plume Diagnosis: Consider experiments performed by Strahle (1987) to
study the chaotic dynamics present in jet exhaust flame. The input data are time series for the temperature and
velocity at two different points in the jet flame. The flame is probed by: (a) a laser beam, where the photons
bounces off the fast moving (turbulent) molecules in the exhaust, and a sensitive photodetector measures the
characteristics of the deflected light. The output of the receiver is a voltage representing the temperature of
the jet flame, a function of time. (b) a very thin wire, where a constant temperature is to be maintained through
a wire in the flame. The voltage necessary to hold the temperature constant is recorded. This voltage (a time
series), after scaling, gives the velocity of the jet flame as a function of time. A close-up look of a portion of the
waveform reveals the self-similarity property of the time series. The fractal dimensions of the graphs of the
two time series are calculated using the Box Counting Theorem. Both sets of data yields a fractal dimension D
1.5, suggesting that, despite the different appearances in the graphs, there is a common source for the data.
This common source is the chaotic dynamnics of a certain flavor present in the exhaust. Therefore, fractal
dimension provides a means or a measurable parameter to classify chaos.

3.3 Autonomous Robot/Vehicle Control, Planning, Optimization: For example, the two-dimensionahi2-
D) x-y space and one-dimensional (0-D) time t are mapped onto a one-dimensional (l-D) arc length s, e.g. Peano
curve. The arc may be a parameter of time ordering on a linear interval (say at a piecewise constant speed).
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Then, all those possible world-line arc partitions are mapped back onto the space-filling 2-D regions, where
every regions are governed with reduced neural networks. This 1-1 mapping can be used for searching for better
trajectory on such a large-scale spatiotemporal representation.
4. Conclusion;

Hierarchical neural networks are useful for such a successively coarse graining approximation
controlled by deterministic space-scanning (or space-filling, namely fractal) curves. Thus, a dynamically
reconfigurable neural network architecture [111 can provide a piecewise quasilinear approximation, where
increasing the resolution gives better approximation to a large scale nonlinear problem.

Appendix A: What are fractals?
Fractals (or space-filling curves) are iterative functions operating on a geometry with statistical self-

similarity and self-affinity. In particular, fractals consists of transformation, translation, and duplication.
Fractal geometry provides both a description and a mathematical model for many of the complex shapes found
in nature. Traditional Euclidean geometry suits man-made objects but could not easily described natural shapes
such as coastlines, mountains and clouds. The property of objects whereby magnified subsets look like (or
identical to) the whole and to each other is known as self-similarity. It is the major characteristic of fractals
and it differentiates them from traditional Euclidean shapes. Therefore, fractal shapes are said to be self-
similar and invariant to scaling. Self-affinity is a non-uniform scaling where shapes are (statistically)
invariant under transformations that scale different coordinates by different amounts. Fractals belong to the
class of "mathematical monsters" (such as Cantor sets, Weierstrass functions, Peano curves, curves without
derivatives and lines that could fill space), created at the turn of this century by "naturalis) scientists.
However, they could not find any real applications until computer graphics came along. Since then, fractal
geometry plays an important role in realistic modelling of natural phenomena in computer graphics.
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Abstract.

In this paper, the performances of three popular neural network architectures, viz.
Hopfield net with asymmetrical connection matrix, Hamming net, and a multi-layer
perceptron trained using radial basis functions are cempared on a reasonably realistic
problem of database retrieval. The neural net architectures are compared on the
following criteria: (a) noise immunities, (b) generalisation capabilities, (c) random
failure of neurons.

1.1ntroduction.

Recently, there is much interest in artificial neural network methodology [4.9]. This
may be attributed to the popularisation of a training algorithm for a multi-layer
perceptron [4], and to the enormous intexest generated within the physicist communlity
on the possibility of applying spin glass analysis to a class of auto-associative neural
networks, viz Hopfield net [see eg ref 9].

There are indeed many possible neural network architectures. For example, there is an
auto-associative neutal network commonly known as the Hopfield net [1,2]. This
network has a very simple architecture. The output of each neuron is ted back to the
inpuzs of the, neurons. Because of the possibility ot extending current understandings in
spin glass analysis to this network architecture, as a result, its performance has been
analysed to a large extent by physicists who are trained in statistical thermodynamics.
There is a class of neural network architectures which is based on the simple clustering
concept [6]. The following neural network architectures can be loosely classified in this
category: Hamming net, Carpenter/Grossberg net, Kohonen Feature map 16]. There is
yet another class of neural network methodology which is based on the perceptroc
algorithm [4,5j. This is a feed forward only network, ie the signals arc flowing in one
diiection only.

Despite the popularity of some of these neural networks, there is very little comparisons
on their performances. Very often, one researcher would use one particular neural
network architecture for a particular application, without giving th'e underlying reasons
why that particular neural network architecture is chosen in the first instance. To a
newcomer to this field, this may give an incoherent view of the different typels of neiural
networks. In fact, one of ihe questions that a newcomer to the nCurali network field
would ask is: which neural network architecture is most appropriate to the application in
mind.
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In this paper, we will consider three typical neural network architectures, viz. Hopfield
net Hamming net and a multi-layer perceptron. The training algorithms for these
networks are atypica*l in that for the Hopfield net, we will use a training algorithm
which will give rise to an asymmetrical connection matrix [3]; in the multi-layer
perceptroa we will use a training algorithm based on radial basis function method [7,8]
rather than the more traditional gradient based algorithm known as the back propagation
method [4]. T'he main reason why we chose to use slightly different training methods in
preference to the more established training methods is that, we find, in actually
applying the various netwcrJc methodologies to a practical problem, it is necessary to
modify the training algorithms somewhat in order that the methcds can be applied.

In order to focus our attention, we will apply the three neural network architectures to
the same problem, viz a database retrieval problem. By applying all three methods to
the same example, we hope to convey the idea that these three neural network
architectures, which are typical examples of most of the neural network architectures
that have been proposed by the researchers, even though they might appear quite
different, are nevertheless capable of being applied to the same practical problem.
Furthermore, we hope, by applying these three methods on the same problem, their
performances can be compared, thereby indicating the strength and the weakness
underlie each method.

We compare the performances of the netwcrks with respect to the following criteria: (a)
noise immunity, (b) generalisation capabilities, (c) fault tolerance. By exposing each
neural network architecture to these performance measures, we hope to give some
indications as to which network architecture to choose for a particular application.

Due to the space limitations, we will only present the results rather than to present the
theory involved in each network. They can be obtained from the literature [see eg ref 6]
or from the author.

2. Results of the comparisons.

The database under study is the same one as given by Anderson et al.j 10] It is a
pharmacological database involving drugs, bateria, and the route of administration, it
consists of 31 records, each being 25 alphanumeric characters long. We use the same
encoding algorithm as Anderson et al [101, each record is converted to a 200 x 1 vector
using the alphabets { - 1,1 1

In the FI-, field net aid the Hamming net, there is no problem in identifying the input
and output variables as they are self evident. For the multi-layer perceptron case, we
assume that the output classes to be 31

The results of different runs through the programs can be summu-ise'd as follows:
(1). Retrieval of the original basis pattern vectors.

In this case, it is found that all three neural network architccture can correctly
retrieve the basis pattern vectors when the probing vector is one of the original
basiS pattern vwctors.

(2) Retrieval of the basis pattern vectors whca they are contaminated by noise.
We simulate the contamination of noise by the following method: We assumrec that
the bits of the original basis pattern vector are flipped according to whether a
random n umber obtained from a random number generator is greater thaun a
predefi ned probability function.
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It is found that as long as the percentage of bits flipped is less than 35% of the
length of the basis vector for the Hopfield net; and it is less than 45% of the
length for the Hamming net, the neural networks can retrieve correctly the
original basis pattern vectors. The percentage of the number of bits flipped in the
Hopfield net could possibly be increased by using a large constant associated
with the Gardner's method [31 to yield a deeper basis of attraction.

For the multi-layer perceptron the noise immunity of the network appears quite
significantly lower than the Hopfield net or the Hamming net. We find that if the
noise is more than 10% the network ceases to classify the input vecotrs.

Furthermore, for the Hamming net and the multi-layer perceptron, the output
would attain to the correct classification as indicated by the output of the network.
On the other hand for the Hopfield net, it is possible to observe the way in which
the network converges to the minimum. For example,if the initial vector is:

Enteroba-bacUrTrlnCephalo

and that we have 38 bits of the basis vector are flipped

Then we find that the network converge in the following manner:

iteration output from the network

0 Eotecnjm%faDM25zl.A%xza-G
I Dktesobi-' acUpTrlnCephado
2 Dj tesoba-bacUpTrlnCephado
3 Dntesoba-bacUrTrlnCaphalo
4 Dnteroba-bacUrTrlnCephalo
5 Enteroba-bacUrTrlnCephalo
6 Enteroba-bacUrTrlnCephalo

It is worthwhile to note that the network seems to have settled quite quickly from
its initial rather noisy input in the first iteration as something already similar to the
o.riginal pattern vector. it is observed also that the changes in each iteration after
that are small.

It is tempting to speculate that this behaviour mimicks the way how human recalls
a pattern. Initially we "home" into a pattern vector which is already quite close to
the final stcady state vector. Thereafter each iteration, the pattern rccalled is
gradually refined until we recognise that this is the correct vector. I lowever one
should riot attempt to place too much emphasis on this speculation, as the
Hopfield net architecture, zdrnittcdly, is a very crude model for the underlying
behaviour of human memory recalls.

(3) Generalisation capabilities..
In order to test the capability of the netv-ork to generalise, we take a seginriet
from one basis pattern vector, concatenated it with a second segment from a
second basis pattern vector, selected at random from the exisitng 31 records, and
then further concatenated it to a third segment from a third basis patitern vcct(}r,
again selected at random. Then we input this "'amalgamated" vector as thc probi ug
vector into the networks.
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It is found that none of the network generalise at all. The only possible indication
of any generalisation capabilities came from the Hopfield net. We found that, for
some cases, it seems to have some generalisation capabilities. For example, we
find that

iteration output of the Hopfield net

1 Proteus"+cocUrTrlnGenicil
2 Proteuw'-bocUrtrlnPenicil

3 Pvoteuw'-bkcUrtrlnPenicil
4 Pvoteuw'-bicUrtrlnPenicil
5 Pvoteuw'-bacUrtrlnPenicil
6 Pvoteus'-bacUrtrlnPenicil
7 Pvoteus'-bacUrtrlnPenicil

In this case we find that the network, instead of settling to the pattern vector,
Proteus -bacUrTrlnGentamy, it settles to a new pattern vector which is not
contained in tie original database.This is particularly interesting in that the neural
net seems to think that it is possible to treat Proteus -bacUrTrln ( stands for
Urinary tract infection) with Penicil ( stands for Penicillin).

One should not be tempted to conclude from this observation that the network
has some kind of generalisation properties. This is because of the fact that the
machine seems to have 6 out of 31 records which give different pattern vectors
than those that werte originally stored in the database. Much more testing needs
to take place before one can comfortably conclude that the Hopfield net has
some kind of generalisation properties.

(4) Robustness with respect to the failure of the neurons

It is found that both the Hamming net and the Hopfield net performance degrades
"gracefully" with the degradation in the number of neurons which are
mulfunctioning. On the other hand the multi-layer perceptron does not degrade
well. It is found that the network just wrongly classify the outputs.

3. Conclusions

In this paper we considered the problem of database retrieval and we have employed
three typical neural network architectures to see if they can retrieve the records under
various conditions.

It is found that all the networks can retrieve the origirial pattern vectors if they are input
as the probing vectors. Furthennore if the probing vectors are contaminated with noise
then the original pattern vectors can be retrieved provided that the noise contamination
is not high. Both the Ilopfield net and the Hamming net appear to degrade their
behaviour rather gracefully as the number of malfunctioning neurons increases. Both
networks simply d.lo not l)Ioxluce some of the pattern vectors, but they do not affect the
retrieval of other unaffected pattern vectors. On the other haland the multi-layer
perceptron appears to be very "flakely" to the degradation of the perfoi iliance. It simply
gives up to classify the input pattern vcctors. Only the Ilopfield net appcars to give
some general isation capabilities.
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From these experiments, we can conclude:

(1) The neural nets considered are good pattern matchers. They can match a given
pattern with patterns already stored in the memory, provided that the noise
contamination is limited.
(2) Because of the distributed nature of the storage of the memory, even if some of the
neurons failed, the performance of the networks, in general, degrade gracefully.
(3) As a generalisation device, the networks, at least in the way this paper considers,
are not good at all.

In general, there is not much to choose among the networks if one's aim is to classify a
given set of pattern vectors. Any one of the three neural network architectures are
applicable. On the other hand, if one wishes to have some robustness in the hardware,
then it is advisable to choose either the Hopfield net or the Hamming net. If one wishes
to see how a network mimicks a human brain's behaviour in the memory recall, then it
is perhaps best to use the Hopfield net.

It would be interesting to see if the Hopfield net methodology can reproduce some of
the findings by psychologist in memory recognition and recalls.
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1. POTENTIAL FOR USE OF NEURAL NETWORKS IN SPACE ELECTRONICS

Massively parallel networks offer enhanced computational capability in a variety of fields including Space
power system design. Cost effective operation of the Space Station will depend on the automation of tasks
which have ordinarily been performed by human operators. "The four major aspirations for Space Station
automation are (1) maximize productivity, (2) stay within budget, (3) minimize R&D risks, and (4) maximize
crew safety."[2][6] To achieve these goals the initial automation schemes will include "both conventional
automation schemes (algorithms and event driven logic programs) and expert systems ...Conventional
automation will handle the bulk of the regulation and high response tasks, as well as any crisis management
tasks."[2] The approach will be to upgrade incrementally through several generations of automation systems
until "intelligent autonomous systems" can be implemented by "building full-fledged executive controller
hierarchical networks."[3] Even within these intelligent systems "algorithmic responses will be absolutely
necessary when speed is of the essence, since deducing how to respond using standard Al techniques may
require too much time."[3] Moreover, standard AI techniques implemented on a traditional von Neumann
architecture suffer fundamental reliability problems since the traditional architecture is susceptible to severely
reduced performance when an individual component fails. This is an undesirable property, since such
component failure has been shown to be likely under conditions found in Space.

Neural networks, in addition to having the property of generalization, are much more tolerant of individual
component failure. This property comes from the network architecture and the distributed nature of its
parallel computation and database. Several researchers have shown these systems to be remarkably tolerant
to the disabling of some fraction of the processing elemnents.[4][51 Related work by the Space Electronics
Research Group at Vanderbilt University has shown similar tolerance to the systematic disabling of both
,ro,,-sing "lemcnntO, and signal' interconnectiowis. Evidence of catastrophic effects of radiation on Space
system reliability has been observed since 1975 with increasing regularity. These have included notable (and
expensive) cases such as memory failures in the Pioneer Venus and Voyager probes, as well as numerous
satellites. A complete refit of the Galileo probe (at great expense) with radiation hardened electronics has
recently been performed after land-based simulations predicted large numbers of memory bit upsets in the
Jovian radiation belts. It follows that highly reliable, radiation tolerant parallel computing networks for
Space applications are worthy of investigation.

2. MASSIVELY PARALLEL NETWORK FOR COMPUTING l1t

Simulations were performed on fundamental power system control blocks in order to determine (1) the
feasibility of constructing massively parallel network computing structures which could be manufactured with
available VLSI technology (e.g. 3 micron analog CMOS processes), and (2) their tolerance to transient
disturbance. We modelled I't elements, which are used in power systems to protect components fromn
damage due to large current surges caused by short circuit faults. These elements compute a measure of
the cnergy that is applied to a constant impedance series device during a high current transient. One cause
of sucl transients is the presence of intense Space radiation. Such radiation tends to cause semiconductor
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power devices to turn on, thereby inducing current surges. A major advantage of a fault tolerant 12t block
would be its ability to function reliably in the presence of such radiation. 12t blocks are effective only if
they have the ability to perform rapid integration of the square of a fast transient waveform (typically 16
millisecond response is required). For this reason, 1nt computation requires the sort of speed which can be
provided by parallel computing blocks. Current breadboards of the Space Station automated power
distribution system located at Marshall Space Flight Center, Alabama utilize remote power controller
modules containing solid state MOSFET switches. These breadboards use analog signal processors to
compute the 12t trip condition.[1] The time available to sense a fault condition and protect a semiconductor
switch is critical due to the low thermal capacity of the die and the relatively high thermal resistance
between the die and heatsink.

The 12t neural computer comes in two forms. Both configurations input a 2's complement binary number
representing a level of measured current. One configuration produces a 2's complement output which
represents the amount of energy (It) accumulated since the specified zero time. The alternate configuration
has a single output (possibly with redundancy for fault tolerance) which goes high when the calculated 12t
reaches a given value. This configuration is effectively an alarm which trips when the calculated energy
reaches a certain predetermined threshold.

Both configurations of the 12t unit contain two core neural blocks with a total of three feedforward layers.
The first unit takes the binary current level and converts it to a unary representation, with all outputs zero
when the input is at its minimum magnitude, zll outputs one when the input is at its maximum magnitude,
and a proportional number of outputs one for an intermediate magnitude input. This processing block is
a two layer network, easily realized with standard back-propagation methods. The second network is a
single layer device which takes as input the output of the first block and integrates the square of that input.
its output is also an unrigned unary representation with all outputs zcro whcn the intcgrated amount is
zero, all outputs one when the integrator is saturated, and a proportional number of outputs one for
intermediate integration levels. For binary output, the output of the integrator may be reconverted into
2's complement binary with another back-propagation network. The alarm configuration is achieved with
a simple network which yields a one when the majority of its inputs are one. For fault tolerance, the
inputs to this network are attached to the output representing the desired alarm level, as well as to the

outputs surrounding that level. If more outputs are examined there is less chance that a faulty output or

t I_
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Figure 1 Typical Portion of an Ift Network
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outputs will set off the alarm inappropriately. This same notion of fault tolerance is behind the unary
representation fed to the integrator unit. The representation chosen places less weight on each individual
signal; whereas a faulty signal on one bit of a binary input can change the input by 50% of full scale, one
faulty signal on the unary input to the integrator can change the input by at most one level. The unary
input also simplifies the programming of the integrator network. The integrator is a single layer device
trained by a direct method. Each individual output element has two principal types of characteristics,
namely rates and biases. For each output element, a net is computed by taking the weighted sum of the
inputs to that output. This sum is added to the integrated value within the output element at a controlled
rate. Whenever the integrated value within the element overrides the built in bias of the element, that
element produces a one at its output.

3. FAULT TOLERANCE OF It NETWORK TO INTENSE TRANSIENT NOISE

Cosmic radiation composed of high speed, high energy particles is refecred to as single event radiation.
Such radiation affects electronic equipment by creating extremely short duration disturbances within that
equipment. The character of these transients depends on the distribution of ion atomic weights and linear
energy transfer characteristics in the surrounding environment. Disturbances similar to those caused by
single event radiation can be simulated in neural nets by presetting a probability that a given unit wil! be
affected by a noise pulse in a given time period. For each time period a random number generator is used
to determine for each processing element whether it will be disturbed. When an element is affected, its
output is randomly set to either 0 or 1. Note that one way to increase tolerance to such disturbance is to
use redundancy in the design of the circuitry. If an output is replicated two or more times, then the effect
of transient disturbances can be reduced. Figure 2 shows the outcome of tests of the 12t computing device.
Shown are the input to the device for each test, the output of both the binary and the alarm devices for
zero disturbances (dotted lines), and the output of both devices at a disturbance level of 800,000 expected
disturbances per thousand processing elements per second. It can be seen that the disturbances degrade
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the output of the binary output network. It is interesting to note that the tendency of the utput level of
the disturbed integrator to rise above the output level of the undisturbed integrator is car Ad primarily by
disturbances within the binary to unary absolute value converter, while the instantane/ is spikes in the
output level of the disturbed integrator are caused primarily by disturbances to the inte .'ating layer itself.
Also, the alarm device trips earlier under disturbed conditions than under undisturbed conditions. However,
the alarm is still set off sufficiently close to the proper time as to allow for shutting down of appropriate
sensitive components. Simulation results indicate that, in the case of the INt network, the alarm will, at
worst, be set off prematurely. This behavior is desirable, as a premature trip condition is likely to be far
less harmful than a delayed trip condition. Table I shows the behavior of the alarm device under a variety
of disturbance conditions.

Table I Comparison of Trip Times of Disturbed INt Network

Disturbance Frequency Mean Trip Time Standard Dev.
(per second per 1000 elements) (msec) (msec)

0 15.8 0.000
200,000 15.7 0.310
400,000 15.4 0.057
800,000 14.9 0.122

1,600,000 13.0 3.090

It was shown that the neural IVt possesses significant fault tolerance to transient electrical disturbances
which are potentially similar to the type of single event Space radiation of interest in Space electronic
applications. This device, as well as other parallel computing blocks, is currently being studied to determine
its behavior when exposed to simulated single event radiation phenomena as well as other types of radiation
damage of interest in both Space and military applications.
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Recently. several researchers tried to solve Traveling Salesman Problem (TSP)
using Hopfield's model (also called McCulloch-Pitts' model) (Grossberg, 1988; flopfield.
1082. 1984: Hopfield & Tank. 1985: Foo & Szu. 1988; Wilson & Pawley, 1988). Unfor-
tunately, the results obtained so far are not good enough compared to the ones obtained
by conventional heuristic algorithms. This paper presents a new approach. It is based
on a generalized neural network (Xu, Tsai. & Huang, 1988), and has a comparable per-
formance with conventional heuristic algorithms. On 40 randomly generated planar
TSP instances (each has 100 cities), with a confidence level a = 0.0069, the algorithm
improves the 2-OPT (25 runs) by at least 1.1%. On TSP instances with random dis-
tance matrix, the algorithm has drastic improvement over 2-OPT. The higher complex-
ity of the generalized network is responsible for the power of the algorithm.

1. Introduction

Traveling Salesman Problem (TSP) has been studied extensively in the literature for many years.
Recently, several researchers have tried a new approach to TSP (Hopfield & Tank, 1985: Foo & Szu,
1988: Wilson & Pawley, 1988), i.e., using Hopfield's model (also called McCulloch-Pitts' model (Grossberg,
1988)) to obtain optimal or near-optimal solutions. One possible advantage of a such approach is the util-
ization of massive parallelism of such neural networks. Unfortunately, the results obtained so far are less
encouraging. In (flopfield & Tank. 1985). even for a 30-city problem. the result produced is more than
17% longer than the one produced by a well-known heuristic algorithm ([in & Kernighan, 1973). The
performance is thus rather poor considering that many other heuristic algorithms can obtain solutions
within few percentage of the best known solutions even for larger-size problems (Golden S- Stewart,
1985).

In this paper, we present a new neural network algorithm, which has a competitive performance
compared with conventional heuristic algorithms.

2. Algorithm
We first describe the coding scheme used in this algorithm. Like in (Hopfield & Tank, 1985), the

neural network is organized as an nXn matrix (although half of the matrix is sufficient, using the entire
matrix is more convenient), each neuron v, corresponds to the link from city x to city i. If v,: = 1, then

the solution will use link (x, z), otherwise link (x, i) is riot present in the solution.

With the above coding scheme, one possible energy function is:

VE- = (> -2) +± v,- 2) +_ CV E1)
Z-1 s-i - i--I X-1 r-i-z+i

with v, = 0, d, is the distance between city r and i.

the meaning of each term is clear, term A and B require that each city has two links in the solution, and
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term C is the cost of the solution.

The above coding scheme is natural and easy to implement on neural networks. The essential diffi-
culty with the above coding scheme is the subtou- problem. i.e., a global minimum point of (4) may not
correspond to a minimum-length Hamiltonian circle but to a set of smaller cycles. To overcome the sub-
tour problem, we employ the so called generalized neural network (Xu, Tsai, & Huang, 1988), the general-
ized neural network allows more complex interactions among the neurons and thus is more powerful.
Theoretically, the generalized neural network can guarantee to produce the global optimal solution, but
at the cost of using an exponential number of coefficients (i.e., the size of the neural network is large),
which is not practical for even small-size problem. However, by allowing only some specific interactions
among the neurons, one can get measurable improvement from neural network defined by (1) without
increasing the neural network size much. The technique used in the algorithm is called Adaptive Subtour
Elimination.

2.1. Adaptive Subtour Elimination

While no effective mean is known to eliminate subtours under the coding scheme using Hopfield's
neural network, there are many possible ways to eliminate subtours by using the generalized neural net-
work. One solution would be adding to the energy function (1) all terms that correspond to all possible
Hamiltonian tours, i.e., terms in the form:

- li2.vie• • v,;, (2)

which is the total enumeration of all possible Hamiltonian tours, or equivalently, one can add all terms
that correspond to all possible subtours (tours with fewer than n links), it is obvious that such enumera-
tion is too expensive and impractical.

Although the above simple method of eliminating subtours has little practical usefulness, it can be
useful if we do the partial enumeration instead of the total enumeration. This is justified by the following
reasoning:

Suppose neural network I starts from a state S., it will converge to a stable state S! which consists

of several cycles. CYL - cyll, ..., cylk ý, where:

cyli = ( nodef.,t ..... node1 , i ,. k

If we add only the terms that correspond to those cycles to the energy function (1), we have a new
neural network with energy function:

A n 2)c B L3)" -
,= -2) + 7E (E ',,- 2) + C

z--I x1 "-i z-1

k

k FE , j".. V-i. (3)
i- I 1 2

Equation (3) defines a new neural network, if we start the new neural network again from Si, it will con-
verge to a stable state S.'1, the cycles in Sf will not appear in 3'1, since term F penalizes those subtours.

However generaly, state S•f will consist of a new set of subtours.

We can repeat the above procedure until we get a neural network that will produce a satisfactory
result. This is called the adaptive subtour elimination since each time when we construct a new neural
network, only terms that penalizes subtours of the immediate previous solution are added.

After the adaptive subtours elimination, there may still be a small number of subtours, those are
merged by simple operations such as the ones in (Karp & Stecle, 1985), and finally the resulting solution
is improved by 2-OPT (Golden & Stewart, 1985).
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3. Performance Analysis

Forty random planar TSP instances have been generated and tested on our algorithm (each prob-
lern has 100 cities), and the same instances are feed to an 2-OPT using random initial solutions, the
results are summarized in Table 1. The results from 2-OPT are the best selected from 25 runs starting
from random initial solutions. The reason to compare the algorithm to 2-OPT is that on dome well-
studied instances, 2-OPT has performed consistently within 3.3% of the optimal solution (Golden &
Stewart. 1985).

Definition: Let A be an algorithm for TSP, the percentage of improvement of algorithm A over
2-OPT (25 runs) on an TSP instance is

i Sol(2-OMF) - Sol(A)
- Sol(A)

where Sol(A) is the tour length obtained by algorithm A (on that instance).

Problem pi(our) Problem pi(our) Problem pi(our) Problem pi(our)

1 -2.188 1I -0.789 31 1.704 41 2.690

"2 3.080 12 0.361 32 1.791 42 0.309

3 7.170 13 2.021 33 -0.791 43 4.939

4 2.144 14 3.240 34 -1.122 -14 0518

5 1.178 15 2.828 35 1.668 45 1.323

6 2.239 16 -0.599 36 2.521 46 0.800

7 0.885 17 2.655 37 3.750 47 1.880

8 2.574 18 0.783 38 -1.785 48 2.319

9 3.778 19 1.110 39 4.342 49 3.792

10 1.202 20 4.319 40 0.831 50 4.278

Table 1 Percentage of improvement (of our algorithm) over 2-OPT.

Based on the data of Table 1, a large sample statistical test enables us to say that our algorithm
improves 2-OPT (25 runs) by at least 1.1%, with a confidence level a = 0.0069.

Due to the unavailability of the problem instances and the heuristic algorithms of (Golden &
Stewart. 19Z5) (we have only problem # 24), a direct comparison between our algorithm and those heuris-
tic algorithms cannot be made. We again select 2-OPT (25 runs) as a "standard" algorithm to compare
with. H10 in Table 2 is the heuristic algorithm CCAO, i.e., Convex hull, Cheapest insertion, Angle seiec-

tion and Or-OPT.

Based on the data in Table 2, we also made a statistical test on CCAO, and it revealed that CCAO
improves 2-OPT (25 runs) by at least 1.1%, with only a confidence level a = 0,3707.

From the two tests, one may get the impression that our algorithm is better than CCAO, this is
rather illusionary, because the number of experiment data is too small in test two, while the first test, is
much accurate. It is much fairer to say that our algorithm is competitive with CCAO or other heuristic
algorithms listed in Table 2.
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Problem 2-t 25 26 27 T 28

pi(H1) 0.9686 1.5671 -0.5442 2.5216 0.7613

pi (H2) 0.1684 1.0889 -1.0728 1.2054 0.0194

pi (H3) 0.7373 1 .5671 -0.5442 2.0098 0.7613

pi(H4) 0.2976 1.5871 -0.0199 1.5038 3.0545

pi(H5) -1.3657 1.6272 -1.0046 3.0947 0.2038

pi(H6) -0.3057 1.5171 -2.0084 2.1161 1.6242

pi/(H7) 0.5469 1.6974 -0.6818 2.5929 2.1571

pi(H8) -0.0593 -0.0388 -0.0606 0.9087 0.6238

pi (H9) 0.6470 1.4571 0.0199 2.8074 2.2381
pi(HIO) 1.1100 2.0600 0.0100 2.2779 0.6827

Table 2 Percentage of improvement over 2-OPT' (From Golden & Stewart, 1985).

4. Conclusions

In this paper we presented a neural network algorithm with Adaptive Subtour Elimination. The
algorithm is based on a generalized neural network model (Xu, T:sai. & Huang, 1988). The results of
those neural networks are post-processed by a simple iterative algorithm, known as 2-OPT. By using the
generalized neural networks, our algorithm has produced comparable performance with other conven-
tional heuristic algorithms on TSP. From the experiment data, we can say, with confidence level
or = 0.0069, that oiur algorithm is better than 2-OPT (25 runs) by a, least 1.1%. This is 1 good result
considering that on 5 TSP instances, the 2-OPT (25 runs) has produced solution within 3.3% over the
optimal solution (Golden & Stewart, 1985). By demonstrating that neural network can produce competi-
tive results with conventional heuristic algorithms, this paper indicates that the neural network approach
is indeed a viable alternative to solve hard optimization problem.
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1. Introduction

Fuzzy control has been known as a successful application of fuzzy theory( 1 ), and is used for many
real systems( 2 ). Fuzzy control realization needs the three steps; 1) we acquire the fragment of
expert's uncertain knowledge, 2) write the knowledge in fuzzy rules, and 3) refine the fuzzy rules.
To support the latter two steps, we proposed SNN-AM (Structured Neural Network - Associative
Memory system)( 3 ). SNN-AM can infer suitable rules from the expert's uncertain ki_'wledge with
its associative function and car, refine fuzzy rules with a special learning method. W- use a short-
term memory system (STM) for inference and a long-term memory system (LTM) for learning. We
also use a structured neural network architecture which is advancement of BAM (Bidirectional
Associative Memory)( 4 ) architecture. SNN-AM's inference might activate some stored memories
which fit for an input condition. If the input condition isn't suitable for any stored conditions, SNN-
AM makes up a rule image suitable for the input condition from stored rules. SNN-AM's learning is
fast, because neural networks in the structured neural networks are separately trained.

hi this paper,we first propose SNN-AM, and discuss its architecture and the framework of STM
and LTM. Second, we discuss how the fuzzy rules are stored in SNN-AM, how the suitable rules
are inferred from the stored fuzzy rules, and how the stored rules are refined. Finally, we reports
the elevator group control application, which uses SNN-AM in predicting control effects, and the
usefulness of SNN-AM.

2. SNN-AM: Structured Neural Network - Associative Memory system

SNN-AM memorizes concepts given by expert's uncertain knowledge on a bidirecticnal associative
network, which connects structured neural networks.
SNN-AM's architecture is shown in
Fig.!. It consists of structured ".e1u-
networks SO-SN. (It is possible to S M-
represent hierarchical concepts by (Concep• nme)

applying the same architectures to
S0-SN.) SO has a concept name set
which consists of concept named
neurons, and SI-SN have attribute
name sets which consist of neurons -
characterizing the concepts in SO. SO is Si u 2 Atbut) ... N ,S,2 __
connected to S1-SN in respect to
special uncertain relationships. These
connections are constructed by BAM. Owpu/InpuLt
BAMs in SNN-AM activate the stored Fig.1 Concept representation
concepts which fit for an input

condition.
There is a special architecture that a concept set in SO conducts attribute sets in S I-SN, and its
architectare makes tlic network dynamics stable because the major macro factor (concept set) drives
micro factors' (attribute sets') actions to be stable. This architecture is well known as a holbuic
system( 5 ). It will be mentioned below that SNN-AM has an inference function and a learning
function.
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STIM (short-tenn memory system) and inference
STM has an inference function which temporarily keeps the network dynamics stable. The series of
active states' transition explains an infering transition with some meanings. In this transition, the
most fitting concept's activation value gradually increases toward the highest level, while other
concepts' activation values decrease. SNN-AM controls this activation values. To imitate some
fuzzy inference methods which are used in fuzzy control, SNN-AM stops the transition before the
state sufficiently converges. SNN-AM's inference activates some concepts fitting for the input
condition with its certainty factor, as the fuzzy inference does.

LTM (long-term ro mory system) and learning
LTM consists of the connection weights between SO-SN and the connection weights in each
network SO-SN. These connection weights are refined by following two learning methods.
The learning method at the connection weights between SO and S I-SN is based on an idea similar
to Hebbian learning law, and is shown as follows.

WAC = - WAC + XC'RA, (1)

xwhere, WAC is the connect;on weight between a ccncept C and an attribute A; if the concept C has a
relatior to the attribute A, XC's value is 1, and otherwise, XC'S value is 0; RA is A's certainty
factor to attribute A's labehed meaning. We arrange EFq.(1) for A's independert and discrete timing
learning and the representatic" of the learning times k on consideri'g Eq.(1)'s learning curve, and
make Eq.(2).

AWAC(k) = D 1 [exp(-T(k- 1))-exp(-T(k))], (2)

where, D I is a coefficient, T(k) means the k-th learning time.
The B.P. learning method( 6 ) can be used as the learning method for the connections in SO-SN.
Other methods (lIk- T.L.V.Q, etc.) are also applicable as the learning method. SNN-AM's learning
can be fast because SO-SN are trained independently. In LTM, the learniag effect is changed in
proportion to the matching grade betweeu attribute A's meaning and its learning data, and inversely
proportion to the rate of learning about attribute A.

3. Fuzzy rule represennO pr Z---
Fig.2 shows fuzzy if-then rules, which
co, -,sponds to Fig.l. Fuzzy rule,: are
I orized in SO as concepts. These ftizzy Se
rt..ýs' concepts have "if" and "then" attributes.
Si is "if" attribute set. And S2, is "then"
attribute set. Fuzzy model( 7 ), which has high
representation ability, i• formed by SNN-AM,
Ordinary fuzzy model rules are written as Fig.2 Fuzzy rule repreea.jajin

Rule i:if ((ul=Ctl)&--&('ij=Cij)&.-&(ur-=Cir)) then yi=fi(u), 0j=l-r, i=1-N), (3)

where, u=lul ,--,ur]T is a input vector,
Cij is a fuzzy set like "Big","Medium", or
"Small", fuzzy set are characterized by
membership functions which represent .............
each label's meaning, yi is a output •4-j.
Svector. fi(.) is ordinarly a linear function . (7- .. p.rt
which shows a sub-model, We use neural ............
networks for sub-models, so suo-models ..'. ..... + weight
ai-e non-linear function in this paper. it -part 0 neuron

Fuzzy model is useful f-i representing Fiý , le,,oizfngf thod
structured neural network moxlel. m
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This fuzzy model's rule are represented in Fig.3, where we explain how to memorize a fuzzy rule
on Rule i. Each circle shows a neuron which represents each structured neural network. The
memoiy part is at the center of SNN-AM, and connected to if-part and then-part. Positive relations
have plus weighted bidirectional connections, and negative relations have minus weighted
connections. No connection if there's no relation. In the memory part, rule neurons have milus
weighted connections each other.

SNN-AM's fuzzy inference dymanics is shown as following discrete equations.

v(k+ 1)=f ( Wvc'•:(u(k)) f-Wvv-v(k)+Wvx-x(k)),
x(k+ l)=f{ Wxv'v(k+1)+Wxx-x(k)+Wxz'z(k) } , (4)
z(k+l)=f { Wzx.x(k±1)+Wzz.z(k)),

where, v, x, and z are neuron's states, v is a r-vector for the if-part, x is a N-vector for the memory
part, z is N-vector for the then-part, f{-} is a sigmoid function, c(.) shows membership functions
Cij for input u, Wij shows weight matrix from nodes i to nodes j.
When T is the inference transition stopping time, the output activation vector of then-part is shown
as a(u)=z(T). The output vector y is given by

N N
y=(• , i(u)'yi)/(Y iai(ui)) . (5)

SNN-AM's learning at Wxz and Wzx is given by follows from Eq.(2).

±D 1 Iexp(-D2(Ti(k- li)+D3))-exp(-.D2(Ti(k)+D3))], (i=j) (6)AWij={()
-Dl Iexp(-D2(Ti(k- 1)+D3))-exp(-D2(Ti(k)+D3))], (iOj)

NATi(k)=Ti(k)-Ti(k- 1)=mini( 1, D4(Yai(u)/Wii) ),(7)
i=1

where, D 1, D2, D3 and D4 are coefficients. Eq.(7) represents the learning effect feature described
in LTM.

4. Application to elevator group control system

The fuzzy rules designcd for elevator group control are

Rule 1:lfd=BIG then yl=fB(x),
Rule 2:If d=MEDIUM then y2=fM(x), (8)
Rule 3:If d=SMALL then y3=fS(x),

where, BIG, MEDIUM and SMALL
,ire membership functions, fB('),
fM (.) and fs() arc sub-m odels III p all, j
which show predictive effects, yi _

and x are 3dim -vector. E.q.(8) D..liaji.. SI11,1, M.di,,i,,. Ilj, -S,. M e i,•, it.

shows expert's rules where we get ,
predictive control effects yi when the JI."
demand is d a/id control parameter is
x. Output y is given by Eq.(5). J" L
In this application explained in [ig.4, h .I,,t dul,

sub-models fB and fs are certain but Au.Wi1,c c ,ear,,
fM is uncertain at the beginning.
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If an inference at the condition d=MEDIUM is done. output y is given by fm, fB, and fS because
fM isn't sufficiently tra-ined. The fM's activation area becomes wider by the learning, as shown in
Fig.5. Fig.6 shows that the error rate is decreased by the learning. The transition of active state
rates at inference is shown in Fig.7.

f / B Error rt

BI-

t I

2.9. 5 2.4 2. 4 f

(A) Before learrning (B) After ieaming

Fig.5 Active states for demgnds fig,6Lrrgr trans 1itaLBU~Jjng~a~l Fig.Agxive tat transition at feec

5. Conclusion

This paper presented how to realize fuzzy rules within an associative memory system, how to infer
suitable memorized rules, and how to refine the memorized rules.
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